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Abstract: Myoelectricsystemshavelongbeenusedinassistive technologies,buttheirhighcostanddependenceonfunctional nerves limit
their accessibility for individuals with severe physical impairments. As an alternative, this paper presents a non-invasive,cost-
effectivewheelchaircontrolsystembasedon electroencephalogram(EEG)signals.ThesystememploysBrain- Computer Interface
(BCI) technology to interpret brain activity and eye movements, enabling users to control the wheelchair through mental
commands and gaze gestures. ANeuroSkyMindwaveheadsetisusedtocaptureEEGsignals, whicharethenprocessedusingsignal
processingtechniquesto assess cognitive states such as concentration and relaxation. Eye-tracking is integrated to
improvecommand precision.The interpreted signals are converted into directional commands andtransmitted wirelessly to
anESP32 microcontroller, which controls the wheelchair’s movement.

Experimental results demonstrate an 85% accuracy rate in translating brain and eye activity into movement commands,
supporting intuitive and reliable navigation. By combining EEGsignalprocessingwitheye-tracking,thissystemenhances mobility
and independence for users with significant motor disabilities. The proposed approach offers a practical, user- friendly
alternative to traditional assistive mobility devices.
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I. INTRODUCTION
Globally,millionsofindividualsexperiencemotorfunction disabilities due to conditions like amyotrophic lateral sclerosis (ALS),
multiple sclerosis (MS), spinal cord injuries, brainstem strokes, and cerebral palsy, resulting in significant mobility challenges. For
such individuals, augmentative and alternative solutions are crucial to improvingtheirqualityoflife.BCltechnologyhasemerged as a
transformative solution [1], enabling users to control assistive devices like wheelchairs using neural signals. By creating a direct
interaction Channel linking the brain to physical devices, BCls bypass conventional mechanisms like muscle movement or speech,
offering hands-free and intuitive control. EEG-based BCls, in particular, provide a non-invasive,cost-effective,andsafemethodfor
capturing brainactivity through scalpelectrodes,eliminatingtherisks associated with invasive systems. The proposed brain- controlled
wheelchair leverages EEG signals captured by the NeuroSky Mindwave headset, complemented by eye- trackingforenhanced
precision. Thesystemprocessesbrain activityusingPython’sMNElibrarytodecodepatternssuch as focus and relaxation, mapping them
into actionable commands. These commands, along with eye movement signals and brain wave frequencies, are wirelessly
transmitted to an ESP32 microcontroller to drive the wheelchair’s motion. This paper aims to empower individuals with
neuromuscular disorders by providing a user-friendly mobility solution that enhances their independence and quality of life,
showcasing the potential of integrating EEG brain wave signals and eye-tracking technology in assistive devices.

Il. METHODOLOGY

The brain-monitoring wheelchair focuses on integrating with real-time control mechanisms to assist differently- abled individuals in
achieving independent mobility [1],[3],[4].- The system begins with EEG signal sensing using a NeuroSky Mindwave headset,
which captures brain activity through dry electrodes positioned on the user’s scalp. These signals, representing attention and
cognitive states, are wirelessly transmitted to a computer for real-time processing. Using the Python MNE, the raw EEG data
undergoes noise filtering and feature extraction to isolate signals relevant for command generation.

Once processed, the signals are translated into control commandsusingpre-definedthresholdsthatcorrespondto
specificwheelchairactions,suchasforward,left,right,or stop.These commands are transmitted to the wheelchair's control unit via an
ESP32 module, enabling wireless communication with minimal latency. The wheelchair is equipped with DC motors and an esp32
microcontroller, which interprets the received commands and drives the motors accordingly [5],[8].Additional functionality, such as
obstacle detection, is incorporated using ultrasonic sensors connected to the Arduino, enhancing safety and usability in dynamic
environments.
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To optimize the system, user training sessions are conductedtocalibratetheheadsetandfamiliarizetheuser with the control thresholds,
ensuring accurate and responsive wheelchair movements. Testing involves validating the system's accuracy in various scenarios,
measuringresponsetimes,andanalyzinguserfeedbackto improve reliability and user satisfaction. This comprehensive approach
integrates advanced EEG signal processing and robust hardware design to deliver an innovative mobility solution.

