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Abstract: Sampling-based path planners develop paths for robots to journey to their destinations. The two main types of 
sampling-based techniques are the probabilistic roadmap (PRM) and the Rapidly Exploring Random Tree (RRT). PRMs are 
multi-query methods that construct roadmaps to find routes, while RRTs are single-query techniques that grow search trees to 
find paths. This investigation evaluated the effectiveness of the PRM, the RRT, and the novel Hybrid RRT-PRM methods. This 
novel path planner was developed to improve the performance of the RRT and PRM techniques. It is a fusion of the RRT and 
PRM methods, and its goal is to reduce the path length. Experiments were conducted to evaluate the effectiveness of these path 
planners. The performance metrics included the path length, runtime, number of nodes in the path, number of nodes in the 
search tree or roadmap, and the number of iterations required to obtain the path. Results showed that the Hybrid RRT-PRM 
method was more effective than the PRM and RRT techniques because of the shorter path length. This new technique searched 
for a path in the convex hull region, which is a subset of the search area near to the start and end locations. The roadmap for the 
Hybrid RRT-PRM could also be re-used to find pathways for other sets of initial and final positions. 
Keywords: Path Planning, Sampling-based algorithms, search tree, roadmap, single-query planners, multi-query planners, 
Rapidly Exploring Random Tree (RRT), Probabilistic Roadmap (PRM), Hybrid RRT-PRM 

I. INTRODUCTION 
Robots use sampling-based path planners to generate routes to travel from their starting to their goal positions, while avoiding 
obstructions that may be found along their pathways [1]. Sampling-based algorithms, to include probabilistic roadmaps (PRM) and 
rapidly exploring random trees (RRT), are probabilistically complete. They will find a route if enough iterations have been 
accomplished and if a path exists [2-6]. PRMs are multi-query planners that create roadmaps to find routes. These roadmaps could 
be re-used to find paths for other sets of starting and final locations [7-12]. RRTs are single-query techniques that build search trees 
to output paths, but they must be re-executed to generate routes for new pairs of initial and final positions [10]. 
The RRT algorithm grows a search tree by selecting points from its environment and connecting them to this search tree if these 
points do not cause collisions with objects [9]. When the search tree reaches the goal location, a route is produced by working 
backwards to pinpoint the parent node for each node in the pathway until it backtracks to its starting point [7, 10]. The runtime for 
RRTs is usually shorter than other types of planners because RRTs terminate when a route is found, but the path may not be 
optimized [9]. The PRM planner chooses points from its search area and connects them to form a roadmap [7,10,12,13]. A graph 
search method, such as Dijkstra’s algorithm or A*, will then be utilized to search this roadmap for the most direct path to the 
destination [8,14]. However, parts of this roadmap could become entrapped inside obstacles because points located inside objects 
are not discarded [15]. A novel multi-query sampling-based path planner, the Hybrid RRT-PRM, was developed to improve the 
performance of the RRT and PRM techniques by shortening the path length from the starting to the end locations. The Hybrid RRT-
PRM planner is a synthesis of these two techniques. It generates the first path by using the RRT planner, and a second path by 
employing the PRM algorithm. The outermost points of these paths define the perimeter of a polygon, also known as the convex 
hull region, which is a subset of the search area. Points are selected from the convex hull area because this region is close to the 
initial and final positions. In addition, points that are located outside objects are saved, while points that are inside objects are 
discarded to prevent the roadmap from being trapped within these obstructions. A roadmap is created inside the convex hull area by 
connecting these saved points. A graph search technique looks for a path to the destination by using this roadmap. Since the Hybrid 
RRT-PRM is also a multi-query planner, its roadmap can be re-purposed to generate paths for other sets of initial and final positions. 
Experiments were conducted to determine the effectiveness of the Hybrid RRT-PRM method when compared to the RRT and PRM 
planners. The performance metrics that were measured included the runtime, number of iterations, number of nodes in the search 
tree or roadmap, number of nodes in path, and the path length. The relationship between the RRT, PRM, and Hybrid RRT-PRM 
path planners is provided in Fig. 1. 
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The remainder of the paper is structured as follows: Section 2 discusses the RRT, PRM, and Hybrid RRT-PRM planners. Section 3 
provides the setup for the experiments. Section 4 reviews the experimental findings. Section 5 concludes this study and briefly 
describes future experiments. 

