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Abstract: This study aims to develop an efficient and accurate deep learning-based model for the classification of plant leaf 
diseases using Convolutional Neural Networks (CNN). The objective is to automate disease detection in agricultural crops to 
assist farmers and agricultural experts in early and reliable diagnosis. The model is trained on the publicly available “Plant 
Village CLAHE Processed Data” dataset, which includes high-resolution RGB images of healthy and diseased plant leaves. 
Images are preprocessed through resizing (128×128), normalized, and split into training, validation, and test sets. Data 
augmentation techniques such as flipping, zooming, and rotation are used to improve generalization. A custom CNN 
architecture comprising convolutional, pooling, dense, and dropout layers is employed and trained using the Adam optimizer. 
Exploratory Data Analysis (EDA) ensures data quality and balance. The model achieves impressive results, with 93% test 
accuracy, 91% precision, 93% recall, and an F1-score of 92%, indicating robust performance in identifying diverse plant 
diseases. Training accuracy reached 94.64% with a validation accuracy of 92.95%, confirming minimal overfitting. These results 
validate the model’s reliability for practical use in smart farming solutions, especially in mobile or IoT-based applications for 
real-time disease monitoring and precision agriculture. 
Keywords: Plant Disease Classification, Convolutional Neural Network (CNN), Deep Learning in Agriculture, Image 
Preprocessing (CLAHE) and Smart Farming Applications. 
 

I. INTRODUCTION 
Particularly in nations where a sizable fraction of the population depends on farming for livelihood, agriculture is the pillar of world 
food security and economic growth. Nonetheless, one of the ongoing difficulties in agriculture is the predominance of plant 
diseases, which can cause major crop yield losses, worse product quality, and higher production costs[1]–[4]. The Food and 
Agriculture Organisation (FAO) estimates that annually between 20–40% of crop output losses are caused by plant diseases. Thus, 
early identification of plant illnesses and precise diagnosis of them are absolutely vital to reduce damage, guarantee good crop 
development, and preserve agricultural output. Historically, crop disease detection has depended on manual techniques such 
farmers' eye inspections or agricultural specialists' consultations[5], [6]. While effective in some cases, these methods are time-
consuming, labor-intensive, and highly subjective, depending on the experience and expertise of the observer. Moreover, in remote 
or under-resourced farming communities, access to expert advice is often limited. With deep learning rising as a top answer, these 
constraints have driven researchers and engineers to investigate automated, efficient, scalable methods of disease diagnosis. A 
subset of machine learning, deep learning has transformed computer interpretation of data—especially images. Because they can 
automatically learn spatial hierarchies of features from raw pixel data, Convolutional Neural Networks (CNNs) have shown to be 
rather effective among the several deep learning architectures for image-based tasks. Inspired by the human visual system, CNNs 
can remarkably quickly and precisely examine visual images. By analysing digital photographs of afflicted leaves, CNNs have 
shown amazing ability in the context of agriculture in identifying and classifying plant leaf illnesses. Especially in the early phases 
of illness development, this invention helps robots to detect delicate visual signals such discolouration, texture alterations, and shape 
defects that could be challenging for the human eye[7]–[9]. 
Usually, CNNs identify plant leaf diseases by training a model on a vast collection of annotated leaf photos where every image is 
labelled based on the type of disease it reflects or marks as healthy. By means of layers of convolution, pooling, and activation 
functions, the CNN automatically extracts and learns pertinent characteristics during training. Once taught, the model can very 
accurately classify fresh, unseen leaf images[10], [11].  
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Plant disease classification has seen the application of several CNN architectures including LeNet, AlexNet, VGGNet, GoogLeNet, 
ResNet, and EfficientNet each with varying trade-offs between model complexity, computational efficiency, and prediction 
performance. Among other crops, tomatoes, potatoes, maize, grapes, apples, and rice have all had illnesses found using these models 
effectively identified in them.  
Research showing classification accuracy higher than 90% shows CNN-based methods' feasibility in practical agricultural 
environments. Integration of CNN-based plant disease diagnosis into useful farming applications has transforming power. Farmers 
can photograph suspected leaves and get immediate diagnosis feedback by including trained models into mobile apps, handheld 
devices, or unmanned aerial vehicles (drones). Such instruments democratise knowledge about plant diseases, therefore empowering 
even smallholder farmers in remote areas to make wise choices on disease control. Greenhouses and big farms can also use 
automated detection systems for constant surveillance, therefore lowering the requirement for human monitoring and allowing quick 
interventions. Together with Internet of Things (IoT) devices and cloud-based platforms, these systems can also enable pattern 
analysis, extensive illness surveillance, and the creation of predictive models for next pandemics.  
CNN-based illness detection systems present various difficulties in their use notwithstanding the encouraging developments. First of 
all, CNN performance is highly influenced by the quality and volume of training data. Although publicly available datasets like 
PlantVillage have proved very helpful for model building, they may feature photographs taken under controlled conditions that 
might not generalise well to field settings with different illumination, background clutter, and occlusion. Extensive data 
augmentation, domain adaption, and maybe multimodal data (e.g., environmental parameters or spectral imaging) are needed to 
guarantee model robustness in many real-world scenarios. Second, interpretability of deep learning models still causes issues 
especially for end users like farmers who would need justification for the model's choices. By stressing image areas that affect 
model predictions, recent initiatives in explainable artificial intelligence (XAI) seek to solve this problem and thereby improve user 
confidence and system transparency[12]–[15]. 
Furthermore taken into account in putting these technologies broadly into use are data protection, digital literacy, and infrastructure 
constraints in rural locations. Successful adoption and sustained usage of CNN-based plant disease detection systems depend on 
cooperation amongst artificial intelligence researchers, agricultural scientists, government agencies, and local communities. 
Furthermore accelerating the shift to intelligent farming methods are regulations supporting open access to agricultural data, 
subsidised technology deployment, and farmer training programs. An important advance in the application of artificial intelligence 
in agriculture is the detection of plant leaf diseases using convolutional neural networks. CNNs provide a strong weapon to increase 
crop health, lower production losses, and assist the lives of farmers all around by providing accurate, rapid, scalable disease 
identification. Deep learning methods hold the potential to revolutionise conventional farming into a smarter, more resilient, and 
data-driven company as they develop and interact with other developing technologies such IoT, cloud computing, and precision 
agriculture. Harnessing the full possibilities of these developments for world agricultural sustainability will depend on closing the 
gap between research and practical application. 
 

