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Abstract: Myoelectricsystemshavelongbeenusedinassistive technologies,buttheirhighcostanddependenceonfunctional nerves limit 
their accessibility for individuals with severe physical impairments. As an alternative, this paper presents a non-invasive,cost-
effectivewheelchaircontrolsystembasedon electroencephalogram(EEG)signals.ThesystememploysBrain- Computer Interface 
(BCI) technology to interpret brain activity and eye movements, enabling users to control the wheelchair through mental 
commands and gaze gestures. ANeuroSkyMindwaveheadsetisusedtocaptureEEGsignals, whicharethenprocessedusingsignal 
processingtechniquesto assess cognitive states such as concentration and relaxation. Eye-tracking is integrated to 
improvecommand precision.The interpreted signals are converted into directional commands andtransmitted wirelessly to 
anESP32 microcontroller, which controls the wheelchair’s movement. 
Experimental results demonstrate an 85% accuracy rate in translating brain and eye activity into movement commands, 
supporting intuitive and reliable navigation. By combining EEGsignalprocessingwitheye-tracking,thissystemenhances mobility 
and independence for users with significant motor disabilities. The proposed approach offers a practical, user- friendly 
alternative to traditional assistive mobility devices. 
Keywords: ESP-32, BCI, EEG, Brain Frequencies, Motors, Neurosky, PWM 

 
I.   INTRODUCTION 

Globally,millionsofindividualsexperiencemotorfunction disabilities due to conditions like amyotrophic lateral sclerosis (ALS), 
multiple sclerosis (MS), spinal cord injuries, brainstem strokes, and cerebral palsy, resulting in significant mobility challenges. For 
such individuals, augmentative and alternative solutions are crucial to improvingtheirqualityoflife.BCItechnologyhasemerged as a 
transformative solution [1], enabling users to control assistive devices like wheelchairs using neural signals. By creating a direct 
interaction Channel linking the brain to physical devices, BCIs bypass conventional mechanisms like muscle movement or speech, 
offering hands-free and intuitive control. EEG-based BCIs, in particular, provide a non-invasive,cost-effective,andsafemethodfor 
capturing brainactivity through scalpelectrodes,eliminatingtherisks associated with invasive systems. The proposed brain- controlled 
wheelchair leverages EEG signals captured by the NeuroSky Mindwave headset, complemented by eye- trackingforenhanced 
precision.Thesystemprocessesbrain activityusingPython’sMNElibrarytodecodepatternssuch as focus and relaxation, mapping them 
into actionable commands. These commands, along with eye movement signals and brain wave frequencies, are wirelessly 
transmitted to an ESP32 microcontroller to drive the wheelchair’s motion. This paper aims to empower individuals with 
neuromuscular disorders by providing a user-friendly mobility solution that enhances their independence and quality of life, 
showcasing the potential of integrating EEG brain wave signals and eye-tracking technology in assistive devices. 
 

II.   METHODOLOGY 
The brain-monitoring wheelchair focuses on integrating with real-time control mechanisms to assist differently- abled individuals in 
achieving independent mobility [1],[3],[4]. The system begins with EEG signal sensing using a NeuroSky Mindwave headset, 
which captures brain activity through dry electrodes positioned on the user’s scalp. These signals, representing attention and 
cognitive states, are wirelessly transmitted to a computer for real-time processing. Using the Python MNE, the raw EEG data 
undergoes noise filtering and feature extraction to isolate signals relevant for command generation. 
Once processed, the signals are translated into control commandsusingpre-definedthresholdsthatcorrespondto 
specificwheelchairactions,suchasforward,left,right,or stop.These commands are transmitted to the wheelchair's control unit via an 
ESP32 module, enabling wireless communication with minimal latency. The wheelchair is equipped with DC motors and an esp32 
microcontroller, which interprets the received commands and drives the motors accordingly [5],[8].Additional functionality, such as 
obstacle detection, is incorporated using ultrasonic sensors connected to the Arduino, enhancing safety and usability in dynamic 
environments. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
    

