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Abstract: Earthquakes are abrupt and highly destructive phenomena, presenting a persistent challenge for accurate forecasting. 
The unpredictable and intricate behavior of seismic events often limits the effectiveness of conventional geological prediction 
techniques. This paper proposes a data-driven approach for earthquake prediction using supervised machine learning 
algorithms trained on historical seismic datasets. The study focuses on binary classification to determine whether an earthquake 
is significant, defined as having a magnitude of 6.0 or higher. Data preprocessing steps included handling missing values, 
encoding categorical features, and normalizing inputs. Two models—Random Forest and Support Vector Machine (SVM)—
were implemented and compared based on their ability to classify seismic events. The Random Forest model achieved a higher 
accuracy of 88.84%, along with better recall and F1-scores in identifying significant earthquakes. Evaluation metrics such as 
the confusion matrix, ROC-AUC score, and feature importance analysis affirmed the effectiveness of the proposed models. The 
findings demonstrate that machine learning techniques can play a vital role in enhancing early warning systems and seismic risk 
assessment by improving the prediction of earthquake severity. This approach has the potential to support decision-making for 
disaster preparedness and emergency response planning. Future enhancements could include integrating real-time geospatial 
data and applying deep learning architectures to further improve model performance. 
Keywords: Earthquake Prediction, Seismic Data Analysis, Machine Learning, Random Forest, Support Vector Machine, 
Disaster Risk Assessment, Classification Algorithms, Data Preprocessing, Earthquake Magnitude, Early Warning Systems. 
 

I. INTRODUCTION 
Earthquakes are one of the most catastrophic natural disasters, often resulting in widespread damage, loss of human life, and 
disruption of essential services. Unlike many other natural events, earthquakes occur with little to no warning, making their 
prediction a long-standing challenge in the field of geoscience. Conventional seismic analysis methods typically depend on data 
from geological surveys, tectonic movements, and fault line histories. Although these techniques help identify risk zones, they lack 
precision in forecasting when, where, and how strongly an earthquake might strike. 
With the advent of large-scale data collection and the rise of machine learning, a new avenue for earthquake prediction has emerged. 
Machine learning algorithms have the ability to learn from historical seismic data, uncover hidden patterns, and make predictions 
based on data-driven insights. These models are especially valuable for handling complex, non-linear relationships among features 
that may not be evident through conventional analysis. Leveraging these capabilities can help in building systems that identify 
significant earthquake events based on measurable parameters such as magnitude, depth, and geographic coordinates. 
The objective of this study is to explore the application of supervised machine learning techniques to classify significant earthquake 
occurrences using historical data. The proposed system employs Random Forest and Support Vector Machine (SVM) classifiers to 
detect whether a seismic event is likely to exceed a magnitude threshold, typically set at 6.0 on the Richter scale. By doing so, the 
research aims to support early warning systems and contribute to disaster preparedness initiatives. Through a combination of data 
preprocessing, feature engineering, and model evaluation, this study seeks to validate the effectiveness of machine learning as a tool 
in seismic risk assessment.                                       

II. RELATED WORK 
Numerous studies have explored the application of machine learning and deep learning techniques to earthquake prediction, 
focusing on classification, magnitude estimation, and seismic risk assessment. Jena et al. [1] integrated Random Forest with neural 
networks for assessing earthquake likelihood in India's seismic regions. Song et al. [2], in contrast, found that Random Forest 
outperformed both SVM and BP neural networks when applied to seismic data from China. Advanced deep learning models, such as 
the CNN-BiLSTM with attention proposed by Kavianpour et al. [3], and the hybrid CNN-GRU model by Utku and Akcayol [4], 
have shown improved results for temporal and spatial prediction of earthquake events. Wang et al. [5] introduced EEWNet for P-
wave magnitude estimation using raw seismic signals, and Xie [6] presented a comprehensive review of DL methods like CNN, 
RNN, and GANs in geohazard modeling. 
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Several researchers have focused on aftershock prediction, ground motion estimation, and lab-simulated fault rupture forecasting 
using AI. Rouet-Leduc et al. [7] employed Random Forest algorithms on acoustic emission data to forecast laboratory earthquakes. 
Meanwhile, DeVries et al. [8] demonstrated that neural networks offered improved accuracy over traditional Coulomb stress models 
in predicting aftershock distributions.CNNs have been utilized to estimate ground motion (Jozinović et al. [9]) and earthquake 
magnitude (Mousavi and Beroza [10]), and LSTM-based attention networks have further enhanced performance in large-event 
forecasting [11]. Studies such as Sadhukhan et al. [12] and Ji et al. [16] integrated environmental features and feature-engineered 
models for improved classification and magnitude estimation. Comprehensive reviews by Mignan and Broccardo [13] and MDPI 
[18] highlight a growing shift toward hybrid models combining neural networks and decision trees. Despite this progress, Wired 
Magazine [20] and similar commentaries stress that real-world earthquake prediction remains complex due to the chaotic and 
nonlinear nature of seismic processes. 
 