Brain data were collected using NeuroSky Mindwave Mobile 2headsets, which playa crucial role intranslating neural signals into
actionable commands. The headset is designed to be worn comfortably on the user's head and featuresanEEGelectrodeembedded
initsarmsensor.This electrode captures raw EEG data [2],[11], reflecting diversebrainactivity.Additionally,thedeviceincludesan ear
clip on its left side, which serves as a grounding mechanism, ensuring the stability and accuracy of the recorded signals. Powered by
standardAAAbatteries, the headset is portable and reliable for continuous use.

The NeuroSky Mindwave Mobile 2 incorporates an advanced eSense meter, which analyzes thought and
emotionalstatesbyinterpretingbrainwavepatternsacross different frequencies and time intervals.

LED power
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AAA battery
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Forehead
sensor

Pad
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Fig.1.NeuroSky

The system prioritizes beta waves, which are crucial for focus and attention, ensuring accurate cognitive state assessment. This
makes it ideal for real-time brainwave- basedapplicationslikebraincontrolwheelchairs. Thetable below summarizes all brain waves
along with their frequencies [10],[11].

Brainwave Frequency Range |Associated Tasks &
Behaviors

Gamma =30 H= Mental activity (math_
planning_
problem-solving)
Beta 13-30 Hz Analytical problem-
solving,

judgment, decision-
making

Alpha 8-12 Hz Meditation, learning,
memory

integration

Theta 4-8BHz Daydreaming,
meditation_ deep
relaxation

Delta <4 Hz Non-REM sleep.,
lethargy, non-
attentive states

Tablel.Brainsignalstable

1) Signal Detection:

Thisisthefirststage,wheresignals(inthiscase,brainwave signals) are detected using an EEG electrode, such as the NeuroSky
Mindwave sensor.The electrode senses the raw brainsignalsgeneratedbyneuralactivity. Thesesignalsare typically weak and require
sensitive equipment to detect them accurately.

2) Signal Acquisition:

In this stage, the transmitted signals are received and capturedforfurtherprocessing.Signalacquisitioninvolves
filteringthedatatoremovenoiseorartifacts,suchassignals generated by muscle movements or external electrical interference. The result
is clean EEG data ready for interpretation.
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3) SignalTransmission:

After detection, the raw signals are transmitted from the sensor to a processing unit. Transmission can occur wirelessly (via

Bluetooth, as in NeuroSky devices) or through wired connections. This stage ensures that the

brainwavesignalsaretransferredwithoutsignificantlossor interference.

4) SignalMapping:

Signal mappingisthefinal step wheretheacquired signals areanalyzedandmappedtospecificcommandsoractions. For instance, certain

brainwave frequencies (like beta waves) can be mapped to a command for controlling a wheelchair, appliance, or cursor[8]. This

mapping process translatesbrainwavedataintomeaningfuloutputsbasedon predefined algorithms.

5) MotorMovementLogic:

A small DC geared motor was used in the prototype to support basic wheelchair movements. It operates between 6V and 12V, with

a no-load speed of 150-300 RPM and torque around 0.5-1.5 kg-cm. The motor consumes less than 500 mA, making it safe for

testing. A built-in gear system enhances torque for smoother control. Its compact size and compatibility with the ESP32 made it

ideal for early-stage development. The motor is controlled using an L298N motor driver, which efficiently drives the motor,

providing the necessary current and voltage for smooth wheelchair operation.

We use 2 DC motors for the movement of the Wheelchair and give the logic to the motors as follows:

The motor movement logic is designed to interpret user inputs based on specific brainwave frequencies and eye

blinks[9],[10],ensuringaccuratecontrolofthewheelchair. The system associates particular brainwave frequency ranges and eye blink

patterns with distinct commands:

e Start Movement (Command 1): Detected by a single eye blink combined with a brainwave frequency above 30 Hz (gamma
range).

e Turn Left (Command 2): Triggered when the brainwave frequency falls within 13-20 Hz.

e Turn Right (Command 3): Activated when the brainwave frequency falls within a different frequency range, such as 18-25 Hz
(high beta), signalling the intent to turn right.

e Stop Movement (Command 4): Initiated by detectinglow-frequencybrainwaves,suchasthose in the delta range (1-4 Hz),
indicating a mental state of relaxation or stop command.