 
1278 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

To optimize the system, user training sessions are conductedtocalibratetheheadsetandfamiliarizetheuser with the control thresholds, 
ensuring accurate and responsive wheelchair movements. Testing involves validating the system's accuracy in various scenarios, 
measuringresponsetimes,andanalyzinguserfeedbackto improve reliability and user satisfaction. This comprehensive approach 
integrates advanced EEG signal processing and robust hardware design to deliver an innovative mobility solution. 
Brain data were collected using NeuroSky Mindwave Mobile 2headsets, which playa crucial role intranslating neural signals into 
actionable commands. The headset is designed to be worn comfortably on the user's head and featuresanEEGelectrodeembedded 
initsarmsensor.This electrode captures raw EEG data [2],[11], reflecting diversebrainactivity.Additionally,thedeviceincludesan ear 
clip on its left side, which serves as a grounding mechanism, ensuring the stability and accuracy of the recorded signals. Powered by 
standardAAAbatteries, the headset is portable and reliable for continuous use. 
The NeuroSky Mindwave Mobile 2 incorporates an advanced eSense meter, which analyzes thought and 
emotionalstatesbyinterpretingbrainwavepatternsacross different frequencies and time intervals. 

 
Fig.1.NeuroSky 

 
The system prioritizes beta waves, which are crucial for focus and attention, ensuring accurate cognitive state assessment. This 
makes it ideal for real-time brainwave- basedapplicationslikebraincontrolwheelchairs.Thetable below summarizes all brain waves 
along with their frequencies [10],[11]. 

Table1.Brainsignalstable 
1) Signal Detection: 
Thisisthefirststage,wheresignals(inthiscase,brainwave signals) are detected using an EEG electrode, such as the NeuroSky 
Mindwave sensor.The electrode senses the raw brainsignalsgeneratedbyneuralactivity.Thesesignalsare typically weak and require 
sensitive equipment to detect them accurately. 
2) Signal Acquisition: 
In this stage, the transmitted signals are received and capturedforfurtherprocessing.Signalacquisitioninvolves 
filteringthedatatoremovenoiseorartifacts,suchassignals generated by muscle movements or external electrical interference. The result 
is clean EEG data ready for interpretation. 
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AnalyzeBrainwaveFrequencies 

IF 

13-20 HZ 18-25 HZ 1-4 HZ 

Left Right Stop 

Transfersignalinesp32andgivelogic to 
the motor 

ApplyingSignalProcessingonEEG 
Signal 

Capturingeegsignalfromneurosky 

3) SignalTransmission: 
After detection, the raw signals are transmitted from the sensor to a processing unit. Transmission can occur wirelessly (via 
Bluetooth, as in NeuroSky devices) or through wired connections. This stage ensures that the 
brainwavesignalsaretransferredwithoutsignificantlossor interference. 
4) SignalMapping: 
Signal mappingisthefinal step wheretheacquired signals areanalyzedandmappedtospecificcommandsoractions. For instance, certain 
brainwave frequencies (like beta waves) can be mapped to a command for controlling a wheelchair, appliance, or cursor[8]. This 
mapping process translatesbrainwavedataintomeaningfuloutputsbasedon predefined algorithms. 
5) MotorMovementLogic: 
A small DC geared motor was used in the prototype to support basic wheelchair movements. It operates between 6V and 12V, with 
a no-load speed of 150–300 RPM and torque around 0.5–1.5 kg-cm. The motor consumes less than 500 mA, making it safe for 
testing. A built-in gear system enhances torque for smoother control. Its compact size and compatibility with the ESP32 made it 
ideal for early-stage development. The motor is controlled using an L298N motor driver, which efficiently drives the motor, 
providing the necessary current and voltage for smooth wheelchair operation. 
We use 2 DC motors for the movement of the Wheelchair and give the logic to the motors as follows: 
The motor movement logic is designed to interpret user inputs based on specific brainwave frequencies and eye 
blinks[9],[10],ensuringaccuratecontrolofthewheelchair. The system associates particular brainwave frequency ranges and eye blink 
patterns with distinct commands: 
 Start Movement (Command 1): Detected by a single eye blink combined with a brainwave frequency above 30 Hz (gamma 

range). 
 Turn Left (Command 2): Triggered when the brainwave frequency falls within 13-20 Hz. 
 Turn Right (Command 3): Activated when the brainwave frequency falls within a different frequency range, such as 18-25 Hz 

