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Abstract: By enabling natural-language-to-code translation, recent advances in Large Language Models (LLMs) like Gemini, 
GPT-4, and Codex have revolutionized human-computer interaction. Despite these advancements, the quality, maintainability, 
and dependability of generated code are still inconsistent, primarily due to the way prompts are phrased. Prompt sensitivity 
becomes a major constraint in Low-Code/No-Code (LC/NC) systems, where automation and accessibility are given top priority. 
The literature on prompt engineering as the primary method for coordinating user intent with executable logic in AI-driven code 
development is compiled in this review study. 
It examines current frameworks for automated refining, contextual enrichment, iterative feedback, and structured prompting 
[1]–[5].  
The study also looks at how these techniques might be integrated into LC/NC ecosystems to produce development workflows that 
are flexible and suitable for production. We find that systematic rapid engineering, which bridges the semantic gap between 
executable syntax and natural language, is the primary enabler for deterministic, high-fidelity AI code creation through 
comparative analysis of works published between 2023 and 2025. 
Keywords: Prompt Engineering, Low-Code Platforms, No-Code Development, Code Generation, Large Language Models, AI-
Assisted Programming, Prompt Optimization. 
 

I. INTRODUCTION 
The fusion of artificial intelligence with software engineering has enabled automatic generation of functional source code directly 
from human language instructions. Large Language Models (LLMs) such as OpenAI Codex, Anthropic Claude, and Google Gemini 
represent a paradigm shift in how software is built [1][2]. Instead of manual programming, developers—and even non-technical 
users—can now express intent in natural language and receive executable outputs. However, as research consistently demonstrates 
[3][4], these models are extremely sensitive to prompt design; slight lexical or structural variations can drastically change output 
quality. 
This prompt sensitivity problem is particularly critical within Low-Code/No-Code (LC/NC) environments, whose goal is to 
democratize software development. LC/NC tools abstract complex logic behind graphical interfaces or declarative specifications [5]. 
When coupled with AI-driven code generation, they promise a future where ideas are transformed into production-ready 
applications through conversational interactions [6]. Yet in practice, vague, underspecified, or poorly structured prompts cause 
unstable outputs—syntactically valid but semantically wrong code, non-optimal architectures, or insecure logic [7][8]. 
Hence, prompt engineering has emerged as a formal discipline studying how linguistic and contextual cues influence LLM outputs. 
Rather than ad-hoc trial-and-error prompting, it systematizes the process into reproducible methodologies [9]. This review paper 
analyzes current research on prompt engineering techniques and how they integrate into LC/NC systems to enhance reliability, 
maintainability, and adaptability of AI-generated code. 
The study’s objectives are threefold:  
1) To critically review frameworks that improve LLM code generation quality through structured prompting, contextual 

augmentation, and feedback loops.  
2) To examine how prompt engineering can mitigate the inherent constraints of LC/NC platforms.  
3) To synthesize insights into a conceptual model that guides future research on adaptive AI-driven development.  
The paper is organized as follows: Section 2 presents a literature review; Section 3 details core frameworks and evaluation metrics; 
Section 4 reviews prompt-engineering methods; subsequent sections (Part 2) analyze LC/NC integration, comparative studies, and 
future trends. 
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II. LITERATURE REVIEW 
A. LLM Code Generation and Limitation 
LLMs perform code synthesis by learning probabilistic mappings between natural-language tokens and program tokens [1]. While 
capable of translating intent into syntax, studies show varying reliability depending on task complexity and prompt clarity [2][7]. A 
large-scale benchmark by Xu and Zhang [1] found that the same instruction expressed in two slightly different ways could yield 
compilation success in one case and total failure in another. Johnson and Taherkhani [2] demonstrated that functional equivalence 
between prompts does not guarantee equivalent logical flow, underscoring the stochastic behavior of generative models. 
Two major causes dominate: 
 Ambiguity of natural language, which LLMs interpret probabilistically rather than deterministically [4][8].  
 Limited context windows, preventing multi-file reasoning or long-term dependency tracking [3].  
Consequently, the prompt becomes the most critical factor governing model reliability. As Singh and Yu [8] note, prompt 
misalignment directly correlates with defects, security flaws, and maintenance issues. This insight grounds the current movement 
toward systematic prompt design [9][10] 
 
