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Abstract: Federated learning is a way to train machine learning models for healthcare institutions collaboratively without 
sharing sensitive patient data. It maintains privacy standards like HIPAA and GDPR while using diverse datasets to improve 
accuracy and inclusivity. However, integrating fairness in FL models, which includes ensuring algorithms do not discriminate 
based on race, gender, or socioeconomic status, is critical to prevent making bad healthcare disparities even worse, such as 
biased diagnosis in underrepresented groups. In this paper, we have analyzed the ethical and computational challenges that 
occur during the implementation of fairness-aware FL in healthcare. Ethical challenges include inequitable participation, 
privacy risks, bias amplification, accountability gaps, and cultural insensitivity, while computational challenges include non-IID 
data, high resource demands, fairness-accuracy trade-offs, scalability issues, and interpretability limitations. We have also 
included strategies to mitigate this, including fairness-aware aggregation, lightweight FL frameworks, and policy-algorithm co-
design, to handle these challenges. In this paper, we offer a novel synthesis of ethical and technical perspectives, providing a 
roadmap for the development of fair and trustworthy FL systems by bringing together ideas from AI, ethical thinking, and 
healthcare guidelines. We have also mentioned future directions, such as standardized fairness metrics and federated 
explainable AI tools. It's important to solve these problems so that federated learning doesn't make health inequalities worse. 
Working together from different files is key to building fair and private healthcare AI systems that can make a big difference. 
Keywords: Federated Learning, Healthcare AI, Algorithmic Fairness, Privacy Preservation, Ethical AI, Fairness-Aware 
Federated Learning, Healthcare Disparities, Bias Amplification, Equitable Access  

 
I. INTRODUCTION 

Federated Learning (FL) is a transformative machine learning technique that allows healthcare institutions to collaboratively train a 
shared model without sharing sensitive patient data. In FL systems, local machine learning models are trained on-site, and only 
model updates (such as gradients) are made on a central model. Making this system meet regulations like HIPAA and GDPR. This 
way it keeps patient information private while the model learns from a wide range of data from different places and people. But it is 
important to make sure that the system is fair (it doesn't treat anyone unfairly based on things like race, gender, or income). If not 
done carefully, it could give worse results for groups that are already underserved, like missing medical conditions in these 
populations. 
Integrating fairness in FL systems introduces significant ethical and computational challenges. There are important ethical 
problems, like some hospitals not being able to join equally, the risk of patient data being leaked through attacks, and unfair results 
caused by deeper problems. Computationally, it is hard to handle data that is different from one hospital to another, a high amount 
of computer power is needed for that, and the difficulty of scaling to large networks. These issues are required to be handled 
properly, or else they lead to unfair results or loss of privacy, making it harder to build fair healthcare AI. This paper analyzes both 
ethical and computational problems in making FL fair in healthcare and suggests practical ways to fix things like unfair access, 
unclear accountability, different types of data, and slow data sharing. 
In this paper, we bring together both ideas to suggest practical ways to create fair, private, and trustworthy federated learning (FL) 
systems. We draw on topics from AI, ethics, and healthcare guidelines to address the gaps in current knowledge and practice. It 
begins by discussing ethical issues such as fair participation and sensitivity to cultural differences. Next, we tackle computational 
problems like uneven data and the need to balance fairness with accuracy. Finally, we demonstrate how these challenges are 
interconnected and propose solutions to make FL in healthcare fairer and more effective. 
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Figure 1: Federated Learning with Fairness Constraints in Healthcare 
 

II. LITERATURE REVIEW 
A. Introduction to Federated Learning 
Federated Learning (FL) is a decentralized machine learning method where multiple institutions work together to train a shared 
model without sharing raw data. Instead, local models are trained on-site, and only model updates, such as gradients, are sent to a 
central location for aggregation [1]. This approach started with research by McMahan et al. (2017). It improves communication 
efficiency for distributed deep learning, making it suitable for areas that require privacy [1]. In healthcare, FL is gaining traction for 
enabling privacy-friendly AI while complying with laws like HIPAA and GDPR. Xu et al. (2021) discuss its application in 
healthcare informatics, including joint disease prediction models among hospitals. This method uses different datasets to improve 
model generalizability [2]. 