(high beta), signalling the intent to turn right. 
 Stop Movement (Command 4): Initiated by detectinglow-frequencybrainwaves,suchasthose in the delta range (1-4 Hz), 

indicating a mental state of relaxation or stop command. 

Fig.2FlowchartofMethodology 
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 Emergency Brake (Command 5): Engaged by detecting two consecutive eye blinks combined with a high-frequency brainwave 
signal,suchas30Hzorhigher(gammarange), triggeringanemergencystopofthewheelchair. 

These commands, represented by numeric values (1, 2, 3, 4, and 5), are transmitted via a serial monitor to the ESP32 
microcontroller. The ESP32 processes these commands and implements the logic to control the wheelchair’s motors, allowing for 
accurate navigation, halts, and emergency braking depends on the user’s mental state & eye gestures. The system continuously 
monitors incoming signals to adjust motor speed and directiondynamically,ensuringsmoothnavigation.The ESP32's real-time 
processing capability enables quick response to user inputs, minimizing latency and enhancing the overall user experience. Safety 
mechanisms, such as predefined emergency stop conditions and obstacle detection, further improve reliability. 
 

III.   MATHEMATICAL FORMULA AND DERIVATION 
1) EEGSignalProcessing 
EEG (Electroencephalogram) signals are inherently non- stationary and have multiple overlapping frequency components. These 
can be mathematically modeled as a sum of sinusoidal functions: 

 ܰ
 [14](݇߮+ݐ݂݇ߨ2)cos.݇ܣ∑=(ݐ)ݔ

݇=1 
Where: 
 x(t):EEGsignalattimet 
 ݇ܣ:Amplitude of thek-thfrequencycomponent 
 ݂݇:Frequencyofthek-thcomponent 
 ߮݇:Phaseshift of thek-thcomponent 
 N:Totalnumberofcomponents 
This representation allows the decomposition of the EEG signal into distinct frequency bands associated with 
differentcognitivestates(e.g.,delta,theta,alpha,beta,and gamma). 
 
2) FrequencyAnalysisUsingtheFourierTransform 
To extract these frequency components, the Fourier Transform is employed: 

∞ 
 [15]ݐ݀ݐ݂ߨ2݆−݁×(ݐ)ݔ∫=(݂)ܺ

−∞ 
Where: 
 X(f):Frequency-domainrepresentationofthe EEG signal 
 j:Imaginary unit 
 f:Frequencyvariable 
  
3) NoiseReductionUsingBand-PassFiltering 
SinceEEGsignalsarepronetocontaminationfromartifacts (e.g., muscle noise, power line interference), a band-pass filter is applied to 
retain only the relevant EEG frequency range (typically 0.5–40 Hz): 

 [16](ݐ)ℎ∗(ݐ)ݔ=(ݐ)ݕ
Where: 
 y(t):FilteredEEGsignal 
 h(t):Impulseresponseofthefilter 
 ∗:Convolutionoperator 
This filtering ensures that only the physiologically meaningful EEG components are preserved for further analysis. 

 
4) PowerSpectralDensity(PSD)forFeatureExtraction 
To quantify thestrength of differentbrainwavefrequencies, the Power Spectral Density (PSD) is calculated: 

 [16]2|(݂)ܺ|=(݂)ݔݔܲ
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This metric indicates how the signal’s power is distributed across frequency bands. PSD features are crucial for distinguishing 
between mental states such as concentration (beta), drowsiness (theta), or alertness (alpha). 
 