Capturingeegsignalfromneurosky

x

ApplyingSignalProcessingonEEG
Signal
¥

AnalyzeBrainwaveFrequencies

v

Transfersignalinesp32andgivelogic to
the motor

y

[ 13-20 HZ ] [ 18-25 HZ ] [ 1-4 HZ ]

. ,
(o) (o] )

Fig.2FlowchartofMethodology
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e Emergency Brake (Command 5): Engaged by detecting two consecutive eye blinks combined with a high-frequency brainwave
signal,suchas30Hzorhigher(gammarange), triggeringanemergencystopofthewheelchair.

These commands, represented by numeric values (1, 2, 3, 4, and 5), are transmitted via a serial monitor to the ESP32
microcontroller. The ESP32 processes these commands and implements the logic to control the wheelchair’s motors, allowing for
accurate navigation, halts, and emergency braking depends on the user’s mental state & eye gestures. The system continuously
monitors incoming signals to adjust motor speed and directiondynamically,ensuringsmoothnavigation.The ESP32's real-time
processing capability enables quick response to user inputs, minimizing latency and enhancing the overall user experience. Safety
mechanisms, such as predefined emergency stop conditions and obstacle detection, further improve reliability.

1. MATHEMATICAL FORMULA AND DERIVATION
1) EEGSignalProcessing
EEG (Electroencephalogram) signals are inherently non- stationary and have multiple overlapping frequency components. These
can be mathematically modeled as a sum of sinusoidal functions:
N
x(6)=>"Ak.cosrf kt+pk)[14]
k=1
Where:
X(t):EEGsignalattimet
o  Aj:Amplitude of thek-thfrequencycomponent
e  fk:Frequencyofthek-thcomponent
e  @k:Phaseshift of thek-thcomponent
e N:Totalnumberofcomponents
This representation allows the decomposition of the EEG signal into distinct frequency bands associated with
differentcognitivestates(e.g.,delta,theta,alpha,beta,and gamma).

2) FrequencyAnalysisUsingtheFourierTransform

To extract these frequency components, the Fourier Transform is employed:
e}

X(f)=lx(t)xe 72nftdt[15]

—00

Where:

X(f):Frequency-domainrepresentationofthe EEG signal

j:Imaginary unit

f:Frequencyvariable

[ ]
3) NoiseReductionUsingBand-PassFiltering
SinceEEGsignalsarepronetocontaminationfromartifacts (e.g., muscle noise, power line interference), a band-pass filter is applied to
retain only the relevant EEG frequency range (typically 0.5-40 Hz):
y(6)=x(t)*h(t)[16]
Where:
o y(t):FilteredEEGsignal
e h(t):Impulseresponseofthefilter
e x:Convolutionoperator
This filtering ensures that only the physiologically meaningful EEG components are preserved for further analysis.

4) PowerSpectralDensity(PSD)forFeatureExtraction
To quantify thestrength of differentbrainwavefrequencies, the Power Spectral Density (PSD) is calculated:

Pxx(f)=1X(f)F[16]
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This metric indicates how the signal’s power is distributed across frequency bands. PSD features are crucial for distinguishing
between mental states such as concentration (beta), drowsiness (theta), or alertness (alpha).

