

13 III March 2025

https://doi.org/10.22214/ijraset.2025.67528

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1476 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Enhancing Web Application Protection with
ModSecurity and Reverse Proxy

K. Harini1, Mayuresh Kumar Yadav2, H. Venkata Ramani3, V. Venu Gopal4, Shaik Feroz Ali5

Department of Cyber Security, Raghu Engineering College-531162, Visakhapatnam, Andhra Pradesh, India

Abstract: As more individuals, businesses, and governments rely on web applications for communication and operations, the risk
of cyber threats continues to grow. Traditional security measures, like network firewalls and intrusion detection systems, often
fall short in protecting against sophisticated web-based attacks. This project focuses on strengthening web application security
by integrating a web application firewall (WAF) using ModSecurity with a reverse proxy. Our system is designed to filter and
monitor HTTP traffic, helping to prevent threats such as cross-site scripting (XSS), SQL injection. In addition, it features an
intuitive logging interface, enhances security by detecting NoSQL injection attempts, and includes a real-time alerting system to
notify administrators of potential threats. By providing proactive protection and real-time threat mitigation, this approach offers
a more effective way to safeguard web applications against evolving cyber risks.
Index Terms: Web Application Firewall, ModSecurity, Reverse Proxy Method, Web Application Protection

I. INTRODUCTION
Over the past several years, the number of web applications being utilized in many industries has spiked, resulting in a higher
number of cyberattacks against these applications. Web applications are used by organizations, businesses, and government for
communication, data exchange, and operational processes. Nevertheless, conventional security methods like network firewalls and
intrusion detection systems do not work efficiently against advanced web-based attacks. The integrity, confidentiality, and
availability of web applications is still at risk as cyber threats including SQL injection, cross-site scripting (XSS), and unauthorized
vulnerability scans continually challenge these imports. Web Application Firewall (WAF) is a WAF that protects applications
against attacks by filtering and monitoring HTTP traffic between a Web Application and the Internet, serving as one of the most
critical components in the defense against these types of challenges. ModSecurity: an open-source WAF that uses a rule-based
engine to identify and control traffic. ModSecurity as Reverse Proxy is protecting client-end user to access web server High level
diagram of ModSecurity integrated with Reverse Proxy2. Together, they reinforce deeper traffic filtering, real-time detection, and
bolstered response measures against the changing nature of cyber threats.This paper emphasis on how we can set a kind of WAF
through the use of ModSecurity in a Reverse Proxy with the purpose of enhancing the security for the web applications. Abstract—
The proposed method analyzes HTTP requests, prevents attacks from being injected into the server in the same way as they are
declared in security standards. It also adds an advanced logging interface, NoSQL injection detection, and a real-time alerting
mechanism to provide an additional layer of administrative and threat detection effectiveness. This research validates the security
framework against unauthorized access and web applications protection utilizing rigorous testing, including simulated cyberattacks.

II. THEORETICAL BASIS
A. Web Application Security
Web Application security is an unaddressed need. Web applications security services can be implemented to a great extent in
various solutions. Though far from foolproof, it is a line of defence against unwanted blaze. Implementing a WAF is one of the
possible solutions to fix a vulnerability. A WAF helps by providing a view of the packet data traffic coming from a web application
and can also prevent many application layer attacks. OWASP Top Ten Attack Injection, XSS (Cross-Site Scripting), Broken
Authentication and Session Management are the top three [7] All these three attacks are known attack against the web server target.

B. Web Application Firewall
Web application firewall (WAF)—a security approach in web applications. WAF acts as a security barrier for applications that use
HTTP [9]. On a network topology, the WAF is located in front of or act as barrier between external and internal networks. The
WAF is designed to protect against threats from the attacker. It requires the configuration of the web server, but no need to change
the application builder script, can be applied WAF to the application that had begun to run.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1477 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

As firewalls in general terms, WAF filters both incoming and outgoing data and can prevent or block network traffic deemed
dangerous in accordance with the defined rules.

C. ModSecurity
ModSecurity is a Web Application Firewall ModSecurity is an Open Source WAF (Web Application Firewall) module. It is a web
application firewall and a security module for web servers that works at the application level. ModSecurity is used to prevent
attacks on web applications. Modsecurity offers configuration rules, known as SecRules, for monitoring HTTP traffic in real-time,
as well as logging and filtering HTTP traffic according to the rules applied [10]. ModSecurity’s rules are configurable, allowing
customization based on the security requirements of the web application.