II. LITERATURE REVIEW 
Joshi 2025 et al. This study applies a YOLOv8n model to the PlantDoc dataset for detecting seven tomato diseases. A hybrid data 
augmentation strategy increased dataset size, achieving 96.5% mAP and 95% F1-score. The model demonstrates high accuracy and 
adaptability, supporting precision agriculture through scalable and efficient disease detection systems[16]. 
Pradeep 2025 et al. This work outperformed conventional classifiers by diagnosis of pepper leaf illnesses using CNN architecture 
with 99.65% accuracy. Model performance enhanced via segmentation and preprocessing. The results highlight CNN's practical 
possibilities in automated, high-precision plant disease diagnostics for contemporary agricultural techniques as well as its ability to 
capture intricate patterns[17]. 
Habaragamuwa 2024 et al. Plant leaf pictures were classified using a variational autoencoder (VAE) model to improve 
interpretability. Applied to the PlantVillage collection, the model balanced explainability with accuracy. This approach supports the 
creation of explainable artificial intelligence tools for agriculture by being relevant to many crops and image classification 
problems[18]. 
Kaur 2023 et al. Integrating Ant Colony Optimisation with CNN for plant disease classification, the ACO-CNN model It improves 
accuracy by removing noise and useless traits before classification. Analysed under several performance criteria, this technology 
shows better diagnostic capacity than conventional techniques and presents a fresh approach for the identification of plant 
diseases[6]. 
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Alshammari 2023 et al. This work presents HL-FO, a hybrid Lion–Firefly optimisation technique coupled with CNN for olive leaf 
disease classification. Under ROC, F1-score, and accuracy the model stresses feature selection to prevent overfitting. In agricultural 
diagnostics, the method promotes sophisticated decision-making and improves classification dependability[19] 
. 

Table 1 Literature Summary 
Author / Year Methodology Results Research Gap Limitations 

Bhatti et al., 
2024[20] 

Introduced ETFG model 
combining 3D-CNN, fuzzy C-
means clustering, PCA, and GAT 
for hyperspectral image 
classification in agriculture. 

Achieved optimal spatial-
spectral classification with 
improved accuracy and 
dimensionality reduction. 

Lack of benchmarking 
against real-field 
agricultural image datasets. 