 
Fig. 1  The Relationship Among the RRT, PRM, and Hybrid RRT-PRM Path Planners 

II. DISCUSSION OF RRT, PRM, AND HYBRID RRT-PRM PLANNERS 
This section of the paper reviews the activity diagrams for the RRT, the PRM, and the Hybrid RRT-PRM algorithms to explain how 
they generate routes from the starting to end locations. 

A. Rapidly Exploring Random Tree (RRT) 
The RRT technique begins by initializing the variables. These include the obstacle list, the start and goal locations, the maximum 
edge expansion distance, the search area boundaries, and the search tree. Next, the starting location is added to the search tree, and a 
determination is made to see if the destination has been reached. If this is the case, this end point is appended to the search tree. A 
path is generated, the search tree is outputted, and the algorithm is concluded.  
If the destination has not been found, the RRT selects a point from the search area. The distance from this point to the nearest node 
in the search tree is calculated by using the distance formula as shown as follows [4]: 
 

푑 , = 푛표푑푒 , − 푟푛푑 + 푛표푑푒 , − 푟푛푑                                                                                                                (1) 

 
where dnearest,j is the distance between the node with index j in the list of nodes in the search tree and the random point, nodej,y is the 
y coordinate of the jth node in the node list, rndy is the y coordinate of the randomly generated point, nodej,x is the x coordinate of jth 
node in the node list, and rndx is the x coordinate of the randomly generated point. The nearest node in the tree to the random point 
has the minimum dnearest,j value.  
The RRT then uses the maximum edge expansion distance to calculate the location of a new node. If the randomly generated point 
is within the maximum edge expansion distance to the nearest node in the tree, this random point will become the new node, but it 
will not be connected to the search tree yet [4].  
If the random point is further away from the nearest node in the tree, the new node is found by interpolating along the line segment 
between the nearest node in the tree and the randomly generated point [15]. The coordinates for the new node are calculated as 
follows: 
푛푒푤 = 푑 sin휃 + 푛푒푎푟푒푠푡                                                                                                                                                       (2) 
 
푛푒푤 = 푑 cos휃 + 푛푒푎푟푒푠푡                                                                                                                                                      (3) 
where newy is the y coordinate of the new node, newx is the x coordinate of the new node, θ is the angle between the random point 
and the nearest node, dexp is the maximum edge expansion distance, nearesty is the y coordinate of the nearest node in the tree, and 
nearestx is the x coordinate of the nearest node in the tree. The angle between the nearest node and the random point, θ, is calculated 
as follows: 
휃 = atan2(푑푦,푑푥)                                                                                                                                                                         (4) 
푑푦 = 푟푛푑 − 푛푒푎푟푒푠푡                                                                                                                                                                   (5) 
푑푥 = 푟푛푑 − 푛푒푎푟푒푠푡                                                                                                                                                                   (6) 
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where dy is the change in position along the y axis, while dx is the change in position along the x axis. In addition, rndy is the random 
point’s y coordinate, nearesty is the nearest node’s y coordinate, rndx is the random point’s x coordinate, and nearestx is the nearest 
node’s x coordinate [15]. After a new node has been generated, it is checked to determine if connecting this new node to the nearest 
node in the tree would cause a collision. If this is the case, this new node will be discarded, and the RRT method advances to the 
next iteration. If the line segment between the nearest node in the tree and the new node does not touch any obstacles, the new node 
is added to the tree by connecting it to the nearest node. This planner advances to the next iteration. The RRT continues to add 
collision-free nodes to the search tree until it reaches the destination. The goal position is then added to the search tree. The search 
tree and path are outputted, and the algorithm terminates. The RRT activity diagram is provided in Fig. 2. 