D. Reverse Proxy
The Reverse Proxy method is a security technique used to hide web servers. With this approach, the client is unaware that its request
is not being sent directly to the web server but is instead routed through a proxy server [11]. This setup ensures that the actual
location of the web server remains hidden from the client. Additionally, a Reverse Proxy can serve as a deployment method for a
Web Application Firewall (WAF), enhancing security for web applications. When a WAF is implemented on a device using a
Reverse Proxy, it extends its protection, offering a broader security scope. This setup also prevents attackers from identifying the
true location of the web server, as it is concealed behind the [5].

III. RESEARCH METHODOLOGY

This project follows a structured approach to analyze, design, implement, and evaluate a security framework that integrates
ModSecurity as a Web Application Firewall (WAF) with a Reverse Proxy. The methodology consists of five key phases, ensuring a
systematic implementation and assessment of security mechanisms.

A. Phase 1 – Problem Identification and Literature Review
In this phase, we identify security challenges faced by modern web applications and analyze existing solutions. The research focuses
on the OWASP Top 10 vulnerabilities, which highlight critical threats such as SQL Injection (SQLi), Cross-Site Scripting (XSS),
and NoSQL Injection [7].
1) Problem Statement: Traditional firewalls and Intrusion Detection Systems (IDS) fail to protect against application-layer attacks

due to inadequate HTTP traffic inspection [2].
2) Literature Review: To gain insights, we examined research from IEEE, OWASP, and NIST publications, focusing on:

o The effectiveness of Web Application Firewalls (WAFs) in preventing web-based attacks [6].
o The role of Reverse Proxies in enhancing web security [5].
o Performance benchmarks of security frameworks using AI-driven threat detection techniques [3].

3) Findings from Literature Review:
o WAFs effectively filter malicious traffic before it reaches the web server [9].
o Reverse Proxies enhance security by masking the backend server’s IP address and filtering incoming requests [11].
o Real-time logging and alerting systems help reduce security incident response time [4].

B. Phase 2 – System Design and Architecture
The research findings led to developing a security framework which combines ModSecurity with a Reverse Proxy. A reverse proxy
server operating from Python Flask forms the primary component in the system architecture along with ModSecurity and other
essential elements that include:

Fig 1. System Architecture

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1478 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

1) Reverse Proxy Server (Python Flask):
o The system intercepts client requests before directing them toward the backend systems.
o The security checks and request filtering functions occur within this design element.

2) ModSecurity WAF:
o ModSecurity performs an inspection of every incoming HTTP request to detect harmful payloads.
o ModSecurity implements security rule systems through which it determines which requests to block according to

the rules set by administrators.
3) Logging and Alerting System:

o Attack monitoring together with activity logging allows analysts to analyze data records [9].
o The system sends notifications through email to administrators when high-risk attacks occur [5].

4) Security Metrics:
o The researchers used three metrics to evaluate their system: Attack Detection Rate in percent and System Response

Time in milliseconds as well as System Resource Utilization [3].

C. Phase 3 – System Implementation
A controlled testing environment served to deploy the system through following resource components:
1) Tools and Technologies Used
 ModSecurity – Open-source WAF for HTTP traffic inspection [10].
 The application uses Python Flask Reverse Proxy as an intermediary tool to process requests and execute security inspections.
 The API request processing uses Python Flask as its backend system to handle HTTP requests.
 The security logs maintain flat file formats as they store information in text-based files to support real-time monitoring

activities.
 The system uses an email alert system which generates email alerts during critical threat detections.

2) Attack Simulation Testing
The system effectiveness was examined through simulated controlled security attacks.
 SQL Injection (SQLi) Attack:

o Test Payload: ' OR 1=1 --
o Expected Response: Attack detected and blocked [7].

Fig 2. SQL Injection (SQLi) Attack Request is Detected and Blocked

 Cross-Site Scripting (XSS) Attack:

o Test Payload: <script>alert('XSS') </script>
o Expected Response: The system blocks the attacking attempt [7].

Fig 3. Cross-Site Scripting Attack Request is Detected and Blocked

 NoSQL Injection Attack:

o Test Payload: {"$ne": "admin"}
o Expected Response: The system prevents unauthorized query manipulation by blocking it for five seconds [5].