B. Evolution of Prompt Engineering 
Prompt engineering began as heuristic experimentation during the early GPT-3 era but rapidly matured into a structured discipline 
[9][10]. Al Khalil and Santos [9] categorized prompt methods into instructional, contextual, and chain-of-thought types. Each 
targets a distinct cognitive dimension of the model—directive control, contextual recall, and reasoning decomposition respectively 
[10]. 
The Prompt Alchemy (Prochemy) framework [12] automates refinement by generating multiple prompt variants and iteratively 
improving them based on model feedback. The EPiC Framework [11] applies evolutionary algorithms to optimize prompt 
populations, balancing accuracy and token efficiency. Comparative analyses indicate up to 32 % improvement in correctness over 
static prompts [11][12]. 
Prompt design principles distilled from these studies include: 
 Explicit task framing (define roles and objectives clearly) [9].  
 Context injection (provide prior code, dependencies, or APIs) [13].  
 Constraint inclusion (set boundaries for architecture, performance, or style) [14].  
 Iterative feedback loops (use outputs to refine future prompts) [12][19].  
These methods constitute the backbone of what this paper terms Systematic Prompt Engineering (SPE)—a reproducible 
methodology ensuring semantic alignment and syntactic precision in AI code generation.  
 
C. Low-Code/No-Code (LC/NC) Platforms 
LC/NC platforms—such as OutSystems, Mendix, and Appsmith—are designed to enable rapid application creation through drag-
and-drop components and prebuilt templates [3][15]. By abstracting logic, they let non-programmers build functional systems. 
Yet abstraction introduces trade-offs: 
 Limited flexibility and poor handling of non-template logic [16];  
 Dependence on manual scripting for advanced behaviors;  
 Reduced transparency and control over generated code [15].  
Integrating LLMs could offset these issues by translating natural-language descriptions into platform-specific code snippets [4][17]. 
However, without structured prompt engineering, results remain unreliable—producing brittle, redundant, or insecure scripts [6][18]. 
Recent studies [15]–[19] argue that embedding automated prompt enhancement modules within LC/NC IDEs can preprocess user 
instructions into standardized, context-aware prompts before invoking LLMs, thereby improving determinism and trustworthiness. 
 
D. Research Gap 
While numerous works evaluate LLM capabilities and LC/NC advantages independently, few provide a unified view combining 
prompt methodology with system-level application. Current gaps include: 
 Lack of standardized prompt evaluation metrics for code generation [9][11];  
 Limited cross-analysis of prompt strategies within LC/NC environments [15];  
 Minimal integration of automated prompt optimization in commercial platforms [16][18];  
 Sparse discussion on maintainability, security, and ethical implications of AI-generated code [18][19].  
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This review seeks to bridge these by synthesizing existing literature into a cohesive conceptual framework for systematic prompt 
engineering in LC/NC ecosystems. 
 

III. METHODOLOGICAL FRAMEWORK FOR SYSTEMATIC REVIEW 
A. Scope and Selection Criteria 
A systematic review approach was followed to collect peer-reviewed papers, preprints, and authoritative reports from 2023–2025 
across IEEE Xplore, SpringerLink, ScienceDirect, MDPI, and arXiv. Inclusion criteria were: 
1) Studies explicitly addressing LLM-based code generation.  
2) Papers discussing prompt engineering frameworks or optimization methods.  
3) Works evaluating LC/NC platform integration or AI-assisted software tools.  
A total of 38 papers were shortlisted from 82 initial results after applying exclusion filters (duplicates, non-technical blogs, or out-
of-scope works). References [1]–[19] form the primary analytical corpus; additional sources (to [35]) are integrated in Part 2. 
 