 
B. Fairness in AI and Healthcare 
Algorithmic fairness in ML aims to give fair results for groups based on traits like race, gender, or economic status. Concepts like 
demographic party and equalized odds try to minimize bias, but implementing these in healthcare is difficult [3]. Obermeyer et al. 
(2019) showed how biased algorithms can worsen disparities, like underdiagnosing conditions in minority groups. This highlights 
the need for fairness in healthcare AI [3]. However, standard fairness measures often overlook important context, such as cultural 
differences in how symptoms are expressed, which limits their effectiveness in diverse situations [4]. 

 
C. Federated Learning in Healthcare Applications 
FL has been used in healthcare tasks such as predicting diabetes, detecting sepsis, and screening for cancer. It ensures privacy and 
provides access to a range of datasets [2]. These uses take advantage of FL’s ability to train models on data that is both 
geographically and demographically diverse, which improves robustness. However, previous studies point out challenges like data 
heterogeneity, where hospitals have different data distributions, such as rural versus urban, and computational limits in resource-
poor environments. These issues can hurt model performance and make adoption difficult [2, 5]. 
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1) Ethical Challenges in Fairness-Aware Federated Learning 
Ethical issues in fairness-aware FL are well-known. Privacy risks persist even when data is kept locally. Model updates can still leak 
sensitive information through inference attacks [6]. Melis et al. (2019) showed that gradients can reveal patient data. This highlights 
the need for stronger protections, such as differential privacy [6, 7]. Another concern is fair participation. Smaller or rural 
institutions often lack the resources to join FL networks, which causes models to favor well-resourced hospitals [5]. Accountability 
gaps make it difficult to identify who is responsible for biased outcomes. Holstein et al. (2022) suggested creating audit trails to 
improve transparency [8]. Additionally, fairness metrics often overlook cultural differences, which may result in misclassifying 
patients when health expressions vary [4]. 
2) Computational Challenges in Fairness-Aware Federated Learning 
Computational challenges in fairness-aware federated learning (FL) include managing non-IID data, which affects model 
performance across different institutions. Mohri et al. (2019) introduced agnostic FL to solve this problem by minimizing the worst-
group loss. However, this method increases computational complexity [9]. Fairness constraints, like adversarial training, require 
significant resources. Zhang et al. (2018) pointed out that this training method doubles GPU memory needs [10]. The scalability of 
large FL networks is limited by coordination and communication problems. Some of these problems are somewhat addressed by 
gradient compression (Konečný et al., 2016) and clustered FL (Briggs et al., 2022). These methods lower bandwidth usage but may 
cause loss of important data needed for fairness [11, 12]. Interpretability is another challenge. Tools like federated SHAP (Wang et 
al., 2022) increase computational overhead by 40% per round [13]. 

 
D. Gaps and Challenges in Prior Work 
Despite progress, significant gaps exist. Small and rural healthcare institutions are often left out of federated learning networks, 
worsening inequalities in model performance [5]. Culturally adaptive fairness measures are not well-developed and do not address 
diverse healthcare situations [4]. The trade-offs between fairness and accuracy in different federated learning settings are still not 
resolved, as fairness constraints often lower overall model performance [10]. Furthermore, there is no standardized framework for 
federated explainability and auditing, which limits clinician trust and adoption [13]. Most importantly, few studies combine ethical 
and computational views through an interdisciplinary approach, leaving practical solutions largely unexplored. 

 
E. Positioning This Paper 
This paper expands on earlier research by combining the ethical and technical challenges in fairness-aware federated learning for 
healthcare. It tackles problems like low participation from institutions, cultural insensitivity, and the lack of standard tools for 
explainability. Unlike general federated learning or fairness research, we focus on issues specific to healthcare. We propose 
practical strategies like fairness-aware aggregation, simple frameworks, and joint design of policies and algorithms. By linking AI, 
ethics, and healthcare policy, this work serves as a guide for developing fair and dependable federated learning systems. 
 

III. ETHICAL CHALLENGES 
Implementing fairness-aware federated learning (FL) in healthcare raises important ethical issues. This is particularly true when 
hospitals with different resources and patient populations collaborate. These challenges can reinforce biases and harm trust. They 
fall into three main areas: Access and Equity, Privacy and Accountability, and Fairness and Trust. Each challenge discusses its 
issue, impact, and possible solutions. The following provides specific examples and clear explanations to enhance understanding. It 
also illustrates how these issues relate to computational challenges, such as privacy risks linked to communication efficiency. 
 
