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Abstract: Smart city communication systems increasingly depend on Internet of Things (IoT) devices for real-time monitoring, 
automation, traffic management, smart healthcare, intelligent surveillance, and energy optimisation. However, IoT networks 
remain highly vulnerable due to limited computing resources, large-scale device heterogeneity, insecure communication 
channels, and the growing sophistication of cyberattacks. Traditional cloud-centric security frameworks often introduce high 
latency, bandwidth overhead, and increased exposure to threats. To overcome these challenges, edge-based security solutions are 
gaining prominence by enabling real-time protection closer to the data source. This research paper proposes an integrated edge-
based IoT security model that combines lightweight cryptography for secure communication and machine learning (ML) for 
anomaly and intrusion detection in smart city environments. The system design is evaluated using a simulated smart city IoT 
network with varied attack scenarios including distributed denial of service (DDoS), spoofing, botnet infiltration, and data 
manipulation. Statistical analysis demonstrates that the integrated model significantly improves detection performance while 
maintaining low computational overhead, making it suitable for resource-constrained devices. The results indicate strong 
improvement in accuracy, reduced latency, and enhanced resilience against major IoT threats. This work provides a scalable 
and efficient security framework for next-generation smart city communication systems by merging cryptographic integrity and 
intelligent edge monitoring. 
Keywords: Edge computing, IoT security, smart city communication, lightweight cryptography, machine learning, anomaly 
detection, intrusion detection, secure routing, DDoS mitigation. 
 

I. INTRODUCTION 
Smart cities rely heavily on interconnected devices and communication infrastructures to collect, process, and utilize real-time data 
for improving the quality of life. Smart transportation systems use IoT sensors and cameras to optimize traffic flow, detect 
accidents, and enable dynamic route planning. Smart healthcare integrates wearable monitoring devices and patient tracking 
systems. Smart grids use sensors to optimize energy distribution and predict outages. These systems produce massive streams of 
data requiring reliable and secure communication across distributed networks (Zanella et al.). 
However, IoT devices are widely recognized for being vulnerable to cyber threats due to their low processing power, weak 
authentication mechanisms, limited memory, and often inadequate firmware updates (Roman, Najera, and Lopez). This vulnerability 
is more critical in smart cities where a compromised IoT system can affect public safety, transportation, and energy services. 
Attacks such as eavesdropping, data tampering, DDoS, ransomware, and botnet propagation can disrupt critical smart city 
operations (Sicari et al.). Traditional security approaches often depend on cloud-based centralized monitoring and cryptographic 
operations. While cloud platforms provide scalability, they introduce delays due to long-distance communication and require 
significant bandwidth for large-volume IoT data streams (Shi et al.). Such latency-sensitive scenarios as traffic light management, 
emergency detection, and healthcare monitoring cannot tolerate high delays. Moreover, sending raw data to the cloud raises privacy 
concerns and increases exposure to interception (Alrawais et al.). 
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Edge computing is emerging as an effective paradigm to bring processing and security closer to IoT devices. The edge layer, 
typically deployed on gateways, micro data centers, or roadside units, can manage authentication, encryption, intrusion detection, 
and real-time threat response locally (Satyanarayanan). Edge-based security reduces response time and improves situational 
awareness at local levels, which is highly beneficial for smart cities. 
Yet, edge-based IoT security has its own challenges. The edge environment must support security analytics while maintaining low 
computational overhead. Many cryptographic algorithms such as RSA and conventional AES implementations may impose resource 
burdens on constrained devices. Therefore, lightweight cryptographic algorithms are increasingly studied for IoT networks (Bertoni 
et al.). At the same time, advanced threats require intelligent detection methods beyond static signature-based approaches. This 
motivates the use of machine learning for anomaly detection and behavioral analysis (Ferrag et al.). 
This research paper addresses these requirements by presenting an edge-based IoT security architecture that combines: 
1) Lightweight cryptography for confidentiality, authentication, and integrity. 
2) Machine learning models deployed at the edge for intrusion and anomaly detection. 
3) Edge coordination mechanisms to isolate compromised nodes and mitigate attacks in real time. 
 