III. METHODOLOGY 
 

 
Fig1: Workflow of Earthquake Prediction System 

 
The shown figure1 illustrates the complete methodology used in the earthquake prediction system. The workflow starts with seismic 
data acquisition from a Kaggle dataset, followed by preprocessing and normalization. Important features like magnitude, depth, and 
location are selected for model training. Random Forest and SVM classifiers are used to learn and predict earthquake severity. The 
system outputs whether an event is significant, supporting early risk detection. 
 
A. Data Collection 
 In the Data Collection phase, a publicly available earthquake dataset from Kaggle is used. This dataset contains global earthquake 
records including features such as time of occurrence, latitude, longitude, depth, magnitude, and place. For the purpose of 
classification, earthquakes with a magnitude of 6.0 or higher are labeled as significant (class 1), while those below 6.0 are labeled as 
non-significant (class 0). This binary classification forms the target variable for the model. The dataset is split into 80% training and 
20% testing subsets, with a portion of the training data used for validation during model development. 
 
B. Data Preprocessing 
The dataset is cleaned and prepared for machine learning. Any missing or invalid entries are handled by either removing incomplete 
rows or using appropriate imputation techniques. Categorical features like 'Place' are converted into numerical labels using label 
encoding. Numerical features such as depth and magnitude are normalized using Min-Max scaling to ensure uniform input across all 
attributes. The normalization formula used is: 

Xnorm =
X − Xmin

Xmax− Xmin 

This transformation scales all values to the range [0, 1], allowing for more stable and efficient model training. 
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C. Feature Selection 
Feature Selection phase, not all collected features are used in the final model. Statistical techniques such as correlation analysis and 
Random Forest’s feature importance scores are used to select the most relevant variables. Features with low correlation to the target 
or high redundancy with others are excluded. The final set of features includes magnitude, depth, latitude, and longitude, which are 
found to have the most influence on whether an earthquake is classified as significant or not. 
 
D. Model Training 
The Model Training step involves training two supervised machine learning models: Random Forest (RF) and Support Vector 
Machine (SVM). 
1) Random Forest (RF) 
The Random Forest classifier is an ensemble method that constructs multiple decision trees during training and outputs the mode of 
the classes for classification tasks. The prediction rule is: 

y^=mode(h1(x),h2(x),...,hn(x)) 
where hi(x) is the output of the ith decision tree in the ensemble 
 
2) Support Vector Machine (SVM) 
Support Vector Machines work by identifying an optimal separating boundary—called a hyperplane—in a high-dimensional feature 
space, effectively distinguishing between different classes. The decision function for SVM is defined as: 

f(x)=wTx+b 
where w is the weight vector and bis the bias term. Both models are trained using the training dataset, and hyperparameters such as 
the number of trees (n_estimators), tree depth (max_depth) for RF, and kernel type and penalty parameter (C) for SVM are 
optimized using RandomizedSearchCV. 
 
E. Model Evaluation 
In the Model Evaluation stage, both models are assessed using standard classification metrics to determine their effectiveness. The 
model's performance was assessed using standard metrics, including accuracy, precision, recall, F1-score, and the area under the 
ROC curve (AUC).The formulas for these are as follows: 

Accuracy: 

ݕܿܽݎݑܿܿܣ =
TP + TN

ܶܲ + ܶܰ + ܲܨ +  ܰܨ

Precision: 

݊݋݅ݏ݅ܿ݁ݎܲ =
TP

TP + FP 

              Recall (Sensitivity): 

ܴ݈݈݁ܿܽ =
TP

TP + FN 

              F1-Score: 

−1ܨ ݁ݎ݋ܿݏ = 2 ∗
Precision × Recall
Precision + Recall 

 
Additionally, ROC (Receiver Operating Characteristic) curves are generated for both models to evaluate their performance across 
different classification thresholds, with the Area Under Curve (AUC) providing a single scalar value representing overall model 
performance. The Random Forest model outperformed SVM in most metrics, particularly in recall and F1-score, making it more 
suitable for high-risk applications like earthquake alerts where false negatives must be minimized. 
 