A. Access and Equity 
Equitable Access to Participation   
Issue: Small or rural hospitals often lack the computing resources or knowledge to join FL networks. For instance, a rural clinic may 
not be able to take part in a national cancer screening network due to outdated hardware.   
Impact: Leaving out under-resourced institutions excludes marginalized groups, like Indigenous or low-income patients, from FL 
models. This worsens healthcare disparities. A cancer screening model might overlook early signs in these populations, resulting in 
worse outcomes.   
Mitigation: Subsidized infrastructure, such as government-funded cloud credits or partnerships with tech companies, can provide 
scalable computing resources [5]. Lightweight FL frameworks designed for low-resource settings allow for broader participation, 
ensuring that a diverse range of patient data is included. 
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B. Privacy and Accountability 
1) Privacy and Informed Consent   
Issue: Even with local data retention, sharing model updates can leak information through inference attacks, especially with small 
datasets. For example, gradients from a hospital’s data could expose a patient’s HIV status [6]. Getting informed consent is difficult 
when patients have different levels of health or digital literacy.   
Impact: Privacy violations damage patient trust. Poor consent processes may leave vulnerable groups, like those with limited 
literacy, unable to grasp the effects of FL. This opens the door to ethical issues and risks non-compliance with laws like GDPR.   
Mitigation: Differential privacy techniques add noise to model updates to safeguard sensitive data [7]. A digital platform with tiered 
consent options can provide simple visuals for low-literacy patients and detailed explanations for others. For instance, a rural patient 
might use a visual consent tool to better understand how their data is used in a diabetes prediction model. 
2) Accountability for Fairness Outcomes 
Issue: FL’s decentralized nature makes it hard to identify who is responsible for biased predictions. If a FL model wrongly 
diagnoses a minority patient because of biased training data, it is not clear whether the algorithm designer, the participating 
hospitals, or the FL platform is to blame [8]. 
Impact: Gaps in accountability reduce trust and options for legal action. This can lead to lawsuits without clear responsibility, 
especially for underserved groups affected by biased results.  
Mitigation: Audit trails that show data sources and fairness measures at each institution can clarify responsibility [8]. Standard 
protocols for fairness audits, created with regulators, will help ensure accountability. For example, a hospital could trace a biased 
prediction back to its data contribution, allowing for corrective action. 

 
C. Fairness and Trust 
1) Bias Amplification Across Institutions 

Issue: Systemic biases in hospital data, such as wealthier patient demographics in urban centers, can dominate federated 
learning models during aggregation and distort predictions. For example, a federated learning diabetes predictor trained on 
urban data may not recognize patterns in rural patients [3]. 
Impact: Bias amplification harms underserved groups, including racial minorities and low-income patients, worsening 
healthcare disparities. This can result in delayed treatments for rural populations. 
Mitigation: Fairness-aware aggregation, which weights updates based on demographic representation, helps lessen bias [5]. 
Including underrepresented hospitals in model design ensures diverse data is included. For instance, emphasizing data from a 
rural clinic could enhance model performance for low-income patients. 

2) Cultural and Contextual Sensitivity 
Issue: Standard fairness measures, like equalized odds, may overlook cultural differences. A depression diagnostic tool that 
depends on Western symptom criteria, such as self-reported sadness, could misidentify patients in cultures where mental health 
is stigmatized [4].  
Impact: Models that lack cultural awareness exclude diverse populations. This can harm trust and effectiveness in healthcare 
systems worldwide, especially for non-Western patient groups.  
Mitigation: Fairness measures that are tailored to cultural needs, developed with input from local communities, can better 
address specific requirements. For instance, involving Indigenous healers in the creation of these measures could improve 
mental health models for Native populations. Collaborating with ethicists from different fields also helps to build solutions that 
respect cultural contexts. 

3) Transparency and Trust in Fairness Processes 
Issue: Complex fairness algorithms, like adversarial training, are often difficult to understand. This makes explaining changes 
in fairness to clinicians or patients hard [12]. For example, the fairness adjustments in a lung cancer model may seem like a 
"black box" to healthcare providers. 
Impact: A lack of transparency reduces trust between clinicians and patients and slows down adoption. Clinicians might 
disregard a model if they do not understand its fairness methods. This can affect the quality of care. 
Mitigation: Federated explainable AI tools, like LIME, integrated into federated learning interfaces, give clear explanations of 
model decisions [12]. Reporting fairness measures, such as steps taken to correct bias, helps build trust. For instance, a clinician 
could use LIME to see why a patient was flagged for lung cancer risk; this increases confidence in the model. 
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IV. COMPUTATIONAL CHALLENGES 
Implementing fairness-aware federated learning (FL) in healthcare poses significant computing challenges, especially when 
hospitals with different hardware capacities work together. These challenges arise from data diversity, differences in resources, and 
the need for large-scale coordination. They can be divided into three main areas: Data and Model Complexity, Resource and 
Scalability Limitations, and Interpretability and Validation. Each area describes its specific issues, impacts, and methods to tackle 
them. It provides clear examples and simple explanations of technical terms to make the content easier to understand and to show 
how they connect. These challenges emphasize the need for effective and inclusive solutions to ensure fair healthcare AI. 
 
