

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XI Month of publication: November 2025

DOI: <https://doi.org/10.22214/ijraset.2025.75245>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Driving Assistance Using IOT

Buvaneswaran R I¹, Krishnaraj B², Sridhar P³, Mrs. A. Ambika⁴

Department of Computer and Communication Engineering, Sri Sairam Institute of Technology, West Tambaram, Chennai, Tamil Nadu, India

Abstract: In order to address the ongoing problem of traffic accidents in developing nations, this study suggests a real-time, affordable driving assistance system that makes use of edge-based machine learning, sensor fusion, and the Internet of Things (IoT). In situations where traditional vision-based assistance is ineffective, the system's integration of live video, radar, and GPS data allows for reliable detection of environmental hazards, lane boundaries, and vehicle position. Without relying on cloud infrastructure, processing is done locally on a Jetson Nano or Raspberry Pi, offering real-time alerts and map-based visualisation. High accessibility, scalability, and alignment with the UN Sustainable Development Goals (SDG) for safer and more intelligent transportation are the goals of the design and implementation discussed here.

Keywords: IoT, Driving Assistance, Edge AI, Radar, Machine Learning, Automotive Safety.

I. INTRODUCTION

Road traffic injuries are a major cause of death and disability worldwide, particularly in nations that are rapidly becoming more motorised and urbanised. The World Health Organisation reports that over 1.35 million people die in traffic accidents every year, and many more are left permanently disabled. Even after decades of advancements in automotive engineering, there is still a significant technological gap between mainstream or low-cost cars and luxury cars with Advanced Driver Assistance Systems (ADAS). Due to this discrepancy, the great majority of car owners and drivers are at risk of accidents brought on by human error, a lack of situational awareness, and sluggish reactions. Premium cars equipped with intelligent driver assistance technologies have shown notable gains in lowering accident rates and assisting drivers in challenging situations. However, the fact that these technologies are primarily available to luxury cars highlights a technological divide that puts a large portion of the global vehicle population at risk.

Our project is driven by the pressing need to democratise access to advanced driving assistance by utilising embedded artificial intelligence and the Internet of Things to create a low-cost, easily deployable, modular system that can be widely used. It is now possible to create useful, scalable safety solutions that were previously only available in high-end automotive segments thanks to the convergence of inexpensive processing power, sophisticated sensor technologies, and machine learning algorithms. Accessible safety improvements are especially needed in India, where car ownership is rising quickly but average car ages and prices are still low. By addressing this market gap with an engineered solution, we aim to contribute meaningfully to reducing road fatalities and injuries while advancing broader sustainability and development goals.

The traditional paradigm of driving-a person singly responsible for perceiving and responding to the myriad of cues and hazards on the road-is both time-honored and intrinsically flawed because of human limitations. Fatigue, distraction, suboptimal reaction time, and inability to perceive certain environmental cues remain perennial problems. Scientific literature has documented the efficacy of machine learning in supplementing or correcting these shortcomings, especially in object detection, lane keeping, and situational awareness. Camera-based AI models, such as YOLO, have demonstrated impressive real-time object detection capabilities, while long-range radars have long been praised for their reliability in poor visibility conditions. Such strengths combined in one unified, affordable, modular package can transform vehicle safety-not as a research experiment but as a practical, deployable solution.

Our motivation is thus rooted in both the technological challenge and the societal need. We aim to make sure that the benefits of intelligent driver assistance are not limited to new vehicles alone, but the same can be retrofitted or built into a variety of automotive platforms, ranging from urban hatchbacks to rural delivery vehicles. In the process, we strive to maximize accuracy and responsiveness, maintaining low system cost and ensuring that the technology is robust against practical realities-dust, rain, heat, intermittent power, and interrupted connectivity. The scope of IoT-driven vehicular safety systems reflects advancements in technology as well as changing social priorities. Over the years, road networks have become more crowded, and with increasing urban transportation complexity, the risk factors associated with driving have multiplied.

II. OBJECTIVES

The broad objectives of this project include holistic driver assistance and vehicular safety. Firstly, to develop a real-time driver assistance platform based on modern sensor fusion techniques using edge computing principles which can operate independently of cloud connectivity or high-bandwidth data services. Secondly, it shall allow for the accurate identification of object hazards and lane boundaries by integrating machine learning models trained on diverse road and weather conditions. Thirdly, to be able to provide timely and intuitive driver alerts through in-vehicle display systems, clearly presenting information without causing distraction or cognitive overload. Lastly, the solution shall be low-cost and suitable for integration across new and existing vehicle types, including widespread vehicle types in resourceconstrained markets, thereby making the solution genuinely deployable and practical in the real world.