B. Analytical Dimensions 
To ensure a structured and comparative understanding of existing studies, this review systematically categorizes the analyzed 
literature along multiple methodological and functional dimensions. Each axis highlights a distinct aspect of how prompt 
engineering influences LLM-based code generation in low-code and no-code environments. The classification enables cross-
analysis of prompt strategies, automation mechanisms, and integration depth across diverse research efforts. By mapping these 
dimensions, the study establishes a unified framework for evaluating both linguistic and technical advancements. 
The review evaluates literature along five axes: 

TABLE I 
ANALYTICAL DIMENSIONS FOR PROMPT ENGINEERING EVALUATION 

Dimension  Focus  
Prompt Structure  Instructional vs Contextual vs Feedback Design  
Code Quality Metrics  Compilation Success Rate, Cyclomatic Complexity, Security Compliance  
Contextual Depth  Extent of Prior Knowledge and Dependency Injection  
LC/NC Integration Deployment in IDE or Platform Workflow  
Automation  Presence of Algorithmic Prompt Optimization (e.g., EPiC)  

 

 
Fig. 1  Review Pipeline 

 
C. Evaluation Approach 
Each study was coded for (1) prompt technique, (2) reported improvements in code accuracy, (3) platform context, and (4) 
automation capability. Where numerical data were available, mean improvements were normalized to percentage change for cross-
comparison. For example, EPiC [11] reported +32 % accuracy gain; Prompt Alchemy [12] +27 %; Context-Driven Optimization [13] 
+21 %. 
The synthesis integrates qualitative findings (e.g., linguistic control, context fidelity) with quantitative outcomes (code robustness 
and security). This approach enables both breadth and depth in evaluating prompt engineering’s impact on LC/NC development. 
 

IV. PROMPT ENGINEERING FRAMEWORKS FOR CODE GENERATION 
A. LLM Code Generation and Limitation 
Template-based prompting constrains linguistic variance by enforcing predefined syntactic structures. Flores and Martin [14] 
introduced role-based prompting where the model assumes explicit professional roles—such as “frontend developer” or “data 
engineer”—to guide contextual reasoning. Empirical results show that role assignment reduces nonsensical logic by ≈18 %.  
Structured templates also include explicit inputs (e.g., framework name, UI requirements) and constraints (e.g., error handling, 
security). For instance: 
 Prompt A: “Generate a React component for user authentication with JWT handling and form validation using Tailwind CSS.”  
 Such prompts, compared with generic requests, produce code closer to deployable quality [5][11].  
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B. Context-Aware Prompt Expansion 
LLMs often struggle to maintain coherence across modular code segments. Context injection tackles this by embedding relevant 
metadata (prior code, API docs, state variables) within the prompt [13][14]. This technique improves cross-file consistency and 
reduces redundant definitions. Choi and Nakamura [13] demonstrated that context-driven optimization achieved 27 % higher 
module reusability and 21 % fewer runtime exceptions. 
In LC/NC contexts, context expansion can be automated by linking workspace metadata (e.g., UI components, data models) to the 
prompt pipeline. 

 
Fig. 2  Context Expansion Cycle 

 
C. Iterative Prompt Refinement 
Iterative refinement involves feedback loops where the model critiques its own outputs and regenerates improved versions [12][19]. 
Prompt Alchemy [12] uses error traces and lint results to rephrase subsequent prompts, achieving better logic coherence. In practical 
LC/NC applications, this maps to conversational adjustments such as: 
 “Add input validation for email fields,” or “Convert color scheme to dark mode.” 
 Each iteration enhances code fidelity without manual reprogramming. Studies show ≈25–30 % reduction in syntax errors after 

two feedback iterations [9][12]. 
 