 
Fig. 2  Activity Diagram for RRT 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429 

                                                                                                                Volume 9 Issue XII Dec 2021- Available at www.ijraset.com 
     

603 ©IJRASET: All Rights are Reserved 
 

B. Probabilistic Roadmap (PRM) 
The PRM method begins by initializing variables. These include the start and end positions, search area boundaries, number of 
iterations, the maximum number of nearest neighboring nodes for each node in the roadmap, the maximum edge expansion distance, 
and the list of obstacles. It then checks to see if the pre-specified number of iterations have been completed. If this is not the case, 
the PRM randomly selects points until the pre-specified number of points have been obtained from the search area. A K-
Dimensional (K-D) tree is formed from these points. A K-D tree is a data-structure where points are grouped into a binary tree to 
facilitate performing nearest-neighbor queries on points in this tree [16-18]. For a K-D tree, K represents the number of dimensions 
of the search area [18]. For each node in the K-D tree, its nearest neighboring nodes are identified. Collision-free nearby nodes will 
be connected to this node until all these neighboring nodes that are located within the maximum edge expansion distance or if the 
maximum number of nearest neighboring nodes have been linked.  
When all nodes in the K-D tree have been connected, a roadmap is formed. A graph search algorithm searches it for the shortest 
path from the start to the goal location. When this path is found, the PRM outputs this route and the roadmap. This planner then 
terminates. Fig. 3 shows the PRM activity diagram. 

 
Fig. 3 Activity Diagram for PRM 
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C. Hybrid RRT-PRM 
The Hybrid RRT-PRM technique is a new type of sampling-based algorithm. It combines the RRT and the PRM techniques to 
generate shorter paths. The Hybrid RRT-PRM algorithm begins by initializing variables, which include the start and end positions, 
the limits of the search area, the number of iterations, and the maximum number of nearest neighboring nodes for each node in the 
roadmap, the maximum edge expansion distance, and the obstacle list. It then plans two routes. The RRT method generates the first 
path; after which, the PRM planner finds a second path. The equations for these paths are provided as follows: 
푝푎푡ℎ = 푟 , 푟 , 푟 , 푟 , … , 푟 ,푟                                                                                                                                  (7) 
 
푝푎푡ℎ = 푝 ,푝 , 푝 ,푝 , … , 푟 , 푟                                                                                                                            (8) 
 
where pathrrt is the list of nodes in the RRT path, rx1 and ry1 are the x and y coordinates of the first node in the RRT path, and n is 
the number of nodes in this path. For the PRM path, pathprm is the list of nodes in the PRM path, px1 and py1 are the x and y 
coordinates of the first node in the PRM path, and m is the number of nodes in the path. The paths obtained by the RRT and PRM 
methods are then merged into a combined list of nodes, which is provided as follows: 
푝푎푡ℎ = 푟 , 푟 , … , 푟 , 푟 , 푝 ,푝 , 푝 ,푝 , … , 푝 , 푝                                                                      (9) 
 
where pathcombined is the combined list of nodes. The first and final nodes of the RRT path are excluded from the combined list 
because they are already included in the PRM path. The number of points in the combined list of nodes is computed as follows: 
푠 = 푛 + 푚− 2                                                                                                                                                                              (10) 
where s is the number of points in the combined list, n is the number of nodes in the RRT path, and m is the number of nodes in the 
PRM path. The combined list of nodes is then converted into an array.  
The Hybrid RRT-PRM then determines if the pre-specified number of points have been obtained from the subsection of the search 
area near to the start and goal locations. This region of the search area, known as the convex hull, is obtained by connecting the 
outermost points in the combined list of nodes [19]. If the specified number of points have not been obtained from the convex hull, a 
random point is sampled from the entire rectangular search area. Linear programming is now applied to determine if the random 
point is located within the convex hull [20]. Linear programming is a mathematical technique that optimizes a function that is 
subjected to constraints [21-22]. The general linear programming problem is defined as  
min풙 풄풙 such that 퐴 풙 = 풃  and x ≥ 0                                                                                                                                      (11) 
where c is a row vector whose elements are the coefficients of the objective function, while x is the column vector that is the 
solution to the linear programming problem. The x vector has the same number of elements as the c vector. In addition, Aeq is the 
equality constraint matrix, and beq is the equality constraint column vector [23-24].  
 