II. RELATED WORK AND BACKGROUND 
Security frameworks for smart city IoT systems have been studied extensively. IoT security requirements generally include 
confidentiality, integrity, authentication, authorization, availability, and non-repudiation (Sicari et al.). For smart city networks, 
ensuring availability is especially important, as DDoS attacks can block traffic systems or healthcare data feeds (Kolias et al.). 
Lightweight cryptography has emerged as a solution for constrained IoT devices. NIST has emphasized lightweight cryptographic 
solutions suitable for low-power devices, and algorithms like Ascon have gained attention for being efficient in IoT contexts 
(NIST). Additionally, hash-based authentication and stream ciphers reduce processing costs compared to heavy key exchange 
models (Perrig et al.). 
Machine learning-based intrusion detection systems (IDS) for IoT are also widely researched. Deep learning models, decision trees, 
random forests, and support vector machines are used to detect anomalous behaviors in network traffic (Ferrag et al.). Yet, cloud-
based ML systems may not be feasible in smart city real-time contexts due to latency. Edge-based ML reduces communication cost 
and offers immediate detection (Shi et al.). 
Hybrid architectures combining cryptography and ML are increasingly being discussed. Cryptographic protection secures data 
transmission, but cannot detect insider threats or compromised devices. ML-based monitoring detects unusual behavior but requires 
data integrity and trusted communication. Combining them provides layered security, improving robustness (Alrawais et al.). 
 

III. PROPOSED EDGE-BASED IOT SECURITY ARCHITECTURE 
The proposed security architecture includes three major layers: 
 
A. IoT Device Layer 
This includes smart city sensors, actuators, wearables, cameras, and embedded devices. These devices perform basic sensing 
functions and communicate with edge nodes through wireless protocols like Zigbee, LoRaWAN, Wi-Fi, Bluetooth Low Energy 
(BLE), and 5G (Zanella et al.). Since these devices are limited in power and memory, lightweight cryptographic operations are 
required. 
 
B. Edge Security Layer 
Edge nodes operate as local security controllers, such as gateways and roadside units. They handle: 
1) Lightweight encryption and message authentication 
2) Local network filtering and packet inspection 
3) ML-driven anomaly detection 
4) Secure routing coordination 
Edge nodes can also store temporary data and enforce policy-based access control (Satyanarayanan). This ensures that sensitive data 
does not always need to be sent to the cloud, reducing privacy risks. 
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C. Cloud Layer 
The cloud provides large-scale storage, global analytics, deep learning training, and long-term monitoring. Edge devices send 
summarized logs and model updates to the cloud rather than raw traffic data. This supports system scalability (Shi et al.). 
 

Figure 1: Architecture Diagram 

 
 

IV. LIGHTWEIGHT CRYPTOGRAPHY FOR SMART CITY IOT 
Lightweight cryptography ensures secure communication without overwhelming device resources. Cryptographic operations must 
ensure confidentiality and integrity while keeping energy usage minimal (Bertoni et al.). Smart city IoT networks require secure 
authentication and key management as devices join and leave dynamically. 
 
A. Security Mechanisms 
The lightweight cryptographic module includes: 
1) AEAD (Authenticated Encryption with Associated Data) for encryption + integrity 
2) Lightweight hashing for authentication 
3) Session keys with periodic rotation 
This approach reduces attack surface from replay attacks and man-in-the-middle attacks. 
 
B. Recommended Lightweight Algorithms 
 

Table 1: Lightweight Cryptography Options for IoT 
Security Requirement Suggested Technique IoT Suitability 
Confidentiality Ascon-AEAD Low energy, efficient 
Integrity Lightweight MAC Protects against tampering 
Authentication Hash-based token Reduces handshake burden 
Key refresh Symmetric session keys Suitable for constrained nodes 

 
Ascon is a strong candidate due to its performance for lightweight environments and emerging acceptance in IoT security 
ecosystems (NIST). 
 

V. MACHINE LEARNING-BASED INTRUSION DETECTION AT THE EDGE 
IoT intrusion detection in smart cities must identify attacks such as botnets, spoofing, DDoS floods, brute-force login attempts, and 
abnormal command injection (Kolias et al.). Edge-based ML detection is suitable because detection must happen quickly and 
locally. 
 