5) MotorControlLogic

To regulate the movement of the wheelchair, Pulse Width Modulation (PWM) is employed, which modulates the average voltage

delivered to the motor by varying the duty cycle. The voltage applied to the motor is given by

D

Vmotor=Vsupply*;gg[17]

Where:

o  Vmotor:Effectivevoltageappliedtothemotor

e Vsupply:Sourcevoltage

e D:Dutycycle(inpercentage)

PWM allows fine-grained speed control of the DC motor withoutenergylosstypicalinresistivemethods.Thecurrent through the

motor using an H-Bridge circuit is estimated using:

Vin—Vmotor
I= [17]

R motor

e  |I=Currentflowingthroughthemotor

e Vin=InputvoltagetoH-bridge

e  Rmotor=Internalresistanceofthemotor
The H-bridge logic enables directional control of the wheelchair through simple digital commands:
Direction Motor 1  [Motor_2

Forward HIGH LOW

Backward LOW HIGH

LeftTurn LOW LOW

RightTurn HIGH HIGH

PWM provides efficientspeed control, whiletheH-Bridge circuit facilitates forward and reverse motion. The system design is cost-
effective, safe for testing, and compatible with microcontrollers like the ESP32.

6) BrainwaveFrequencyMappingforCommandControl
The system maps EEG frequency bands and eye blink eventstowheelchaircontrolcommands.Thelogicisbased on distinct cognitive
patterns observable in EEG signals:
C=1—iff>30Hz(Gamma)+SingleBlink(Start)[18]
2—if13<f<20Hz(Beta-Left)[18]

3 —if18<f<25Hz(HighBeta-Right)[18]

4 —iff<4Hz(Delta-Stop) [18]
5 —iff=30Hz+DoubleBlink(EmergencyStop)[18] Where:
o f:DetectedEEGfrequency
e C:Commandidentifier
Blink detection is done using peak-to-peak amplitude of the EEG signal:
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BlinkSignal=max(x(t))—min(x(t))[19]

Ifthisvalueexceedsapredefinedthreshold,ablinkeventis registered.

For improved classification and responsiveness, EEG frequencyandblinkamplitudearecombinedwithweighted factors:
Command=(fEEGXWEEG)

+(FBlink*W Blink)[19]

Where:

e fEEG:Frequency-domainfeaturefromEEG

o FpBlink:Blinksignal feature

o  WEEG.WBIlink:Weightcoefficientsforfeature fusion

Brainwavefrequenciesreflectcognitiveintentions,andeye  blinks  serve  as  deliberate  triggers. = Combining  both
improvescommandreliabilityandreducesfalsepositivesin noisy environments. This multi-modal control enhances accessibility for
individuals with limited motor functions.

V. RESULT & DISCUSSION
The effectiveness of the EEG-driven brain-controlled wheelchair system was evaluated based on its accuracy in translating
brainwave frequencies and eye gestures into movement commands. The system achieved the following results: response time was
analyzed to ensure minimal latency, and the accuracy of command execution was validatedthroughmultipletestscenarios.
Additionally,user adaptability and ease of control were assessed to measure the system’s effectiveness in real-world applications,
ensuring a reliable and intuitive mobility solution.

Fig3.Testingwiththedataset:
As shown in Fig. 3, we first test the data in Python MNE using different datasets, study the EEG signals and their features, and
extract meaningful information for the next step.

Fig.4.SignalextractionusingNeuroSky.
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Fig. 4 illustrates signal extraction using the NeuroSky device.Wecollectdifferentbrainwavefrequencysignals— such as alpha, beta,
delta, and theta waves—through the device. These frequencies correspond to various mental states like relaxation, concentration,
and drowsiness. The NeuroSky headset enables real-time observation of EEG signals, allowing us to experience and analyze live
brain activity.

After testing with raw EEGdata sourcedfromthe internet, wesuccessfullyextractedeventsfromthesignals.Basedon predefined
conditions, we were able to accurately assign corresponding commands to the events. These commands were then sent to the
Arduino IDE, where they were processedandtransferredtotheESP32microcontrollerfor execution, enabling the desired control over
the wheelchair's movements. To ensure precision, we applied signal preprocessing techniques such as noise filtering and feature
extraction. Additionally, multiple trial runs were conducted to validate the system’s reliability and responsiveness.

Dataset:We used the EEG Motor Movement dataset from the PhysioNet website for testing purposes.