When linear programming is applied in the Hybrid RRT-PRM algorithm, the objective function vector is a row vector of zeros that 
has s elements because there is no function to be optimized. The equation for the equality constraint matrix, Aeq, is provided as 
follows: 

퐴 =
푟 … 푟 푝 푝 … 푝
푟 … 푟  푝 푝 … 푝
1 1 1 1 1 … 1

                                                                                                                         (12) 

 
For this matrix, every column contains a point in the combined list of nodes followed by a one to fulfill the requirement for 
obtaining a convex combination [20]. The equality constraint vector, beq,is provided as follows: 

풃 =
푟푛푑
푟푛푑

1
                                                                                                                                                                                (13) 

where rndx is the x coordinate of a randomly sampled point from the entire rectangular search area, while rndy is the y coordinate of 
this randomly sampled point.  
Linear programming then performs the simplex method to determine if the linear program is feasible and to obtain a solution [24]. A 
linear program is infeasible when at least one of its artificial variables is a positive number. It is feasible when none of its artificial 
variables are positive numbers [25].  
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The simplex algorithm consists of two phases. The first phase minimizes the sum of the artificial variables, determines the 
feasibility of the linear program, and calculates a base form solution. The second phase uses this base form solution to solve the 
linear program [25]. Applying linear programming to determine if a point is located inside the convex hull is beneficial because the 
convex hull does not need to be calculated to determine whether a randomly generated point is located within this region of the 
search area [20]. 
For the Hybrid RRT-PRM PRM method, if phase I of the simplex method finds at least one artificial variable that is a positive 
number, the randomly sampled point is located outside the convex hull search area. This point is then discarded. When none of the 
artificial variables are positive numbers, the randomly sampled point is located within the convex hull. It is saved to a list for further 
processing [25-26]. The second phase of the simplex method uses the base form solution to find an optimal solution, but phase II is 
not implemented because there is no objective function to be optimized.  
When the specified number of points have been obtained, this planner iterates over these points to identify the ones that are located 
inside obstacles. These points will be discarded to prevent a roadmap from being created within them. Points that are outside 
obstacles will be saved to a list to make a K-D tree. The nearest neighboring nodes are identified for each node in the K-D tree. 
Collision-free nodes will be connected to this node until all neighboring nodes within the maximum edge expansion distance or if 
the maximum number of nearest neighboring nodes have been attached to it. When all nodes have been connected, a roadmap is 
formed from them. A graph search technique will search this roadmap for the shortest pathway to the destination. The Hybrid RRT-
PRM algorithm then outputs the roadmap and the path. This algorithm then terminates. Fig. 4 provides the activity diagram for the 
Hybrid RRT-PRM algorithm. 