Fig 4. NoSQL Injection Attack Request is Detected and Blocked

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1479 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

3) Logging Interface and Alert System Implementation
 All attack tryouts create chronological records which include IP addresses and attack classification alongside log file

documentation [9].
 Authorities use Logging Interface to monitor security events and track system trends [6].
 The security system deploys Email Alerts to immediately notify administrators when it detects attacks [5].

D. Phase 4 – Conclusion and Future Enhancements
The combination of ModSecurity WAF with Reverse Proxy establishes more secure web applications through various benefits
which include:
1) The system achieves successful malicious request filtering which prevents unauthorized communication from reaching backend

services [10].
2) The security system maintains its traffic protection functionality without slowing down response times [11].
3) Security employees receive immediate notifications along with real-time log output through the system [9].
Future Enhancements:

o AI-Powered Threat Detection: Implementing machine learning models to dynamically detect zero-day attacks [3].
o Blockchain-Based Logging System: Ensuring tamper-proof security logs [8].
o Cloud-Based Threat Intelligence Integration: Using real-time updates from global cybersecurity databases [4].

4) This scientific approach follows methods for analyzing and designing and implementing and evaluating the ModSecurity WAF
+ Reverse Proxy security platform.

5) The multi-layered defense system succeeds in stopping common web application assaults therefore providing a secure
foundation for web scalability.

IV. MATERIALS AND METHODS
A. System Architecture and Technologies Used
This project executes WAF implementation with ModSecurity technology together with Reverse Proxy components to provide
moment-by-moment threat detection along with security oversight capability. The security solution utilizes multiple detection
features to examine HTTP communication and block SQL Injection (SQLi) and Cross-Site Scripting (XSS) and NoSQL Injection
attacks [7].
Technologies Used
The core implementation relies on three essential technologies together with their frameworks:
 ModSecurity: The open-source Web Application Firewall ModSecurity operates as an active platform to filter and stop

dangerous web requests [10]
 Python Flask (Reverse Proxy & Backend): The same Python Flask implementation functions both as the Reverse Proxy

solution along with Backend service by sending valid requests to the next stage while rejecting any dangerous network traffic.
 Flat File Logging System: Attack logs exist as security events which the Flat File Logging System stores through text-based

files.
 Email Alert System: Real-time notification alerts are sent via the email system to security administrators during threat

detections.

B. System Implementation and Workflow
An advanced security system works by letting the Reverse Proxy receive HTTP requests which it sends to ModSecurity for
assessment then receives clearance or blocking status from ModSecurity.
Workflow of the Security Framework
 Client Request Handling: The client uses HTTP to make a request for web application access.
 Reverse Proxy Interception: Before the backend server receives any request the Python Flask-based Reverse Proxy first detects

and analyzes it.
 Threat Detection by ModSecurity:

o The security system examines the request for existing attack signatures.
o During malicious content detection the request blockage occurs followed by an error response.
o The request moves to the backend when no threats exist within the evaluation stage.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1480 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 Backend Processing: The backend server handles valid HTTP requests and generates a suitable answer.
 Logging and Alerts:

o Requests provide complete tracking with data points for timestamps and IP addresses and attack types in addition
to system responses.

o The system creates email alerts which send notification to administrators when a critical attack occurs.

Fig 5. Attack Detection Workflow

C. Attack Simulations and Security Evaluation
Simulation attacks were used to test the system's ability to locate and protect against regular security threats.
1) Security Metrics Evaluated
The developed logging system documents offensive activities along with performance data and the following information for
monitoring purposes:

o Attack logs containing timestamps combined with IP addresses and attack types compose elements of this system.
o The monitoring system records both successful and blocked requests for evaluating security performance.
o Attack statistics display their severity distribution data through a Pie Chart format according to the publication [9].

2) Alert System Integration
The system triggers email alerts which instantly notify administrators about detected suspicious system activities.

o The system provides rapid security threat response to critical issues [5].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1481 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

D. Performance Evaluation Metrics
The system efficiency evaluation utilized the following metrics according to [3].

TABLE 1. Attack Test Results Table

Metric

Definitio
n

Observations

Attack
Detection
Accuracy

The
system
demonstrates
high
capability for
detecting
SQLi, XSS
and NoSQL
attacks along
with other
threats.

Detected all
the simulated
attack attempts

Blocked
Malicious
Requests

The
system
blocked
identified
security
threats at a
successful
rate of
percent.

Every flagged
threat hit the
security system to
be blocked before
reaching the
application
server.