Sending command:

ing for event: Turn Left at 4.20 seconds

g command: 2
ing for ey t: Motor Start at 8.30 seconds
ing commar
ing for ev t: Turn Right at 12.50 seconds
ing command: 3
ing for ev t: Motor Start at 16.60 seconds

ing commar

Waiting for ev t: Turn Left at 20.80 seconds

Fig.5.EEGsignaltransmittedtoPythonMNEforanalysis.

AsshowninFig.5,weassignspecificcommands—suchas forward,backward, left, or rightmovement—to brainwave frequencies based
on their respective ranges.Additionally, we extract the timestamp at which each event occurs to synchronize the signal with the
corresponding action.

Fig.6.EEGsignaltransmittedtotheArduinol DEforfurtherprocessing.

After conducting extensive testing with raw EEG data sourced from the internet, the system demonstrated the successful extraction
of relevant events from the signals. TheEEGdatawasprocessedtoidentifyspecificbrainwave frequencies and eye gestures, which were
then mapped to predefined commands, such as start, left, right, stop, and emergency brake. Each command was assigned based
on theconditionsoftheextractedsignals,ensuringthecorrect interpretation of user intentions.

Fig. 6 presents the result of our study, where we successfully transferred the assigned commands to the Arduino IDE. These
commands—such as move forward, turn left, turn right, and stop—were transmitted to the ESP32 microcontroller. The ESP32 then
activated the correspondingmotordriversignalstocontrolthemovement of the wheelchair motors, enabling real-time navigation based
on EEG signal inputs.

The system achieved a high level of accuracy in detecting andtranslatingtheseeventsintoactionablecommands,with a successful
transfer of the commands to theArduino IDE. From there, the commands were reliably transferred to the
ESP32microcontroller,whichexecutedthenecessarylogic to control the wheelchair's movements.

The wheelchair responded accurately to commands, including starting, turning, stopping, and emergency
braking,basedonthecorrespondingbrainwavefrequencies and eye gestures.

Overall, the resultsconfirm the effectivenessof the system inprocessingandinterpretingEEGsignals,translatingthem into real-time
commands, and controlling the wheelchair's motors via the ESP32 microcontroller. This non-invasive, cost-effective solution
successfully enhances mobility for individuals with severe physical disabilities, offering improved autonomy and control.
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Criteria TRUE (Correct Qutcome) FALSE (Incorrect OQutcome)

Correct command (2.g., move left) Wrongor no command triggered despite

Command Execution executed based on EEG + eye blink valid EEG input

Single or double blink detected correctly | Blink missed orwrongly detected,

Eye Blink Detection
asstart/emergency stop triggering unintended action

ESP32 successfully triggered correct Mator not triggered or wrang mator
motor response activated due to faulty signal processing

Motor Movement

Double blink + gamma frequency reliably |Failed to engage emergency stepin high-

Emergency Stop Function
gency Stop triggered immediate stop risk situations

Strong, clean EEG signal maintained Weak signal o loss of headset connection

Signal Integri
& arity duringusage caused failure to process commands

Noise-free, filtered EEG signals provided |Presence of noise or artifacts caused

Data Preprocessin
P g reliable inputs command misclassification

V. MACHINE LEARNING-BASED VALIDATION
To enhance the accuracy of EEG signal interpretation and ensure robust command classification, machine learning techniques were
incorporated into the system.This section details the methodology, dataset, features, classifier evaluation, and performance metrics
used to validate the proposed brain-controlled wheelchair system.
A. Dataset and Preprocessing
We used the publicly available EEG Motor Movement/Imagery Dataset from PhysioNet,[21] which contains EEG signals for
various motor imagery tasks recorded using 64 channels at 160 Hz. For model training:
e Only four classes were considered: Left Hand, RightHand,Start(bothfists),andStop(reststate).
o Signalsweresegmentedinto2-secondwindows.
e A band-pass filter (0.5-40 Hz) was applied to remove noise.
e Artifacts (e.g., eye movements, muscle activity) were removed using Independent Component Analysis (ICA).