 
Fig. 4 Activity Diagram for Hybrid RRT-PRM 
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III. SETUP FOR EXPERIMENTS 
This investigation evaluated the effectiveness of the Hybrid RRT-PRM planner, when compared with the RRT and PRM techniques. 
Single-query experiments were accomplished for these three planners in a two-dimensional square search area with corners located 
at (0,0), (0, 40), (40, 40), and (40, 0). The beginning and end positions of the paths were initialized at (10, 10) and (30, 30) 
respectively. Fifteen circular obstacle sets were placed in this environment. Each set consisted of 12 randomly generated obstacles. 
The size of the radii for these circles and the positions of the circle centers were found using uniform probabilistic distributions. The 
circle radii ranged from one to four units in size. The placement of the x and y coordinates of the circle centers ranged from four to 
thirty-six so that the circular obstacles would be contained entirely within the square search area. Each algorithm was executed 450 
times with a maximum of 500 iterations per trial.  
The Matplotlib, NumPy, PythonRobotics, and SciPy toolboxes were used to conduct these experiments [15, 27-31]. Conducting 
simulations to evaluate the effectiveness of these algorithms to generate paths removed errors associated with obstacle localization, 
robot localization, and robot motion execution. The maximum edge expansion distance for these path planning experiments was five 
units. For the RRT algorithm, the maximum edge expansion distance is used to calculate the locations of the new nodes that would 
be added to the search tree [15].  
For the PRM and Hybrid RRT-PRM algorithms, the maximum edge expansion distance is the maximum separation between two 
nodes for them to be connected to each other in a roadmap [8]. For the Hybrid RRT-PRM and the PRM methods, the maximum 
number of nearest neighboring nodes that could be connected to a node in the roadmap was 100 nodes. These two path planners also 
used Dijkstra’s Shortest Path Algorithm to search their roadmaps for paths [15]. This graph search algorithm was implemented 
because it required all edges of the roadmaps to have positive values [32-34]. The roadmaps met this requirement because the 
distances between nodes are positive numbers [32]. 
The performance metrics that were recorded were the path length, runtime, number of nodes in the path, number of nodes in the 
roadmaps or search trees, and the number of iterations for each path planner to output a path. The path length was obtained by 
adding the distances between each consecutive pair of nodes in the route from the initial position to the destination. The path length 
is also the dominant criterion for establishing the most efficient path planning algorithm since robots with shorter paths arrive at 
their destinations quicker.  
The runtime is the amount of time for each path planner to output a path, but it did not include the time to display the search trees, 
roadmaps, and paths. The number of nodes in the paths was obtained by counting the starting position, the waypoints, and the end 
position. The number of nodes in the search tree or roadmap corresponded to the number of points in the search tree for the RRT 
technique. It corresponded to the number of points in the roadmap for the PRM and Hybrid RRT-PRM planners. For all path 
planning methods, the number of iterations was the number of points sampled from the environment. 
After the simulations were completed for each type of planner, the data for each performance metric was stored to a list so that the 
sample statics could calculated for further analysis. The sample statistics included the mean, standard deviation, mode, median, 
maximum, and minimum values for each performance metric. Images were also captured for search trees, roadmaps, and paths 
outputted by these path planning algorithms. 

IV. EXPERIMENTAL FINDINGS 
For this investigation, the performance measures that were collected to evaluate the effectiveness of these three types of sampling-
based planners were the path length, runtime, nodes in path and nodes in tree, and the number of iterations that were required to 
generate a path. In addition, sample statistics were also compiled so that meaningful conclusions could be drawn from the data. The 
statistical values that were saved include the mean, the standard deviation, the mode, the median, the maximum, and the minimum. 
To facilitate analysis of the effectiveness of these types of algorithms, images of the search trees, roadmaps, and paths were captured. 
For the search tree and roadmap diagrams, the red “x’s” are the starting and the end positions. The blue circles are the round 
obstacles. For the RRT experiments, the green lines are the search tree. For the PRM and Hybrid RRT-PRM methods, the green 
lines are the roadmap. For the path diagrams, the path is shown in red. All paths begin at (10,10) and end at (30,30). 
For the RRT method, the mean path length was 39.054 and the runtime to obtain a path was 0.007 s. The number of nodes in the 
path and in the tree were 9.593 and 24.027 respectively. The RRT planner outputted a path after 37.173 iterations because it 
terminates immediately when the search tree connects to the destination. The path, however, was not optimized. The RRT planner 
results are provided in Table I. 
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TABLE I 
Results for RRT Experiments 

Quantity Mean Standard 
Deviation 

Mode Median Max Min 

Path Length 
 

39.054 7.065 none 37.613 63.973 28.408 

Runtime (s) 
 