High model complexity; 
performance on noisy field 
data not evaluated. 

Li et al., 2024[21] Proposed PL-DINO object 
detection using CBAM with 
ResNet50 and Equalization Loss 
for class imbalance. 

Achieved 70.3% mAP on 
PlantDoc; outperformed 
YOLOv7 and Faster R-CNN 
in real-world leaf detection. 

Limited evaluation across 
multiple plant species and 
varied environmental 
conditions. 

Performance may decline 
with highly imbalanced or 
occluded leaf datasets. 

Sharma et al., 
2024[22] 

Employed image processing for 
rose plant disease detection using 
segmentation, feature extraction, 
and classification stages. 

Enabled early identification 
of rose diseases, improving 
disease management. 

Focused only on rose 
plants; lacks generalization 
to other crops or disease 
types. 

Manual segmentation and 
preprocessing stages may 
limit scalability. 

Mane et al., 
2024[23] 

Developed a hybrid 
CNN+SVM/KNN model for basil 
leaf disease detection using a 
custom dataset and balanced 
sampling. 

Achieved 95.02% accuracy 
across five basil leaf classes. 

No standard basil leaf 
dataset; model not 
compared with advanced 
deep learning models. 

Dataset is limited in size and 
diversity; custom data may 
bias generalization. 

Ouamane et al., 
2024[24] 

Proposed HOWSVD-MDA tensor 
subspace learning model for 
tomato disease classification using 
PlantVillage and Taiwan datasets. 

Achieved 98.36% and 
89.39% accuracy on 
PlantVillage and Taiwan 
datasets respectively. 

Needs validation across 
additional datasets and 
more plant species. 

Model performance may 
vary significantly depending 
on dataset quality and 
dimensional consistency. 

.
III. METHODOLOGY 

This work uses the Plant Village CLAHE-processed dataset to classify plant leaf diseases using a custom CNN. Images are loaded 
and scaled to 128x128 pixels then split into training, validation, and test groups. Using batching and prefetching guarantees effective 
data handling; augmenting techniques include rescaling, flipping, rotation, and zooming improve model generalisation. Class 
balance and data quality are evaluated in exploratory data analysis (EDA). Multiple convolutional and pooling layers abound in the 
CNN design, then dense and dropout layers extract strong features. The model is trained with the Adam optimiser then tested for 
accuracy, precision, recall, and F1-score. 

 
Fig. 1 Proposed Flowchart 
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A. Data Collection 
The dataset used in this study is the publicly available “Plant Village CLAHE Processed Data” hosted on Kaggle 
(https://www.kaggle.com/datasets/rahimanshu/plant-village-clahe-processed-data). Along with healthy samples, it has RGB photos 
of plant leaves afflicted by several illnesses. Using CLAHE (Contrast Limited Adaptive Histogram Equalisation), a method that 
increases local contrast and sharpens the visibility of fine details in the photos, each has been preprocessed. By means of class-wise 
folders, the dataset is arranged such that each image can be automatically labelled depending on its folder name. This ordered 
approach supports models of supervised deep learning rather successfully. The dataset fits for building strong classification models 
thanks to the large spectrum of classes and balanced distribution. The dataset lessens the effort of hand cleaning or labelling since it 
includes preprocessed, high-quality, cleaned images. Furthermore, the availability of such consistent data guarantees that the model 
can be faithfully compared with other studies employing the same dataset and increases reproducibility. The dataset offers a 
complete visual depiction of plant disease categories, which helps to build a scalable, generalisable model for agricultural uses. 
 
B. Data Preprocessing 
1) Image Loading and Resizing: Using TensorFlow's image_dataset_from_directory() method—which reads files from the 

directory structure and assigns labels depending on folder names—images are loaded. To keep consistency, all photos are 
downsized to 128×128 pixels at this stage. CNNs depend on fixed-size input to preserve consistent kernel application and 
tensor forms over the model, so this resizing is absolutely essential. While keeping enough resolution for good feature 
extraction, standardising input dimensions also aids in lowering the computational complexity, memory use, and training time. 
Different image sizes without scaling could introduce mistakes during model construction and compromise learning 
performance. 