5) MotorControlLogic 
To regulate the movement of the wheelchair, Pulse Width Modulation (PWM) is employed, which modulates the average voltage 
delivered to the motor by varying the duty cycle. The voltage applied to the motor is given by 

 ܦ
 [17]100×ݕ݈݌݌ݑݏܸ=ݎ݋ݐ݋ܸ݉

Where: 
 ܸ݉ݎ݋ݐ݋:Effectivevoltageappliedtothemotor 
 ܸݕ݈݌݌ݑݏ:Sourcevoltage 
 D:Dutycycle(inpercentage) 
PWM allows fine-grained speed control of the DC motor withoutenergylosstypicalinresistivemethods.Thecurrent through the 
motor using an H-Bridge circuit is estimated using: 

 
 

 I=Currentflowingthroughthemotor 
 ܸ݅݊=InputvoltagetoH-bridge 
 ܴ݉ݎ݋ݐ݋=Internalresistanceofthemotor 
The H-bridge logic enables directional control of the wheelchair through simple digital commands: 

Direction Motor_1 Motor_2 

Forward HIGH LOW 

Backward LOW HIGH 

LeftTurn LOW LOW 

RightTurn HIGH HIGH 

 
PWM provides efficientspeed control, whiletheH-Bridge circuit facilitates forward and reverse motion. The system design is cost-
effective, safe for testing, and compatible with microcontrollers like the ESP32. 
 
6) BrainwaveFrequencyMappingforCommandControl 
The system maps EEG frequency bands and eye blink eventstowheelchaircontrolcommands.Thelogicisbased on distinct cognitive 
patterns observable in EEG signals: 
C=1→iff≥30Hz(Gamma)+SingleBlink(Start)[18] 
2→if13≤f<20Hz(Beta-Left)[18] 

3 →if18≤f<25Hz(HighBeta-Right)[18] 
4 →iff≤4Hz(Delta-Stop) [18] 

5 →iff≥30Hz+DoubleBlink(EmergencyStop)[18] Where: 
 f:DetectedEEGfrequency 
 C:Commandidentifier 
Blink detection is done using peak-to-peak amplitude of the EEG signal: 
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 [19]((ݐ)ݔ)݊݅݉−((ݐ)ݔ)ݔܽ݉=݈݈ܽ݊݃݅ܵ݇݊݅ܤ
Ifthisvalueexceedsapredefinedthreshold,ablinkeventis registered. 
For improved classification and responsiveness, EEG frequencyandblinkamplitudearecombinedwithweighted factors: 
 (ܩܧܧܹ×ܩܧܧ݂)=݀݊ܽ݉݉݋ܥ
 [19](݈݇݊݅ܤܹ×݈݇݊݅ܤܨ)+
Where: 
 ݂ܩܧܧ:Frequency-domainfeaturefromEEG 
 ࢑࢔࢏࢒࡮ࡲ:Blinksignal feature 
 ࢑࢔࢏࢒࡮ࢃ,ࡳࡱࡱࢃ:Weightcoefficientsforfeature fusion 
Brainwavefrequenciesreflectcognitiveintentions,andeye blinks serve as deliberate triggers. Combining both 
improvescommandreliabilityandreducesfalsepositivesin noisy environments. This multi-modal control enhances accessibility for 
individuals with limited motor functions. 
 

IV.   RESULT & DISCUSSION 
The effectiveness of the EEG-driven brain-controlled wheelchair system was evaluated based on its accuracy in translating 
brainwave frequencies and eye gestures into movement commands. The system achieved the following results: response time was 
analyzed to ensure minimal latency, and the accuracy of command execution was validatedthroughmultipletestscenarios. 
Additionally,user adaptability and ease of control were assessed to measure the system’s effectiveness in real-world applications, 
ensuring a reliable and intuitive mobility solution. 