0.007 0.010 0.000 0.000 0.047 0.000 

Number of 
Nodes in Path 

9.593 1.706 9.000 9.000 16.000 7.000 

Number of  
Nodes in Tree 

24.027 19.224 10.000 19.000 148.000 7.000 

Number of 
Iterations 

37.173 30.789 23.000, 
15.000 

27.000 222.000 7.000 

 
For this RRT investigation, images for the search tree and path were acquired. Fig. 5a displays the RRT search tree for Obstacle set 
1, Trial 1, while Fig. 5b shows the path from the start to the end locations. As can be seen in Fig. 5a, the search tree was not dense 
because it only took an average of 37.173 iterations to obtain a path. The path also remained outside obstacles because the search 
tree was grown from the starting location by iteratively connecting to nodes that were found outside obstacles. Points generated 
inside an obstacle were discarded, and they were not connected to the search tree. Fig. 5b shows that the RRT path meandered 
because the path was not optimized.  

 
Fig. 5a. Search Tree for RRT Obstacle Set 1, Trial 1. Fig. 5b. Path for RRT Obstacle Set 1, Trial 1.  

 
For the PRM experiments, the average length of the path was 30.693, and the runtime was 0.482 s. The number of nodes in the path 
and in the roadmap were 9.611 and 500 respectively. The number of nodes in the roadmap was 500 because points that were located 
inside obstacles were not removed. It also took 500 iterations to complete each trial because this number was pre-set during the 
initialization of the program. This planner sampled points until the pre-specified number of iterations were reached. The results for 
these experiments are provided in Table II. 
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TABLE III 
Results for PRM Experiments 

Quantity Mean Standard 
Deviation 

Mode Median Max Min 

Path Length 30.693 1.565 none 30.399 39.042 28.465 
Runtime (s) 0.482 0.268 none 0.472 0.997 0.004 
Number of 
Nodes in Path 

9.611 0.827 10.000 10.000 12.000 8.000 

Number of 
Nodes in Roadmap 

500 0.000 500 500 500 500 

Number of Iterations 500 0.000 500 500 500 500 
 
The diagrams for the roadmap and for the path were also captured for the PRM experiments. Fig. 6a shows the roadmap for 
Obstacle set 1, Trial 1. Fig. 6b displays the path from the starting point to the destination. Fig. 6a shows that the roadmap was very 
dense, and it covered most of the search area. In addition, portions of the roadmap were trapped inside the round obstacles, which 
could not be accessed to travel to the destination. Fig. 6b shows that the path was more direct because the graph search algorithm 
searched this highly interconnected roadmap for a shorter path. 

 
Fig. 6a. Search Tree for PRM Obstacle Set 1, Trial 1. Fig. 6b. Path for PRM Obstacle Set 1, Trial 1. 

 
The Hybrid RRT-PRM technique had a mean path length of 29.610. Its runtime was 0.473 s. The number of nodes in the path and in 
the roadmap were 10.798 and 380.384 respectively. The number of nodes in the roadmap was less than 500 because the randomly 
generated points that were located inside obstacles were eliminated. The number of iterations, however, was 500 because this 
planner continued to iterate until the prespecified number of iterations were accomplished. The results for the Hybrid RRT-PRM 
method are listed in Table III. 

TABLE IIIII 
Results For Simulations for Hybrid RRT-PRM Method 

Quantity Mean Standard 
Deviation 

Mode Median Max Min 

Path Length 29.610 1.439 none 29.285 37.992 28.306 
Runtime (s) 0.473 0.280 none 0.449 0.997 0.003 
Number of Nodes 
in Path 

10.798 1.349 11.000 11.000 15.000 8.000 

Number of Nodes 
in Roadmap 

380.384 52.722 362.000, 
371.000, 
372.000,  
388.000 

378.500 477.000 231.000 

Number of 
Iterations 

500 0.000 500 500 500 500 
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The plots for the roadmap and for the path were also taken for the Hybrid RRT-PRM experiments. Fig. 7a depicts the roadmap for 
Obstacle set 1, Trial 1, and Fig. 7b exhibits the path from the beginning to the final locations. Figure 7a shows that the roadmap was 
extremely dense, and it was entirely contained within the convex hull region of the search area and outside the obstacles. This 
convex hull was created by finding two paths using the RRT and PRM methods and then joining the outermost points in these paths. 
Sampling points within the convex hull generated shorter paths because the search area was smaller. This area was also near the 
start and goal locations. The Hybrid RRT-PRM method discarded points that were sampled inside obstacles, and this further 
reduced the number of nodes in the roadmap. Fig. 7b shows that the route was very direct, and it only had a slight turn to go around 
obstacles that were found within the convex hull area. 