2) Data Splitting (Train, Validation, Test): Using the validation_split argument, the dataset is split 80% for training and 20% for 
first validation following loading. Using.take() and.skip(), 10% of the training subset is further split to function as a manual 
validation or testing set. Three separate, non-overlapping datasets—training, validation, as well as test—come of this. 
Maintaining these partitions guarantees objective performance measurement and eliminates data leaks. It also lets 
hyperparameter tuning free from polluting the test set, set aside for last model evaluation. 

3) Batching and Prefetching: To enable good model training, the datasets—training, validation, and test—are batch-sized at 32 in 
order. Batching enables the model concurrently process smaller sets of data, hence reducing memory load and increasing 
training speed. Every dataset also makes use of TensorFlow's prefetch (buffer_size=AUTOTUNE). Running concurrently with 
model training, prefetching loads and preprocesses data, therefore reducing input bottlenecks and optimising GPU 
consumption. Especially in cases of large image datasets, these techniques ensure that the data pipeline remains optimal, hence 
accelerating the training process without compromising stability or model performance. 

4) Data Augmentation: Using tf.keras. Sequential, a data augmentation process is created to artificially extend the dataset and 
enhance generalisation. To normalise pixel values to the [0, 1] range, rescaling (1./255) is included; random flip ("horizontal") 
is used to replicate mirror views; random rotation and random zoom help to account for actual variance. Although augmentation 
is applied at runtime during training rather than directly during loading. This method guarantees the model sees different inputs 
while maintaining validation/test consistency, hence lowering overfit and enhancing real-world performance. 
 

C. Exploratory Data Analysis (EDA) 
Before model development, exploratory data analysis (EDA) is used to study the properties of the dataset. Top concerns are 
determining class distribution, visualising representative images, and identifying likely abnormalities. Plotting the photo count for 
each class helps one to verify class balance and avoid model bias towards over-represented categories. Sample photos from every 
class are on display for a visual review of quality, clarity, and originality. This stage additionally ensures that CLAHE preprocessing 
has increased the contrast satisfactorially for the aim of obtaining discriminative features. EDA also encompasses search for 
abnormalities, missing or corrupted files, or repetitive images that could distort the learning process. EDA insights direct decisions 
about preprocessing, augmentation, and modelling approaches. Should class imbalance be observed, for example, additional 
augmentation could be done for under-represented groups. EDA serves as a quality check and gives hope that the dataset is fit for a 
CNN model of high performance. All things considered, it provides a vital link between raw data and model development that 
guarantees data readiness and best performance downstream. 
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Fig. 2 Histograms of Pixel 

 

The left histogram, colored red, shows the distribution of pixel values before preprocessing, ranging from 0 to 255. The right 
histogram, colored green, displays the distribution of pixel values after preprocessing, with the values rescaled to a range of 0 to 1. 
Both histograms illustrate the frequency of pixel values within their respective ranges. 

 
Fig. 3 Class Distribution of each Classes 

 

This figure shows the number of images available per class, confirming balanced distribution across all disease and healthy 
categories. 
 

 
Fig. 4 Sample Images of Each classes 

 

Representative images from each class demonstrate visual differences in disease patterns, aiding in model learning and human 
interpretation. 

 
Fig. 5 Class Distribution in Train Data 

 
Displays how training data is distributed among classes after splitting, ensuring the model trains on a balanced and fair dataset. 
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Fig. 6 Sample Augmented images (After Preprocessing) 

 
Illustrates the augmented images using flipping, rotation, and zooming, which enhance dataset diversity and improve model 
generalization. 
 
D.  Model Architecture 
To increase generalisation, the proposed custom CNN model employs rescaling, flipping, rotation, and zoom and processes RGB 
images resized for homogeneity. It consists of several convolutional layers that gradually extract intricate information, each 
followed by pooling layers to lower spatial dimensionality. Flattened and processed through a fully connected layer with activation 
and dropout for regularisation, the obtained features are Class probability for multi-class classification are produced by the last 
softmax layer. The model is trained to maximise accuracy by use of an adaptive optimiser and suitable loss function. 
1) Input Layer: The model starts with an explicit input layer accepting images of shape (128, 128, 3), thereby representing 

128x128 RGB images. This guarantees, for convolutional neural networks, a constant shape and format for all images supplied 
into the model. Explicit definition of the input layer improves model readability and tool compatibility as well. summary() and 
transfer learning extensions. 