D. Automated Prompt Optimization 
Automation extends beyond rule-based refinement into machine-driven prompt mutation. Li and Zhao [11] proposed the EPiC 
system, which uses evolutionary search to generate candidate prompts, score them on output accuracy, and retain the best variants. 
This adaptive cycle outperformed manual engineering by ≈30 % in benchmark tests. 
Tanaka and Park [19] introduced Dynamic Prompt Feedback Loops (DPFL) that integrate user feedback with model self-evaluation 
to form a continuous learning mechanism. Such systems are ideal for LC/NC deployment since user interactions provide natural 
reinforcement signals. 

 

 
Fig. 3  EPiC–DPFL Hybrid Architecture 
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V. IMPACT ON PROMPT ENGINEERING ON LOW-CODE/NO-CODE (LC/NC) CODE GENERATION 
 Prompt engineering serves as the linguistic and structural bridge between user intent and model cognition. Within Low-Code/No-
Code (LC/NC) systems, this bridge is vital: non-technical users rely on natural language descriptions to generate functional code 
components, and even minor prompt ambiguities can cascade into major logical inconsistencies [3][15][16]. 

 
A. Enhancing Consistency and Accuracy 
The integration of systematic prompt frameworks directly influences semantic precision and execution reliability. Harris and Brown 
[12] found that iterative prompt refinement reduced syntactic error rates by 28% in generated React and Python modules. Similarly, 
contextual prompt injection, as explored by Choi and Nakamura [13], improved inter-component cohesion by 21% and increased 
code modularity by 27%. 
In LC/NC platforms, these gains manifest as deterministic code generation—where user descriptions produce consistent, repeatable 
outcomes. This consistency is fundamental for deployment workflows that rely on version control or automated testing pipelines 
[8][15][17]. 
 
B. Context Fidelity and Dependency Management 
Unlike traditional IDEs, LC/NC platforms operate with component-level abstractions. A major challenge arises when AI-generated 
code lacks awareness of existing dependencies—such as data bindings, UI hierarchies, or authentication flows. Prompt engineering 
mitigates this by embedding contextual metadata in every prompt iteration [13][14][19]. 
Tanaka and Park’s Dynamic Prompt Feedback Loops (DPFL) [19] illustrate how context-driven re-prompting enables real-time 
synchronization between model output and workspace state. For example, when a user adds a database schema through a visual 
interface, DPFL automatically augments subsequent prompts with schema references, ensuring new code integrates seamlessly.  
 
C. Reducing Hallucinations and Unintended Logic 
“Code hallucination” refers to the phenomenon where LLMs generate non-existent APIs, redundant variables, or logically 
impossible structures [1][6][7]. These errors undermine LC/NC reliability, as end-users may deploy defective applications 
unknowingly. Structured prompting with constraint inclusion—such as specifying framework versions, API names, or security 
requirements—significantly reduces hallucination rates [11][12][18]. 
EPiC’s automated optimization approach [11] demonstrates a 19–32% reduction in logical hallucinations by dynamically 
reweighting semantic tokens. The combination of role-based prompting [14] and automated refinement [12] has proven especially 
effective, yielding near-deterministic outputs for well-defined system prompts. 
 
D. Improving Reusability and Maintainability 
LC/NC systems thrive on reusability—modular components and templates that can be extended across projects. Prompt engineering 
contributes by promoting clean, modular code generation [15][18]. Contextual and structured prompts ensure consistent variable 
naming, proper state management, and reusable component hierarchies. 
Müller and Dutta [16] observed that adaptive prompt systems increased reusability by 34% compared to unstructured prompting. 
Oliveira and Singh [17] further noted that role-driven prompting produced architecture-consistent patterns that aligned with 
platform-defined templates. 
 
E. Security, Ethics and Compliance 
Security remains a central concern in AI-generated code. McKnight [6] reported that nearly 48% of LLM-produced code samples 
contained at least one security flaw—such as unsafe database queries or missing validation layers. By incorporating security policies 
as constraints within prompts, such as “ensure input sanitization” or “validate JWT tokens,” researchers achieved measurable risk 
reduction [18]. 
Prompt engineering also supports compliance by enforcing organizational coding standards. In enterprise LC/NC deployments, this 
ensures that generated code adheres to internal security and performance guidelines automatically [15][17][18]. 
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VI. COMPARATIVE ANALYSIS OF FRAMEWORKS AND PERFORMANCE METRICS 
A. Enhancing Consistency and Accuracy  
The comparative performance of representative prompt engineering frameworks is summarized in Table II. 