 
Fig. 7a. Search Tree for Hybrid RRT-PRM Obstacle Set 1, Trial 1. Fig. 7b. Path for Hybrid RRT-PRM Obstacle Set 1, Trial 1 

 
The results for the Hybrid RRT-PRM, RRT, and PRM methods were compared to evaluate their effectiveness to find paths. These 
metrics include the length of the path, runtime, number of nodes in the path, number of nodes in the tree or roadmap, and the 
number of iterations. Table IV provided a summary of the performance metrics for these three types of algorithms. 

TABLE IVV 
Summary of Results 

Algorithm Path Length Runtime Number of Nodes 
in Path 

Number of Nodes in 
Tree or Roadmap 

Number of 
Iterations 

RRT 
 

39.054 0.007 9.593 24.027 37.173 

PRM 
 

30.693 0.482 9.611 500 500 

Hybrid 
RRT-PRM 

29.610 0.473 10.798 380.384 500 

 
The RRT, PRM, and Hybrid RRT-PRM path planners successfully outputted paths. When the RRT method was compared to the 
Hybrid RRT-PRM technique, it had a shorter runtime, fewer nodes in the tree, and fewer iterations. The path was not optimized 
because this algorithm terminated as soon as a path was found. The Hybrid RRT-PRM method yielded a shorter path length. Since 
the length of the path is the overriding factor to establish the efficacy of a path planner, the Hybrid RRT-PRM planner had a better 
performance than the RRT. Furthermore, the Hybrid RRT-PRM algorithm is a multi-query technique so its interconnected roadmap 
could be re-purposed to obtain paths for different pairs of initial and final positions. By contrast, the RRT method is a single-query 
technique, and this algorithm must be re-executed to obtain routes for different sets of beginning and end points. 
When the PRM planner was compared to the Hybrid RRT-PRM algorithm, it had fewer nodes in its path, but the Hybrid RRT-PRM 
algorithm had fewer nodes in its roadmap resulting in shorter runtimes. The Hybrid RRT-PRM also outputted shorter paths making 
it more effective than the PRM. In addition, both these planners are multi-query methods, so their roadmaps could be re-utilized. 
The PRM method does not discard points that are found inside obstacles, and part of its roadmap could become entrapped. The 
Hybrid RRT-PRM, on the other hand, discards points within obstacles thereby reducing the number of nodes in the roadmap and 
shortening the runtime.  
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V. CONCLUSIONS 
This paper introduced and evaluated the performance of a new type of multi-query sampling-based path planner, the Hybrid RRT-
PRM method that integrates the RRT and PRM techniques. The goal of this novel algorithm is to improve the performance by 
decreasing the path length. Experiments were conducted to compare the efficacy of the Hybrid RRT-PRM method with the RRT 
and PRM planners. The performance metrics that were recorded were the path length, the runtime, the number of nodes in the path, 
the number of nodes in the roadmap or search tree, and the number of iterations needed to output a route. Results showed that the 
Hybrid RRT-PRM technique is more effective than the other two methods because it yielded shorter path lengths since it only 
searched for paths in the convex hull region that was a subset of the search area. The Hybrid RRT-PRM planner is also a multi-
query method, and its roadmap could be re-applied to output routes for different sets of beginning and end points. Future research 
will entail developing and evaluating new variations of the Hybrid RRT-PRM algorithm to include the Hybrid RRT*-PRM* and the 
Hybrid Informed RRT*-PRM* techniques. 
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