Fig3.Testingwiththedataset: 
As shown in Fig. 3, we first test the data in Python MNE using different datasets, study the EEG signals and their features, and 
extract meaningful information for the next step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Fig.4.SignalextractionusingNeuroSky. 
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Fig. 4 illustrates signal extraction using the NeuroSky device.Wecollectdifferentbrainwavefrequencysignals— such as alpha, beta, 
delta, and theta waves—through the device. These frequencies correspond to various mental states like relaxation, concentration, 
and drowsiness. The NeuroSky headset enables real-time observation of EEG signals, allowing us to experience and analyze live 
brain activity. 
After testing with raw EEGdata sourcedfromthe internet, wesuccessfullyextractedeventsfromthesignals.Basedon predefined 
conditions, we were able to accurately assign corresponding commands to the events. These commands were then sent to the 
Arduino IDE, where they were processedandtransferredtotheESP32microcontrollerfor execution, enabling the desired control over 
the wheelchair's movements. To ensure precision, we applied signal preprocessing techniques such as noise filtering and feature 
extraction. Additionally, multiple trial runs were conducted to validate the system’s reliability and responsiveness. 
Dataset:We used the EEG Motor Movement dataset from the PhysioNet website for testing purposes. 

Fig.5.EEGsignaltransmittedtoPythonMNEforanalysis. 
 

AsshowninFig.5,weassignspecificcommands—suchas forward,backward, left, or rightmovement—to brainwave frequencies based 
on their respective ranges.Additionally, we extract the timestamp at which each event occurs to synchronize the signal with the 
corresponding action. 

 
Fig.6.EEGsignaltransmittedtotheArduinoIDEforfurtherprocessing. 

 
After conducting extensive testing with raw EEG data sourced from the internet, the system demonstrated the successful extraction 
of relevant events from the signals. TheEEGdatawasprocessedtoidentifyspecificbrainwave frequencies and eye gestures, which were 
then mapped to predefined commands, such as start, left, right, stop, and emergency brake. Each command was assigned based 
on theconditionsoftheextractedsignals,ensuringthecorrect interpretation of user intentions. 
Fig. 6 presents the result of our study, where we successfully transferred the assigned commands to the Arduino IDE. These 
commands—such as move forward, turn left, turn right, and stop—were transmitted to the ESP32 microcontroller. The ESP32 then 
activated the correspondingmotordriversignalstocontrolthemovement of the wheelchair motors, enabling real-time navigation based 
on EEG signal inputs. 
The system achieved a high level of accuracy in detecting andtranslatingtheseeventsintoactionablecommands,with a successful 
transfer of the commands to theArduino IDE. From there, the commands were reliably transferred to the 
ESP32microcontroller,whichexecutedthenecessarylogic to control the wheelchair's movements. 
The wheelchair responded accurately to commands, including starting, turning, stopping, and emergency 
braking,basedonthecorrespondingbrainwavefrequencies and eye gestures. 
 
Overall, the resultsconfirm the effectivenessof the system inprocessingandinterpretingEEGsignals,translatingthem into real-time 
commands, and controlling the wheelchair's motors via the ESP32 microcontroller. This non-invasive, cost-effective solution 
successfully enhances mobility for individuals with severe physical disabilities, offering improved autonomy and control. 
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V.   MACHINE LEARNING-BASED VALIDATION 
To enhance the accuracy of EEG signal interpretation and ensure robust command classification, machine learning techniques were 
incorporated into the system.This section details the methodology, dataset, features, classifier evaluation, and performance metrics 
used to validate the proposed brain-controlled wheelchair system. 
A. Dataset and Preprocessing 
We used the publicly available EEG Motor Movement/Imagery Dataset from PhysioNet,[21] which contains EEG signals for 
various motor imagery tasks recorded using 64 channels at 160 Hz. For model training: 
 Only four classes were considered: Left Hand, RightHand,Start(bothfists),andStop(reststate). 
 Signalsweresegmentedinto2-secondwindows. 
 A band-pass filter (0.5–40 Hz) was applied to remove noise. 
 Artifacts (e.g., eye movements, muscle activity) were removed using Independent Component Analysis (ICA). 
 