2) Data Augmentation Layer: The model uses a data augmentation layer comprising multiple transformations immediately 
following the input: pixel value rescaling (1./255), random horizontal flipping, random rotation, and random zoom. By making 
the model less sensitive to the precise location or orientation of features in the training images, these augmentations replicate 
real-world variability and help minimise overfitting. Crucially, this increase is limited to training, so evaluation data stays 
unmodified for proper validation. 

3) Convolutional and Pooling Layers: The model derives spatial characteristics from the input photos by use of three blocks of 
convolutional and max pooling layers. After max pooling to lower dimensionality, the first Conv2D layer employs 32 filters 
using a 3x3 kernel size. Following max pooling layers, the second and third convolutional layers progressively raise the number 
of filters to 64 and 128 correspondingly. Beginning from edges and textures in the early layers, these layers climb hierarchically 
to identify ever more abstract visual patterns, then more intricate forms and structures in the deeper layers. 

4) Flatten and Dense Feature Extraction: The Flatten layer flattens the feature mappings into a 1D vector following the 
convolutionary layers. This lets the data flow into completely connected, Dense layers. ReLU activation in the first dense layer 
generates non-linearity and aids in learning intricate patterns by means of 128 units. It is marked "features," suggesting, should 
necessary visualisation or feature extraction employ it. 

5) Dropout Regularization: A Dropout layer featuring a dropout rate of 0.5 is included to fight overfitting. 50% of the neurones in 
the dense layer are thus randomly silenced at every phase during training. Dropout serves as a regularising tool, pushing the 
model towards learning more generalisable patterns rather than memorising the training set. 

Table 2. Hyper parameter Details 
Hyperparameter Value Description 
Batch Size 32 Number of samples processed before updating the 

model weights. 
Epochs 100 Number of complete passes through the entire training 

dataset. 
Image Size 128×128 Dimension to which all input images are resized. 

Optimizer Adam Optimization algorithm used to update model weights. 

Loss Function Sparse Categorical 
Crossentropy 

Measures the difference between predicted and true 
labels for multi-class classification. 

Dropout Rate 0.5 Fraction of neurons randomly dropped during training 
to reduce overfitting. 
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IV. RESULTS AND DISCUSSIONS 
Standard performance measures—accuracy, precision, recall, and F1-score—evaluated the suggested Plant Disease-CNN model. 
These measures give a whole picture of the model's capacity to appropriately classify several disease categories from leaf photos. 
The findings show that the model performs well in all evaluation stages and is hence dependable as well. 
 
A. Performance Metrics Explained 
1) Accuracy: The fraction of all predictions that are accurate overall. 
2) Precision: High accuracy means less false positives; the ratio of accurately predicted positive observations to the total expected 

positives determines this. 
3) Recall: Correctly projected positive observations to all actual positives; strong recall reduces false negatives. 

 
B. Training and Validation Performance 

 
TABLE 3. PERFORMANCE EVALUATION OF TEST RESULTS  

Model Accuracy Precision Recall F1-
Score 

Plant 
disease-
CNN 
Model 

93 91 93 92 

 
Fig. 7 . Performance Evaluation of Test Results 

 

Using important classification measures—accuracy, precision, recall, and F1-score—table shows the performance evaluation of the 
proposed Plant Disease-CNN model on the test set. With an accuracy of 93%, the model effectively categorised 93 of every 100 test 
photos. This great accuracy captures the general success of the program in recognising plant diseases from leaf photos. With a 
precision of 91%, the model was accurate 91% of the time when it projected a certain condition, so implying a low false positive 
rate and a great degree of prediction confidence. Strong sensitivity and low false negatives are shown by the model's successful 
detection of 93% of all genuine illness cases in the dataset. Even if class distributions vary, the F1-score of 92% shows that the 
model works consistently across several plant disease classes by balancing precision and recall. These measures taken together 
verify that the model not only generates correct forecasts but also generallyizes effectively to unprocessed data. Such consistent and 
excellent performance across all criteria suggests that the CNN model is rather dependable for practical agricultural uses, including 
mobile and IoT-based disease monitoring systems in farms and rural places. 