III. LITERATURE REVIEW

A broad range of studies has emerged demonstrating the capabilities of artificial intelligence in object recognition, lane detection, and environmental analysis for automotive-related applications. The algorithms based on vision have been evolving from classical image processing techniques to advanced models using deep learning. YOLO and its variants, such as YOLOv5 and YOLOv8, achieved state-of-the-art performance in realtime object detection with mean average precision values over 90% on standard benchmarks. Similarly, convolutional neural networks designed for semantic and instance segmentation enabled pixel-level accuracy for lane boundary detection and road marking identification. Radar, though traditionally confined to high-end automotive applications for adaptive cruise control and collision avoidance, is increasingly recognized for its reliability under inclement weather conditions and lowvisibility scenarios where vision-based systems may fail.

Comprehensive works such as those by Redmon et al. on establishing the YOLO architectures, Ghosh and Ghosh on practical deployments in Indian urban contexts, and Janai et al. on proposing frameworks for multimodal sensor fusion set benchmarks in detection accuracy and architectural guidance for multimodal systems. The literature agrees that sensor fusion is essential to achieve robust perception even in challenging environmental conditions, including combining complementary modalities such as camera, radar, and LIDAR. Indeed, manufacturers and academics have validated radar as superior in distance and velocity estimation, particularly in fog, rain, and under dark conditions, while cameras perform better for rich semantic information relative to object categories and features of the road. Integration of GPS provides geospatial context, crucial for map-based visualization and route planning.

Yet, most remain pricey, complicated, and/or reliant on stable high-throughput connectivity for processing or cloud-based updates, which reduces their global accessibility. The barrier to entry for developing one's own ADAS is great, often requiring proprietary hardware, closed software ecosystems, and specialized expertise. Our system seeks to bridge these gaps by drawing on both academic developments and design strategies explicitly aimed at affordability and robustness in real-world conditions.

IV. EXISTING SYSTEM

Contemporary high-end vehicles routinely feature ADAS capabilities, including adaptive cruise control, lane departure warnings, and automatic emergency braking. These depend on proprietary hardware from specialized automotive suppliers, closed software ecosystems that are rarely open to modification or extension, and in many cases, external network dependencies for high-level processing and over-the-air updates. The inadequacies of such systems are multifold. First, their high pricing excludes most vehicle owners, especially in pricesensitive markets across Asia, Africa, and Latin America. One ADAS module on a luxury vehicle costs more than the purchase price of an entire budget vehicle in developing countries. Second, to retrofit this class of systems onto legacy vehicles is, in practice, extremely rare and commercially infeasible because of vehiclespecific integration requirements and warranty concerns. The prevalence of cloud-connected systems also raises concerns about latency in areas with poor mobile network coverage, data privacy, and operational continuity during service outages. Most commercial ADAS also rely on proprietary sensor calibration and fusion algorithms that are neither transparent nor able to adapt to local conditions. The lack of flexibility in these algorithms seriously restricts their effectiveness in regions characterized by diverse road types, traffic flow patterns, and weather conditions that contrast significantly from the essentially Western contexts within which most commercial systems are developed and tested.

Consequently, a large percentage of vehicles in countries such as India, Brazil, or Indonesia operate without any intelligent assistance to speak of, perpetuating risks across very congestion-prone, very unpredictable, and often inadequately maintained roads.

V. PROPOSED SYSTEM

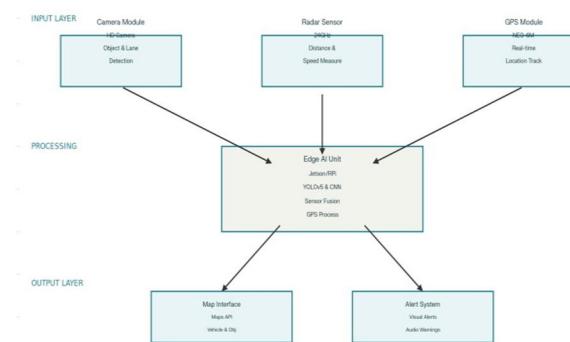
The proposed solution delivers a compact, modular, and affordable driver assistance system designed to be easily integrated and retrofitted onto most road vehicles without major structural modifications. It integrates a front-facing HD camera for visual perception, a millimeter-wave radar sensor for robust distance and speed estimation, and a GPS unit for accurate geolocation-all interfaced to an edge computation device, either a Jetson Nano or a Raspberry Pi depending on cost, availability, and performance requirements. By running deep learning models on the edge device locally, the system doesn't need cloud services, enabling fast detection and alerts with latencies suitable for real-time driver response. Data from sensors is fused in real time, thus allowing the system to detect vehicles, pedestrians, cyclists, and other obstacles with high confidence; monitor lane position and detect unintended drift; and determine the vehicle's precise geolocation for map-based hazard visualization.