F. Prediction Output 
The best-performing model is used to classify incoming earthquake data. The model outputs a binary result: 1 if the earthquake is 
predicted to be significant (magnitude ≥ 6.0) and 0 otherwise. This output can be integrated into decision-support tools or early 
warning systems to aid in disaster preparedness and risk mitigation strategies. 
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IV. RESULTS AND DISCUSSION 
In this study, the performance of machine learning models for earthquake prediction was evaluated using a historical earthquake 
dataset containing geographical, temporal, and seismic parameters. The primary objective was to classify seismic events into two 
categories: significant earthquakes (magnitude ≥ 6.0) and non-significant ones (magnitude < 6.0), based on selected features such as 
depth, magnitude, location, and error margins. This section discusses the results from exploratory data analysis, model tuning, 
classification performance, and evaluation metrics. 

 
Fig2: Dataset preview with relevant earthquake attributes 

  
Fig2 displays a snapshot of the earthquake dataset used for this research. The dataset consists of key features such as Time, Place, 
Latitude, Longitude, Depth, and Magnitude, along with auxiliary features like MagType, gap, nst, and horizontalError. After 
cleaning and preprocessing the data, a new binary column named Earthquake_Occurred was created to denote whether the event 
was significant (1) or not (0). This labeled feature was essential in building the classification models. 
 

                       
Fig 3: Earthquake magnitude over the years with class labels 

 
To understand the temporal variation of earthquake magnitudes, a scatterplot was plotted as shown in Fig3. The figure illustrates the 
distribution of earthquake magnitudes over time, from 1900 to the present. Higher-magnitude earthquakes (orange points) are 
consistently observed throughout the timeline, whereas lower-magnitude events (blue points) appear denser in recent years due to 
improved seismic recording technology. This observation highlights the need for time-aware modeling and suggests that both 
modern and historical data contribute to learning reliable patterns. 
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Fig 4: Histogram of earthquake depth based on magnitude class 

 
Fig4shows the depth-wise distribution of earthquakes, categorized by whether a significant earthquake occurred. The majority of 
seismic events were recorded at shallow depths (less than 100 km), with a notable peak between 10–40 km. Significant earthquakes 
(label 1) tend to be distributed across both shallow and intermediate depths, while low-magnitude earthquakes (label 0) are more 
concentrated in the upper layers of the crust. This insight confirms that depth is a critical feature influencing earthquake magnitude 
and justifies its inclusion in the model. 

 

 
Figure 5: classification report and ROC Curve of Random Forest model and SVM 

 
Figure 5 compares the performance of SVM and Random Forest models using classification metrics and ROC curves. The Random 
Forest model outperforms the SVM, achieving higher accuracy (88.41% vs. 71.08%) and AUC (0.96 vs. 0.83), indicating better 
overall classification capability. It also shows stronger precision, recall, and F1-scores for both classes, with fewer misclassifications 
seen in the confusion matrix. The ROC curve generated by the Random Forest model showed a trajectory close to the top-left 
corner, indicating its enhanced effectiveness in differentiating significant from non-significant earthquake events. 
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Fig6:Feature Importance For Earthquake Prediction 

 
Figure 6 displays the feature importance rankings from the Random Forest model for earthquake prediction. The most influential 
feature is Depth_Mag_Product, followed by Depth and Year, indicating that earthquake depth and magnitude over time significantly 
affect the model’s predictions. Less important features include Weekday, Month, and Hour. The model outputs a prediction 
probability of 0.28, suggesting a low likelihood of an earthquake, and thus concludes that no significant earthquake is expected. 
The Random Forest classifier significantly outperformed the Linear SVM in terms of accuracy, recall, precision, F1-score, and 
AUC. These findings validate the hypothesis that machine learning models, particularly ensemble-based classifiers like Random 
Forests, can play a crucial role in forecasting significant seismic events. The model's strength in correctly identifying high-
magnitude earthquakes has substantial implications for public safety, early warning systems, and disaster preparedness. Future 
research can further enhance this model by incorporating real-time geospatial data, seismic wave analysis, and advanced deep 
learning techniques to improve early detection rates and reduce false alarms. 