B. Feature Extraction

From each segment, the following features were extracted using Python's MNE and NumPYy libraries:

e Frequency-domain features: Bandpower in Delta(1-4Hz), Theta(4-8Hz),Alpha(8-13Hz), Beta (13-30 Hz), and Gamma (>30
Hz) bands

e Time-domain statistics: Mean, Variance, Skewness

o Blink Detection: Detected by signal peaks exceeding 150 uV

The extracted features formed a feature vector for training classification models.

C. Classifier Models

Three popular classification algorithms were trained and tested using the extracted features:
e Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel

e RandomForest(RF)with100decisiontrees

o K-NearestNeighbors(KNN)withk=5
Allmodelswereimplementedusingscikit-learnandevaluatedwith10-foldcross-validation.[20]

D. Results
Themodelswereevaluatedbasedontheirabilitytoclassify theuser’sintentintooneofthefourmovementclasses.The average performance
across folds is shown below:

Algor | Accura | Accuracy | Precisi | Precision | Recal | Reca
ithm | cy * on * | 1

[22] [23] [24] *
SVM | 87% 87% 88% 89% 85% | 83%
RF 85% 86% 85% 85% 84% | 82%
KNN | 82% 80% 81% 80% 83% | 83%
(k=5)

Comparison between other author result and our result (* are our results)
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Final Choice: SVM (Support Vector Machine)

Achieved the highest accuracy (87%) among all models.Precision (89%) ensures reliable classification, minimizingfalse triggers in
wheelchair movement.Recall (83-85%) isreasonably strong, ensuring most commands are captured.SVM is well-suited for EEG
signal classification, as it handleshigh-dimensional data and small datasets effectively.

E. EvaluationMetrics I
Thefollowingmetricswereusedtoevaluateperformance:

¢  Accuracy:Proportionoftotalcorrectpredictions
TP+TN
TP+TN+FP+FN

Accuracy=

e Precision:Proportionofcorrectlypredicted positive
instances

TP

Precision= —m8M —
TP+FP

¢ Recall:Proportionofactualpositivescorrectly
identified

TP
TP+FN

These metrics were computed using the classification_report() function from scikit-learn.

Recall=

F. ConfusionMatrixforSVMClassifier

Predicted Predicted Predicted Predicted

Left Right Stop Start
Actual 42 3 2 3
Left
Actual 4 40 5 1
Right
Actual 1 3 41 5
Stop
Actual 2 1 4 43
Start

The SVM classifier demonstrated high generalization capability with minimal false positives.

G. Real-Timelntegration
Thetrained SVMmodelwasconvertedusing TensorFlow Lite and deployed onto the ESP32 microcontroller using TinyML. Real-
time EEG features were fed into the model for live prediction, which improved responsiveness and reduced manual tuning efforts.
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VI. CONCLUSION
This study presents a brain-controlled wheelchair system that leverages EEG signals and eye movements to assist individuals with
severe mobility impairments. The non- invasiveandcost-effectiveBCITechnologyconvertsbrain activityintoreal-timecontrol
commands.Thesecommands are then processed and transmitted to the ESP32 microcontroller, enabling precise motor control for
seamless wheelchair navigation. The integration of advanced signal processing ensures accurate command recognition, enhancing
the system’s reliability and responsiveness.

The results of the testing demonstrated that the system successfully extracted events from raw EEG signals, assigned the correct
movement commands, and sent them to the Arduino IDE for transfer to the ESP32.

The wheelchair accurately responded to commands for starting,turning,stopping,andemergencybraking,offering a reliable and
intuitive controlmechanism.The integration of EEG signal processing, eye-tracking technology, and microcontroller-based motor
control ensures that the system providesaseamlessuserexperiencewithhighaccuracyand responsiveness.

This system represents a promising solution for improving the mobility and independence of individuals with
neuromusculardisorders,offeringapractical,non-invasive alternative to traditional assistive devices. Future research can enhance
signal processing accuracy, expand system capabilities, and improve the user interface for wider applications. Ultimately, this project
highlights the potential of combining advanced neuroscience and robotics to enhancethequalityoflifefordifferently-abledindividuals.
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