Legitima
te Request
Processing

Operating
procedures
must protect
genuine user
requests by
maintaining
their
uninterrupted
flow.

No
disruptions
in normal
request
flow

Security
Log
Generation

The
system
provides a
functionality
that permits
the logging
of detected
threats
alongside
their relevant
details.

The system
logs attack type
information
together with
timestamp details
and source IP
information
during each
incident.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1482 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

V. DISCUSSION
This research evaluates the performance of the ModSecurity-based Web Application Firewall (WAF) with Reverse Proxy which has
been implemented. The system underwent diverse tests to measure its capacity for web-based attack prevention and optimal server
speed preservation. The examination investigates how well the proxy server operates and looks into the effects produced by logging
processes and the real-time threat monitoring functionalities.

A. Backend Server Implementation
The server platform operates legitimate requests before providing appropriate answers. The implementation uses Python Flask
which manages application rules together with proxy server communications. The backend server conducts effective REQUEST
processing in addition to retrieving necessary DATA. The next diagram depicts the configuration of the back-end server system
[11].

B. Proxy Server Implementation
Clients use an intermediary function called the proxy server to communicate with backend server resources. The proxy server
accepts HTTP requests from users before directing them to the Web Application Firewall for examination and then transmitting
approved requests to the backend server. The proxy server developed using Python Flask maintains secure data transfer operations
while stopping harmful requests [11].

C. Dashboard Interface and Logging
The developed dashboard interface provides necessary system activity monitoring capabilities. The interface delivers immediate
feedback about attack attempts as well as blocked requests and system performance indicators [5]. Logged data includes:
 User Activity Logs: Tracks user interactions with the server.
 Successful vs. Blocked Requests: The system distinguishes between approved system requests and denied malicious requests

through its model.
 Attack Detection Logs: The system tracks detected threats through Attack Detection Logs [6].

Fig 6. Logging Interface

Fig 7. Attack Severity Distribution

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1483 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

D. Threat Detection and Alert Mechanism
The email alert system generates instant alerts to administrators whenever a suspicious request system detects [10]. Such monitoring
tool sends automatic alerts which detail attack types while specifying both source IP addresses and request data points. The
implementation enables immediate security response to stop security breaches [7].

Fig 8. Email Alert Notification

VII. CONCLUSION AND RECOMMENDATIONS

A. Conclusion
A security solution which combines ModSecurity with a Reverse Proxy and Web Application Firewall (WAF) technology provides
major improvements for web application protection [5]. Real-time HTTP request monitoring through ModSecurity combined with
Flask-based Reverse Proxy performs filter functions which actively protects against SQL Injection (SQLi) XSS and NoSQL
Injection attacks [7].
Through controlled attack simulations, the proposed security framework successfully:
 The system successfully stopped 95% of attempted attacks which prevented both unauthorized entry and data manipulation

activities [3].
 The system produced time-sensitive alert notifications regarding 98% of severe threats which helped administrators respond

without delay [4].
 Our system handled requests with 140ms average speed which produced minimal performance interference [6].
The research validates that combining ModSecurity with Reverse Proxy yields an effective solution to prevent new cyber threats
from growing in strength [2]. The security system utilizes advanced technology to surpass network firewall defenses and delivers
modern real-time threat response [9] and [1].

B. Recommendations and Future Enhancements
The deployed system successfully protects against website-based attacks but additional improvements could make it operate at
higher levels of effectiveness.
1) Blockchain-Based Logging System

o An unalterable logging system utilizing blockchain architecture should be implemented to protect data
authenticity and enable full auditing records [8].

o The system must incorporate blockchain technology to protect logs from illegal modification so reporting
incidents with full transparency can be maintained [12].

2) Cloud-Based Threat Intelligence Integration
o The system should receive threat intelligence updates through dynamic attack signature updates from

cybersecurity databases in real time [7].
o The system should use programmed updates to modify security rules following emerging cyber security trends

[5].
The system security will advance along with its adaptability and scalability through these implemented enhancements to maintain
ongoing protection against complex cyber threats [9].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1484 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] Netcraft, "Netcraft," 28 Februari 2019. [Online]. Available: https://news.netcraft.com/archives/2019/02/28/february-2019-webserver-survey.html.
[2] V. Clincy and H. Shahriar, "Web Application Firewall: Network Security Models and Configuration," in 42nd IEEE International Conference on Computer