TABLE 4. PERFORMANCE EVALUATION OF TRAINING RESULTS 
Model Accura

cy 
Loss  Validati

on 
Accurac
y 

Validat
ion 
Loss 

Plant 
disease-
CNN 
Model 

94.64 0.17
93 

92.95 0.2758 
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Fig. 8 Performance Evaluation of Training Results 

 
Table 4 offers a complete picture of Plant Disease-CNN model performance in training and validation stages. With a training 
accuracy of 94.64%, the model learnt patterns from the training data rather successfully. This great accuracy shows that most of the 
photos the model trained on could be properly categorised by it. The training loss of 0.1793 underlines even more how well the 
model reduced the error between its forecasts and actual labels during development. More crucially, the excellent generalising 
capacity of the model to unseen data shown by the validation accuracy of 92.95%, which is near to the training accuracy. This little 
variation in training and validation accuracy implies that the model did not overfit the training data, which is a crucial need for 
strong performance in practical settings. Furthermore indicating steady learning over the epochs, the validation loss of 0.2758 is 
rather modest and well-aligned with the training loss. These findings show generally that the model kept consistency between the 
training and validation phases, learning discriminative features successfully while avoiding memorising of the training set. This 
harmony between loss and precision helps the model to be suitable for use in systems of real-time plant disease monitoring and 
agricultural diagnostics. 
 
C. Visualization and Insights 
The confusion matrix and performance graphs (e.g., accuracy and loss curves) provide further insight. The confusion matrix reveals 
which classes are most and least accurately predicted, helping identify opportunities for improvement. The accuracy and loss curves 
show a smooth convergence, further validating that the training process was stable. 

 
Fig. 9 Model Performance graphs 
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Fig. 10 Confusion matrix of Proposed Model 

 

These findings demonstrate the model’s robustness, suggesting it is suitable for real-world deployment in precision agriculture. 
However, further improvements can be achieved by increasing data diversity, especially with field images under natural conditions. 

 
Table 5 Comparative Analysis Between Existing Models And Proposed 
Ref. Dataset Used Model 

Type 
Accuracy 
(%) 

Validation 
Accuracy 
(%) 

Loss 

[25] PlantVillage Basic 
CNN 

86.00 84.20 0.41 

[26] PlantVillage LeNet-
5 

88.72 87.10 0.38 

Proposed 
work  

PlantVillage 
(CLAHE 
Preprocessed) 

Custom 
CNN 

94.64 92.95 0.1793 

 
Table 5 compares the proposed custom CNN model with two currently in use CNN-based plant disease detection methods. Using 
the PlantVillage dataset, the current research obtained rather lower training and validation accuracies—86.00% and 84.20%, 
respectively. Their models depended on simple designs with no preprocessing and no complex augmentation or contrast 
enhancement methods. Their weak generalising capacity caused greater loss values (0.41 and 0.38), thereby indicating less effective 
learning. By using CLAHE (Contrast Limited Adaptive Histogram Equalisation), the Proposed Model presents several innovations: 
it increases picture contrast, hence boosting feature visibility and supporting improved learning by means of enhanced image 
contrast. Designed for efficiency, the proprietary CNN architecture combines augmentation methods including flipping, zooming, 
and rotation to increase generalisation and resilience. Furthermore used to reduce overfitting is dropout regularisation. The 
suggested model thus achieves a much smaller loss of 0.1793, 92.95% validation accuracy, and 94.64% training accuracy. These 
findings unequivocally show the originality and superiority of the suggested model in terms of accuracy, training stability, and real-
world application, hence better fit for deployment in systems of precision agriculture. 
 

V. CONCLUSION 
This work uses a proprietary convolutional neural network (CNN) to show an efficient and accurate deep learning method for the 
classification of plant leaf diseases. Using the PlantVillage dataset processed by CLAHE, the model solves typical constraints in 
agricultural disease diagnosis like low picture contrast and model overfitting. To improve generalisation, the approach consists in 
important processes including image scaling, normalisation, and data augmentation methods including flipping, zooming, and 
rotation. Trained using the Adam optimiser, a well crafted CNN architecture including convolutional, pooling, dense, and dropout 
layers guarantees effective feature extraction and model stability. With precision of 91%, recall of 93%, and an F1-score of 92%, the 
model attained a test accuracy of 93% suggesting strong and balanced performance. With low loss values, training and validation 
accuracies of 94.64% and 92.95% respectively demonstrate minimum overfitting and dependable learning.  
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Comparatively, the suggested model shows better loss values and much outperforms other current CNN-based methods, which 
usually had lower accuracies between 86% and 88%. This model is unique, lightweight, and fit for implementation in smart 
agriculture applications including mobile and IoT-based real-time plant disease monitoring systems by means of CLAHE 
preprocessing, extensive augmentation, and a bespoke CNN. 
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