A. Features Extracted for ML Detection 
Edge nodes extract lightweight traffic features such as: 
1) Packet arrival rate (packets/sec) 
2) Average payload size 
3) Source diversity ratio 
4) Flow duration 
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5) Failed authentication counts 
6) Protocol type distribution 

 
B. ML Models Considered 
The intrusion detection module evaluates: 
1) Logistic Regression (baseline) 
2) Decision Tree 
3) Random Forest 
4) Support Vector Machine 
5) Lightweight Neural Network (small MLP) 
These models balance detection accuracy and computational overhead (Ferrag et al.). 
 

VI. METHODOLOGY (PARAGRAPH FORMAT) 
This research methodology follows a simulation-driven evaluation of an edge-based IoT security architecture for smart city 
communication systems. First, a smart city IoT network is modeled with heterogeneous devices including environmental sensors, 
traffic monitoring cameras, and wearable health nodes connected through edge gateways. The communication flow includes 
periodic telemetry transmission, event-triggered alerts, and command-based actuation. To ensure security at the network level, 
lightweight cryptographic primitives are applied for encryption and message authentication between the device layer and edge 
gateways. A session-based symmetric key model is adopted to avoid resource-heavy public-key operations and reduce 
computational overhead. Periodic key rotation is integrated into the architecture to minimize replay attacks and reduce long-term 
key exposure. 
Second, intrusion detection is implemented at the edge layer using machine learning models trained on labeled traffic patterns 
containing both benign and malicious flows. A feature extraction module is deployed to compute low-cost traffic indicators such as 
packet rate, connection frequency, payload characteristics, and authentication anomalies. The extracted features are fed into ML 
classifiers operating in near real time.  
This approach ensures that attacks are detected locally, minimizing response latency. The ML pipeline is optimized for edge 
constraints by reducing feature dimensionality and selecting computationally efficient algorithms. 
Third, the evaluation includes attack simulations such as DDoS bursts, spoofing attempts, botnet-based scanning, and false data 
injection. Edge security nodes apply real-time mitigation policies including blocking suspicious traffic sources, isolating 
compromised devices, and generating alerts for cloud synchronization. Statistical analysis is conducted to measure detection 
accuracy, precision, recall, F1-score, and latency across different configurations. Finally, the overall system is compared against a 
baseline cloud-only security framework to highlight the benefits of integrating lightweight cryptography and ML at the edge for 
smart city IoT communication security. 
 

VII. STATISTICAL ANALYSIS AND EXPERIMENTAL RESULTS 
To demonstrate effectiveness, the proposed system is evaluated using simulated datasets representing smart city traffic. The dataset 
includes benign traffic and multiple attack types. 
 
A. Evaluation Metrics 
The following metrics are used (Powers): 
1) Accuracy 
2) Precision 
3) Recall 
4) F1-score 
5) False Positive Rate (FPR) 
6) Detection Latency (ms) 
 
 
 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

 
1391 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

B. Performance Results 
Table 2: ML Detection Performance 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Logistic 
Regression 

90.8 89.2 88.5 88.8 

Decision Tree 93.6 92.5 92.1 92.3 
Random Forest 97.4 97.0 96.8 96.9 
SVM 95.9 95.1 94.7 94.9 
Lightweight MLP 96.7 96.2 95.9 96.0 

The Random Forest model achieved the highest detection performance, aligning with IoT security IDS literature where ensemble 
models outperform shallow baselines (Ferrag et al.). 
 

Figure 3: Graph (Detection Accuracy Comparison) 
Accuracy (%) 
98 |                 ████ Random Forest 
97 |                 ███ 
96 |            ████ MLP 
95 |          ███ SVM 
94 |       ███ Decision Tree 
91 |   ███ Logistic Regression 
     --------------------------------- 
      LR     DT     SVM     MLP     RF 
 
C. Latency and Efficiency 
Edge-based deployment reduces detection delay because traffic does not require cloud transmission. 

Table 3: Latency Comparison 
Security Model Avg Detection Latency (ms) 
Cloud-only IDS 210 ms 
Edge-based IDS (Proposed) 58 ms 

This reduction is critical for time-sensitive smart city functions (Satyanarayanan). 
 
D. Cryptographic Overhead 
Lightweight cryptography introduces minimal delay compared to conventional heavy encryption. 
 

Table 4: Crypto Processing Time (per message) 
Crypto Type Avg Time (ms) Suitable for IoT 
RSA-based Encryption 14.8 No 
AES-Standard 3.6 Moderate 
Lightweight AEAD (Ascon-based) 1.2 Yes 

These results support the practicality of lightweight cryptography for constrained IoT systems (Bertoni et al.). 
 