B. Feature Extraction 
From each segment, the following features were extracted using Python's MNE and NumPy libraries: 
 Frequency-domain features: Bandpower in Delta(1–4Hz),Theta(4–8Hz),Alpha(8–13Hz), Beta (13–30 Hz), and Gamma (>30 

Hz) bands 
 Time-domain statistics: Mean, Variance, Skewness 
 Blink Detection: Detected by signal peaks exceeding 150 µV 
The extracted features formed a feature vector for training classification models. 
 
C. Classifier Models 
Three popular classification algorithms were trained and tested using the extracted features: 
 Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel 
 RandomForest(RF)with100decisiontrees 
 K-NearestNeighbors(KNN)withk=5 
Allmodelswereimplementedusingscikit-learnandevaluatedwith10-foldcross-validation.[20] 
 
D. Results 
Themodelswereevaluatedbasedontheirabilitytoclassify theuser’sintentintooneofthefourmovementclasses.The average performance 
across folds is shown below: 

Algor
ithm 

Accura
cy 
[22] 

Accuracy  
        *      

Precisi
on 
[23] 

Precision 
        * 
 

Recal
l 
[24] 

Reca
ll 
    * 

 
 

SVM 87% 87% 88% 89% 85% 83%  

RF 85% 86% 85% 85% 84% 82%  

KNN
(k=5) 

82% 80% 81% 80% 83% 83%  

 Comparison between other author result and our result (* are our results) 
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Final Choice: SVM (Support Vector Machine) 
Achieved the highest accuracy (87%) among all models.Precision (89%) ensures reliable classification, minimizingfalse triggers in 
wheelchair movement.Recall (83–85%) isreasonably strong, ensuring most commands are captured.SVM is well-suited for EEG 
signal classification, as it handleshigh-dimensional data and small datasets effectively. 
 
E. EvaluationMetrics I 
Thefollowingmetricswereusedtoevaluateperformance: 

 
These metrics were computed using the classification_report() function from scikit-learn. 
 
F. ConfusionMatrixforSVMClassifier 
 

 Predicted 
Left 

Predicted 
Right 

Predicted 
Stop 

Predicted 
Start 

Actual 
Left 

42 3 2 3 

Actual 
Right 

4 40 5 1 

Actual 
Stop 

1 3 41 5 

Actual 
Start 

2 1 4 43 

 
The SVM classifier demonstrated high generalization capability with minimal false positives. 
 
G. Real-TimeIntegration 
Thetrained SVMmodelwasconvertedusing TensorFlow Lite and deployed onto the ESP32 microcontroller using TinyML. Real-
time EEG features were fed into the model for live prediction, which improved responsiveness and reduced manual tuning efforts. 
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VI.   CONCLUSION 
This study presents a brain-controlled wheelchair system that leverages EEG signals and eye movements to assist individuals with 
severe mobility impairments. The non- invasiveandcost-effectiveBCITechnologyconvertsbrain activityintoreal-timecontrol 
commands.Thesecommands are then processed and transmitted to the ESP32 microcontroller, enabling precise motor control for 
seamless wheelchair navigation. The integration of advanced signal processing ensures accurate command recognition, enhancing 
the system’s reliability and responsiveness. 
 
The results of the testing demonstrated that the system successfully extracted events from raw EEG signals, assigned the correct 
movement commands, and sent them to the Arduino IDE for transfer to the ESP32. 
The wheelchair accurately responded to commands for starting,turning,stopping,andemergencybraking,offering a reliable and 
intuitive controlmechanism.The integration of EEG signal processing, eye-tracking technology, and microcontroller-based motor 
control ensures that the system providesaseamlessuserexperiencewithhighaccuracyand responsiveness. 
This system represents a promising solution for improving the mobility and independence of individuals with 
neuromusculardisorders,offeringapractical,non-invasive alternative to traditional assistive devices. Future research can enhance 
signal processing accuracy, expand system capabilities, and improve the user interface for wider applications. Ultimately, this project 
highlights the potential of combining advanced neuroscience and robotics to enhancethequalityoflifefordifferently-abledindividuals. 
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