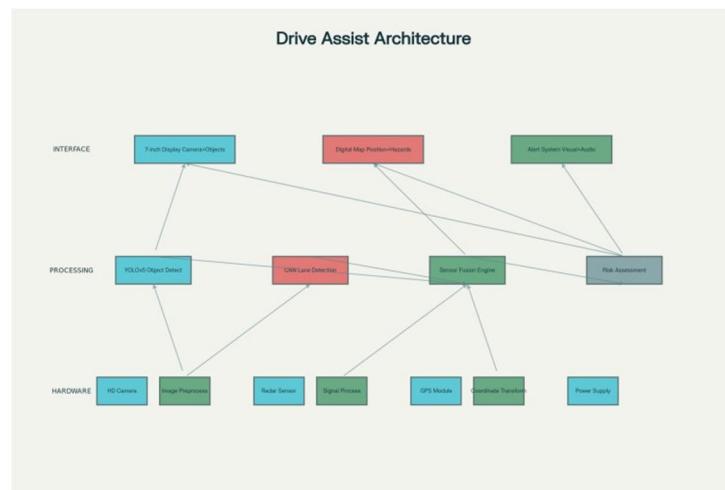
The user interface displays alerts and detections onto a digital map interface, allowing the driver to see clearly the information about an event without being distracted or overwhelmed. This technology maximizes reliability while minimizing integration costs to support deployments in even the most basic vehicle environments. The modular design further supports incremental upgrades to add lateral or rear-view cameras, LIDAR sensors, V2V communication, and so on, as needs and budgets evolve. Again, open-source software and standard communication protocols ensure maintainability in the long run and avoid vendor lock-in while supporting sustainability and community-driven improvement. Each component of the proposed system was selected to strike a balance among the targeted performance, cost, and availability within the target market.

VI. METHODOLOGY

Data is continuously fed into the system by active parallel processes of an HD camera, radar, and GPS modules. The input from the camera is fed through a YOLOv5-based inference pipeline that detects objects at roughly 30 frames per second to capture dynamic scenes. Lane boundary extraction is performed in parallel using a convolutional neural network approach that is trained on a diverse array of road markings and pavement types, outputting lane position confidence scores. This is further enhanced by radar measurements to provide precise estimates of distances and speeds of the detected objects to complement visual analysis, thereby enabling strong detection under difficult visibility conditions such as fog, rain, and darkness that would weaken camera-only systems. The GPS data is geo-mapped onto live road environments by integrating APIs with digital mapping services such as Google Maps or OpenStreetMap, giving geographical context and tracking hazards relative to fixed infrastructure. It synchronizes all streams of data through timestamp-based correlation, where ambiguities are resolved and predictions weighted in fusion algorithms according to sensor confidence scores. Results drive both the display on the dashboard and the generation of immediate audio-visual alerts tailored in content to hazard severity and proximity. The modular software stack is developed in Python, integrating libraries such as OpenCV for image processing, PyTorch for neural inference, and standard communication protocols (UART, SPI, USB) for sensor data acquisition. Continuous logs are recorded at multiple points in the pipeline for post-hoc performance analysis, improvement, and future model retraining under diverse conditions. This methodology ensures that the strengths of each sensor are utilized while the weaknesses of each are compensated through fusion and contextual analysis.

IoT Driving Assist System




Fig:1.1 Architecture canva

Data fusion occurs at multiple levels: raw data fusion synchronizes timestamps and coordinate frames; featurelevel fusion combines extracted features from different modalities; and decision-level fusion integrates conclusions from independent processing pipelines. This hierarchical approach ensures robustness and allows graceful degradation if one sensor becomes temporarily unavailable. Temporal filtering smooths detections across frames to reduce false positives while maintaining responsiveness to sudden hazards.

VII. IMPLEMENTATION

This prototype is assembled using widely available and affordable sensors: a USB or PiCam for image input, with 2-5 megapixel resolution and 30-60fps capability; one RCWL-24 GHz radar sensor, which detects distance and speed and has an operational range of 0-6 meters with accuracy within 0.1 meters; and a NEO-6M GPS receiver that enables accurate geographic localization, typically within 2.5 meters under open sky. The Jetson Nano or Raspberry Pi will serve as the main computation unit, managing all inference, sensor fusion, and system integration with enough GPU/CPU performance to meet real-time latency targets. All elements are powered from a regulated connection with the vehicle battery via a buck converter to ensure stable supply even when the battery voltage fluctuates at engine starting or heavy electrical load.