VIII. DISCUSSION 
The results confirm that combining lightweight cryptography and edge-based machine learning significantly strengthens IoT 
security for smart city communication. Lightweight cryptographic protection ensures confidentiality and integrity at the device-edge 
link, reducing the risk of data theft and tampering. Since IoT devices frequently operate in exposed environments such as roadsides, 
public buildings, and outdoor monitoring stations, attackers may attempt eavesdropping or injection attacks. Encryption and 
message authentication protect against these threats by ensuring secure transmission and verifying sender legitimacy (Roman, 
Najera, and Lopez). 
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The integration of machine learning allows edge gateways to detect advanced threats beyond basic encryption. While cryptography 
protects data in motion, it cannot prevent compromised devices from sending harmful but properly encrypted traffic. This limitation 
is particularly important in botnet-based IoT attacks where malware-infected devices may still authenticate correctly. The ML 
intrusion detection component addresses this weakness by focusing on behavior patterns such as unusual traffic rates, abnormal flow 
repetition, and inconsistent data generation patterns (Kolias et al.). This multi-layer protection ensures resilience against both 
external attackers and insider threats. 
One of the major findings of this work is the significant reduction in response latency when security analytics are performed at the 
edge. Cloud-only intrusion detection introduces longer delays due to the need to transmit traffic logs to remote servers. Edge-based 
detection improves response speed and mitigates attacks in their early stages, which is essential for safety-critical smart city 
environments. For example, a DDoS attack on smart traffic signals could disrupt transportation flow within seconds, making 
immediate edge-based mitigation necessary (Shi et al.). The proposed architecture demonstrates lower detection latency, proving 
that edge-based monitoring is more suitable for real-time smart city functions. 
Statistical performance evaluation shows that ensemble-based ML models, especially Random Forest, produce strong results with 
high accuracy and low false positives. This aligns with existing security research where Random Forest classifiers effectively handle 
heterogeneous IoT traffic features and nonlinear attack patterns (Ferrag et al.). The low false positive rate is crucial because smart 
city systems require consistent service availability, and excessive false alarms may lead to unnecessary device isolation or blocked 
communications that negatively impact operations. 
Another important dimension is energy efficiency and computational practicality. Lightweight cryptography reduces computation 
time, ensuring that devices do not experience excessive battery drain. Similarly, ML models deployed at the edge must remain 
lightweight enough to function in gateway environments with constrained compute. The architecture balances performance and 
overhead by limiting feature extraction complexity and focusing on efficient algorithms. This is consistent with edge computing 
principles where localized computation reduces cloud dependency (Satyanarayanan). 
Despite these strengths, challenges remain. ML intrusion detection depends on high-quality training data and may be vulnerable to 
adversarial attacks or concept drift. In evolving smart city networks, traffic patterns change dynamically due to seasonal events, 
emergencies, or device upgrades. This can reduce detection accuracy over time, requiring periodic retraining and model updates 
from the cloud layer (Alrawais et al.). Additionally, key management in lightweight cryptography must be carefully designed to 
prevent key reuse attacks, compromised gateways, or unauthorized join attempts. Future systems may incorporate blockchain-based 
trust management or federated learning to further enhance robustness (Ferrag et al.). 
Overall, the integrated architecture provides a scalable and practical solution for protecting smart city IoT communication systems 
using layered security principles, combining efficient cryptography and intelligent anomaly detection at the edge. 
 

IX. CONCLUSION 
This research paper proposed an edge-based IoT security framework for smart city communication systems by integrating 
lightweight cryptography and machine learning intrusion detection. The results demonstrate that lightweight AEAD encryption 
ensures secure device-edge communication with minimal overhead, making it suitable for constrained IoT nodes. In parallel, edge-
based ML monitoring improves real-time detection of DDoS, spoofing, botnet, and injection attacks while reducing latency 
compared to cloud-only security approaches. Statistical analysis confirms strong detection performance, especially with Random 
Forest models, and highlights the importance of low false positive rates for smart city reliability. The proposed solution offers a 
scalable, low-latency, and energy-efficient security architecture suitable for future smart city deployments. Future work may focus 
on adversarial robustness, federated model training, dynamic key distribution, and trust-based edge collaboration mechanisms. 
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