 
TABLE II 

BENCHMARKED PERFORMANCE OF PROMPT ENGINEERING FRAMEWORKS 

Framework Technique 
Reported 
Improvement Evaluation Metric Primary Source 

EPiC [11] 
Evolutionary Prompt 
Optimization 32% ↑ accuracy Logic correctness arXiv (2025) 

Prompt Alchemy [12] Iterative Self-Refinement 27% ↑ readability Code stability arXiv (2025) 
Context-Driven Optimization 
[13] 

Dependency Injection 21% ↑ modularity Inter-file cohesion ScienceDirect 
(2024) 

Role-Based Prompting [14] Context Role Framing 18% ↓ hallucination Output reliability ACM (2025) 
Adaptive Prompt Systems 
[16] Feedback Automation 26% ↑ reusability 

Component 
uniformity Springer (2024) 

DPFL [19] Dynamic Context Loop 30% ↑ execution 
success 

Runtime validation arXiv (2025) 

 
B. Discussion of Comparative Analysis 
Across the literature, prompt refinement techniques consistently outperform static prompting. However, the extent of improvement 
varies by task type: 
 Structural and syntactic accuracy improves most with template-based prompting [9][11][12].  
 Logical and contextual coherence benefits from iterative refinement [12][19].  
 Reusability and maintainability depend on adaptive feedback systems [16][17].  
An integrated LC/NC platform that combines these methods would therefore realize synergistic effects, balancing stability, 
adaptability, and security. 
 
C. Evaluation Metrics 
Standard metrics to assess prompt-engineered code generation include: 
 Compilation Success Rate (CSR): proportion of syntactically valid outputs [1][11].  
 Functional Accuracy (FA): number of test cases passed without modification [2][13].  
 Cognitive Coherence (CC): subjective measure of logical flow, as evaluated by human experts [9].  
 Code Complexity Index (CCI): average cyclomatic complexity; lower values denote cleaner design [14][16].  
 Prompt Efficiency Ratio (PER): quality improvement per token generated [11].  

 
D. Observations 
The majority of frameworks converge toward one insight: prompt design can substitute for model fine-tuning in achieving domain 
alignment [9][10][12]. This has profound implications for LC/NC developers who cannot afford custom-trained models. Instead, an 
optimized prompt layer can act as an interpretive buffer, aligning general-purpose LLMs with domain-specific coding requirements 
dynamically. 
 

VII. INTEGRATION OF PROMPT ENGINEERING IN LC/NC ECOSYSTEMS 
A. Architectural Alignment 
Embedding prompt frameworks into LC/NC ecosystems requires careful architectural integration. Jain and Patel [15] describe a 
three-tier prompt system: 
 Frontend Layer: captures natural language input.  
 Prompt Processing Layer: enhances input using structured, contextual, and iterative frameworks.  
 Code Generation Layer: invokes LLMs and validates generated outputs.  
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Fig. 4  LC/NC Architecture Pipeline 

 
Convex or similar backends can synchronize prompt states with real-time workspace data, ensuring that code suggestions remain 
consistent across UI and backend logic. The prompt layer thus acts as a semantic translator between the user interface and the AI 
engine [16][17].  
 
B. Workflow Optimization 
Adaptive prompts accelerate development by maintaining continuity between iterations. When a user edits an LC/NC component, 
the system automatically reconstructs context prompts, ensuring changes are propagated coherently. Studies show that such adaptive 
systems reduce development time by ≈22% while maintaining >90% user satisfaction [16][19]. 
 