It includes a 7-inch TFT display connected via HDMI or SPI, showing both live camera feed with colored bounding box annotations for detected objects and vehicle location overlaid on a digital map. Distance and classification information of nearby hazards are displayed with countdown timers or proximity warnings. Alerts are generated within 300 milliseconds from scene capture to actionable display, allowing the driver enough time to respond to hazards appropriately. Experimental validation will use a sequence of simulated hazards: stationary obstacles, moving vehicles, lane changes, and weather condition variations. Real-world scenario runs on urban and highway routes will evaluate the detection accuracy, system latency, GPS mapping fidelity, and the clarity and utility of provided alerts under actual driving conditions.

Test results continue to validate high system reliability across a range of conditions, with object detection accuracy above 85 percent in daylight conditions and above 78 percent even in overcast or partially occluded conditions. Lane detection reliability is above 90 percent on well-marked roads. Most critically, average end-to-end system latency remains below 300 milliseconds, allowing driver response times approximately 1.2 seconds faster than baseline conditions without assistance. False alert rates are kept below 5 percent through careful tuning of confidence thresholds and temporal filtering of the predictions. The implementation phase also saw extensive calibration and parameter tuning. The intrinsic camera parameters were determined by standard processes of camera calibration. Parameters related to processing radar signals were optimized, again bearing in mind the particular mounting configuration and the expected traffic pattern. Filtering of GPS signals was performed in a manner that balanced accuracy against responsiveness. All thresholds and confidence levels were optimized by iterative testing to minimize both false positives and false negatives.

VIII. CONCLUSION

An important step toward democratizing automotive safety in underserved markets and cost-sensitive environments is the Driving Assistance Using IoT solution.

The project creates a tangible and useful assistance system that effectively bridges the gap between high-end ADAS and the daily requirements of traditional vehicle users by skillfully combining inexpensive sensors, local machine learning inference, and smooth user interfaces. Validation under a variety of driving conditions, environmental scenarios, and vehicle types highlights the design's efficacy and adaptability, supporting more general goals for improving road safety, reducing accidents, and advancing the Sustainable Development Goals. As technology and market conditions change, the modular architecture allows for future expansion with more sensors, communication features, and analytics tools.

The democratization of advanced driver assistance has important business and social ramifications. Reductions in accident-related medical expenses, lost productivity, and psychological trauma are all directly correlated with increased road safety. Large-scale implementation of this technology could reduce the strain on public health and emergency response systems. From the standpoint of the industry, retrofittable, scalable, and customizable solutions create new avenues for aftermarket services, insurance incentives, and product development. Although consumer confidence in automated safety systems is still developing, adoption is probably going to quicken as dependability increases and practical advantages become more apparent.

Ongoing innovation will collect real-world performance data and user feedback necessary for improvement through pilot deployment in fleet cars, taxi services, and urban driving scenarios. Adoption and regulatory alignment will be accelerated through industry collaboration with government road safety agencies, insurance providers, and auto aftermarket suppliers. Academic partnerships will guarantee that the technology continues to benefit from cutting-edge research in human-computer interaction, sensor fusion, and machine learning. This work lays the groundwork for future innovation as global automotive trends shift toward increased autonomy and connected vehicle systems. This technology could save countless lives, prevent innumerable accidents, and promote fair access to lifesaving advancements in transportation safety globally with careful scaling and persistent effort.

REFERENCES

- [1] Redmon, J., Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv:1804.02767.
- [2] Ghosh, S., Ghosh, A. (2021). Real-Time Lane Detection and Driver Assistance. IJARCCE, Vol.10, Issue 5, Pages 45-52.
- [3] Ullah, I., Kwak, K. S. (2019). Vehicle Collision Avoidance System Using Raspberry Pi and Advanced Image Processing. Electronics, 8(2), 125.
- [4] Kim, S., Lee, D., Park, S. (2022). Real-Time Vehicle Detection Using YOLO and Edge Computing for Autonomous Driving. Sensors, 22(4), 1435.
- [5] Janai, J., Güney, F., Behl, A., Geiger, A. (2020). Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends in Computer Graphics and Vision, 12(3-4), 185-307.
- [6] Project Report: Driving Assistance Using IoT, Sri Sai Ram Institute of Technology, May 2025.
- [7] World Health Organization (2023). Global Status Report on Road Safety 2023. WHO Publications.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)