 
V. CONCLUSION 

This study presents a data-driven approach for predicting significant earthquakes using machine learning techniques. By analyzing 
historical seismic data with key features such as magnitude, depth, and geographic location, the research successfully implemented 
and evaluated two classification models—Random Forest and Support Vector Machine (SVM).The Random Forest classifier 
outperformed SVM across all major evaluation metrics, achieving a high accuracy of 88.84% and an AUC of 0.96. This improved 
performance is due to Random Forest’s ensemble design and its capacity to manage intricate and non-linear data relationships 
effectively.In contrast, the SVM model, while relatively simpler, was less effective, with an accuracy of 73.66% and a recall of only 
0.45 for significant events, which limits its utility for high-risk applications. 
The results demonstrate that machine learning, particularly ensemble learning, holds substantial promise for enhancing earthquake 
prediction systems. The successful detection of high-magnitude earthquakes (≥6.0) supports the potential of these models to assist in 
disaster preparedness, resource allocation, and real-time risk monitoring. While the current system is based on historical data and 
focuses on binary classification, it lays a strong foundation for future enhancements. Incorporating real-time seismic sensor data, 
geospatial mapping, and deep learning architectures could further increase prediction accuracy and lead to the development of 
robust early warning systems.  
In conclusion, this research highlights the effectiveness of machine learning in identifying seismic risks and opens up avenues for 
building intelligent, automated systems that can support proactive decision-making in natural disaster management. 

 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VII July 2025- Available at www.ijraset.com 
     

 
2800 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

REFERENCES 
[1] Song, Q., Wu, X., & Lv, Y. (2024). Evaluation of Earthquake Hazard Risk Level Based on Random Forest. International Journal of Computer Science and 

Information Technology, 2(2), 268–276. 
[2] Jena, R., Pradhan, B., Al-Amri, A., Lee, C. W., & Park, H.-J. (2020). Earthquake probability assessment using deep learning algorithms in seismic zones of 

India. Sensors, 20(16), 4369. 
[3] Kavianpour, P., Kavianpour, M., Jahani, E., & Ramezani, A. (2021). A CNN–BiLSTM model with attention mechanism for earthquake prediction. The Journal 

of Supercomputing. 
[4] Utku, A., & Akcayol, M. A. (2024). A hybrid deep learning model for earthquake time prediction using CNN and GRU. Gazi University Journal of Science, 

1172–1188. 
[5] Wang, Y., Cao, Z., Lan, J., & Wang, Z. (2019). Deep learning for earthquake early warning: EEWNet. arXiv preprint arXiv:1912.05531. 
[6] Xie, Y. (2024). Deep learning in earthquake engineering: A comprehensive review. arXiv preprint arXiv:2405.09021. 
[7] Rouet-Leduc, B., Hulbert, C., & Johnson, P. A. (2017). Machine learning predicts laboratory earthquakes. Geophysical Research Letters, 44(18), 9276–9282. 
[8] DeVries, P. M. R., Viégas, F. B., Wattenberg, M., & Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 

632–634. 
[9] Jozinović, D., Suppasri, A., & Imamura, F. (2020). Real-time ground motion prediction using convolutional neural networks. IEEE Transactions on Geoscience 

and Remote Sensing. 
[10]  Mousavi, S. M., & Beroza, G. C. (2019). Earthquake magnitude estimation using a        deep neural network. Geophysical Research Letters, 46(4), 2095–2103. 
[11]  Berhich, N., Elhassouny, A., & El Hallaoui, A. (2023). An attention-based LSTM model for the prediction of strong earthquakes. Soil Dynamics and 

Earthquake Engineering. 
[12]  Sadhukhan, S., Khatua, K., & Mitra, S. (2023). Hybrid climatic and seismic data-driven model for earthquake prediction. Frontiers in Earth Science, 11, 

1123983. 
[13]  Mignan, A., & Broccardo, M. (2020). Neural network applications in earthquake prediction: A meta-analysis. Seismological Research Letters, 91(4), 1956–

1974. 
[14]  Zhu, L. (2020). A deep convolutional neural network for seismic phase picking. Physics of the Earth and Planetary Interiors, 300, 106430. 
[15]  Liu, Y., Zhu, W., & Beroza, G. C. (2020). Deep learning detection and location of earthquakes during the Ridgecrest sequence. Geophysical Research Letters, 

47(4), e2019GL085576. 
[16]  Ji, Y., Zhang, X., & Zhao, Z. (2024). Predicting maximum earthquake magnitude using Random Forest classification. Scientific Reports, 14(1), 3882. 
[17]  Adi, S. P., Adishesha, V. B., Bharadwaj, K. V., & Narayan, A. (2020). Structural damage prediction using Random Forest and Gradient Boosting classifiers. 

American Journal of Biological and Environmental Statistics, 6(3), 55–61. 
[18]  Kong, L., Zhang, J., & Wu, Y. (2023). A scientometric analysis of machine learning in earthquake engineering. Applied Sciences, 13(4), 1745. 
[19]  Rouet-Leduc, B., Hulbert, C., Barros, K., et al. (2021). Predicting labquakes: A machine learning competition summary. Proceedings of the National Academy 

of Sciences (PNAS), 118(16), e2023297118. 
[20]  Wired Magazine. (2013). Why predicting earthquakes is so difficult—even for AI. Wired Science. 



 