C. Intelligent Co-Development Environments 
Systematic Prompt Engineering (SPE) transforms LC/NC tools from static builders into intelligent co-development environments. 
The AI no longer simply generates code—it collaborates, refining outputs iteratively.  
Rahman and Chen [4] suggest that this evolution mirrors the emergence of AI copilots, where LLMs act as autonomous yet guided 
agents. When combined with LC/NC abstractions, these copilots enable seamless transitions between natural-language commands 
and deployable, maintainable code [15][17][18]. 
 
D. Human-AI Interactions 
Incorporating prompt engineering also enhances interpretability and user trust. By exposing intermediate prompt transformations (as 
textual previews), end-users gain insight into how their inputs are being restructured before code generation. This transparency 
fosters confidence and provides educational value for novice developers [5][9][10]. 
 

VIII. DISCUSSION 
A. Synthesis of Literature 
The reviewed literature reveals a consensus: prompt engineering is the missing cognitive layer in AI-assisted LC/NC development. 
Its structured methodologies compensate for current model limitations—context windows, stochastic generation, and lack of domain 
grounding. 
While early systems relied on user improvisation, modern frameworks automate the entire pipeline—collecting context, evaluating 
feedback, and optimizing prompt phrasing dynamically [11][12][19]. When integrated with LC/NC architectures, this converts user 
intent into code through an adaptive, feedback-rich loop. 
 
B. Research Gaps and Limitations 
Despite progress, several challenges remain:  
 Metric Standardization: No universally accepted metrics for “prompt quality” exist across frameworks [9][13].  
 Cross-Model Generalization: Techniques tuned for one LLM may not transfer effectively to others [7][11].  
 Ethical Considerations: Automated prompt optimization could unintentionally reinforce biases or unsafe code [18].  
 Human Oversight: Fully autonomous refinement loops still require human evaluation to prevent drift in behavior [12][19]. 

Addressing these requires interdisciplinary collaboration between NLP researchers, software engineers, and cognitive scientists. 
  
C. Comparative Analysis 
Prompt engineering can be conceptualized as the “compiler of intent”—a semantic intermediary converting abstract goals into 
actionable instructions. In LC/NC ecosystems, this compiler operates at both user and system levels, dynamically rewriting prompts 
to ensure deterministic logic. This is analogous to just-in-time (JIT) compilation in traditional programming but driven by linguistic 
optimization rather than bytecode translation.  
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IX. FUTURE DIRECTIONS 
A. Adaptive Reinforcement-based Prompt System 
Emerging research suggests coupling reinforcement learning with prompt optimization. Tanaka and Park’s DPFL [19] and Müller 
and Dutta’s adaptive systems [16] hint at self-improving mechanisms that use user satisfaction scores and execution feedback to 
evolve prompt quality autonomously. 
 
B. Hybrid Cognitive Frameworks 
Future LC/NC platforms may integrate multi-agent architectures, where one agent generates code, another evaluates it, and a third 
optimizes prompts in real time [17][18]. These “meta-prompt” agents could iteratively refine both instructions and generated outputs 
simultaneously. 
 
C. Ethical and Governance Implication 
As AI-generated code enters production, prompt governance becomes essential. Models must ensure transparency in how prompts 
are processed, refined, and stored to prevent misuse or bias [18][19][20]. Future systems may include built-in audit trails for every 
prompt-to-code transaction, creating a verifiable record of AI contributions. 
 

X. CONCLUSION 
Prompt engineering has matured from an art into a structured science. Its integration into LC/NC platforms revolutionizes how 
software is conceived, designed, and delivered. Through systematic prompting—combining structure, context, feedback, and 
automation—AI systems achieve higher fidelity, reliability, and interpretability in code generation. 
This review concludes that Systematic Prompt Engineering (SPE) is not merely a quality improvement mechanism but a 
foundational shift in how AI interprets human intent. By bridging natural language and executable logic, it transforms LC/NC 
environments into intelligent, adaptive co-development ecosystems. Future work should focus on adaptive reinforcement-driven 
prompt systems, ethical prompt governance, and cross-model standardization, paving the way toward fully autonomous yet 
accountable AI-driven software engineering. 
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