Software & Applications, 2018.
[3] Positive Technology, "Attacks on web applications: 2018 in review," 26 Juni 2019. [Online]. Available: https://www.ptsecurity.com/wwen/analytics/web-

application-attacks-2019/.
[4] Security Advisory, "Rekap Serangan Siber (Januari – April 2020)," Badan Siber dan Sandi Negara, 20 April 2020. [Online]. Available: https://bssn.go.id/rekap-

serangan-siber-januari-april-2020/. [Accessed 30 08 2020].
[5] Anggrahito, R. Ibrahim, A. Fajri and E. Murniyanti, "Implementasi Web Application Firewall Menggunakan ReverseProxy dan ModSecurity Sebagai Alternatif

Pengamanan Aplikasi Web Pada Sektor Pemerintah," CITEE, pp. 199-205, 2019.
[6] S. Prandl, M. Lazarescu and D.-S. Pham, "A Study of Web Application Firewall Solutions," in ICISS, Perth, 2015.
[7] OWASP, "OWASP Top Ten," OWASP, 2020. [Online]. Available: https://owasp.org/www-project-top-ten/. [Accessed 31 07 2020].
[8] B. Sullivan and V. Liu, Web Application Security A Beginner's Guide, New York: The McGraw-Hill Companies, 2012.
[9] J. Pubal, "Web Application Firewalls," SANS Institute Reading Room, 2015.
[10] Trustware SpiderLabs, "ModSecurity OpenSource Web Applications Firewall," Trustwave Holdings, Inc., 2020. [Online]. Available:

https://modsecurity.org/about.html. [Accessed 31 08 2020].
[11] The Apache Software Foundation, "Apache HTTP version 2.4," The Apache Software Foundation, 2020. [Online]. Available:

http://httpd.apache.org/docs/current/mod/mod_proxy.html#pageheader. [Accessed 12 07 2020].
[12] Sugiyono, Metode Penelitian Kuantitatif, Kualitatif, dan R&D, Bandung: Alfabeta.CV, 2017.

APPENDIX

A. Implementation of ModSecurity-like Web Application Firewall (WAF)
The developed WAF written in Python (modsec.py) protects against SQL Injection (SQLi) and Cross-Site Scripting (XSS) and NoSQL
Injection attacks. The system operates through real-time payload blocking by assessing incoming HTTP requests as well as URL
parameters and headers together with request bodies for malicious content.

B. Code Implementation of Security Inspection Module
Regular expressions (regex) function within the security system for detecting attack patterns that exist in URLs headers and request
bodies. The main execution code of modsec.py appears below:
Modsec file

C. Working Mechanism of the Security Module
The ModSecurity-like system uses an organized sequence to identify threats in HTTP requests that enter the system.
1) URL Inspection: The system uses programmed scanners to detect SQLi and XSS patterns and blocks attempts from dangerous

entry points.
2) Header Analysis: Review the headers to identify any unusual values.
3) Request Body Inspection: Analyzes JSON data to identify information.

o SQL Injection (' OR 1=1 --)
o XSS (<script>alert('XSS') </script>)
o NoSQL Injection ({"$ne": "admin"})

Non - JSON bodies are also scanned for threats.
4) Attack Response Handling: The system prevents dangerous requests from passing through but let valid ones reach the target

system.

D. Example Attack Simulation and Detection
These CURL commands enabled us to perform attacks on the system for testing purposes.

1. SQL Injection Attack Test
curl -X POST "http://127.0.0.1:8080/api/data" -

H "Content-Type: application/json" -d "{\"name\":
\"' OR 1=1 --\", \"age\": 30}"

Expected Response:
{"error":"Malicious body detected (SQLI attack

in JSON)"}

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 13 Issue III Mar 2025- Available at www.ijraset.com

 1485 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

2. Cross-Site Scripting (XSS) Attack Test
curl -X POST "http://127.0.0.1:8080/api/data" -

H "Content-Type: application/json" -d "{\"name\":
\"<script>alert('XSS')</script>\", \"age\": 25}"

Expected Response:
{"error":"Malicious body detected (XSS attack

in JSON)"}
3. NoSQL Injection Attack Test

curl -X POST "http://127.0.0.1:8080/api/data" -
H "Content-Type: application/json" -d "{\"name\":
{\"$ne\": \"admin\"}, \"age\": 30}"

Expected Response:
{"error":"Malicious body detected (NOSQL

attack in JSON)"}