A. Data and Model Complexity 
1) Data Heterogeneity (Non-IID Data) 

Issue: Healthcare data is not independent or identically distributed. Hospitals have different patient demographics, including 
varied ages and ethnic groups. For example, a rural hospital with mostly older patients could affect a diabetes prediction model, 
making it less accurate for younger populations. 
Impact: Non-IID data causes inconsistent model performance across different sites. This inconsistency harms fairness and 
generalization, especially for underrepresented groups like minority populations that have unique health patterns. 
Mitigation: Algorithms like q-FedAvg change model aggregation to focus on institutions with underrepresented data. This 
approach improves fairness across diverse populations. However, q-FedAvg raises computational demands by 30 to 50% 
because of multi-objective optimization. Federated transfer learning can help models work together across different datasets, 
but validation is necessary to maintain fairness. For instance, a rural clinic using a lightweight FL framework could support a 
national diabetes prediction network, enhancing outcomes for younger patients. 

2) Trade-offs Between Fairness and Accuracy 
Issue: Making sure a stroke prediction model works the same for men and women often lowers overall accuracy because it 
limits the model's ability to learn. Adversarial training removes sensitive traits to cut down on bias, but this increases GPU 
memory needs [6]. 
Impact: Lower accuracy can make the model less useful in real-life situations. This may result in unreliable diagnoses. High 
computing costs can also prevent smaller hospitals from using it, leading to greater inequalities. For example, a model focused 
on fairness might miss subtle signs of a stroke, undermining trust among clinicians. 
Mitigation: Pareto optimization during aggregation balances fairness and accuracy, as noted by Zhang et al. (2020) [7]. 
Lightweight methods that emphasize fairness, such as fairness-aware distillation, reduce computational needs. These strategies 
maintain the usability of models in clinical settings while addressing fairness, despite trade-offs that may restrict their use in 
hospitals with limited resources. 

 
B. Resource and Scalability Limitations 
1) High Computational Costs 
Issue: To ensure fairness in federated learning models, like checking a cancer prediction model’s performance across racial groups, 
we need extra steps, such as detecting bias and setting fairness rules. This greatly increases the need for computing power. FairFed, 
for example, includes fairness rules but also needs more resources [7].  
Impact: Small clinics with old hardware struggle to participate. They may be left out of federated learning networks. This situation 
favors well-funded hospitals and can overlook hypertension trends in rural patients. As a result, treatment may be delayed. 
Mitigation: Federated coresets allow clinics to select a small, representative subset of data locally. This approach helps cut down on 
computing demands while maintaining high model quality [8]. Government-funded cloud credits or partnerships with tech 
companies could provide rural hospitals with access to scalable computing resources. This would encourage more clinics to join in. 
For example, a small clinic might use cloud support to participate in a cancer screening federated learning network, improving 
model inclusivity. 
2) Scalability in Large Healthcare Networks 
Issue: FL networks that include hundreds of hospitals worldwide, like those for rare disease modeling, struggle with coordination 
challenges. Collecting data while maintaining fairness requires a lot of computational power, and larger hospitals often dominate 
due to having more data.  
Impact: Smaller clinics with limited hardware get sidelined, leading to less inclusive and fair models. For example, a rare disease 
model might not work well for rural populations if smaller hospitals cannot contribute effectively.  
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Mitigation: Clustered FL organizes hospitals by similar demographics, such as regional patient profiles. This approach makes data 
collection easier. Hierarchical aggregation frameworks also improve scalability. These strategies help ensure that data from smaller 
clinics, including those in Indigenous communities, is represented properly, but implementing them requires careful management of 
resources. 
3) Communication Efficiency 
Issue: Regularly sending model updates to a central server, such as a COVID-19 prediction model, uses a lot of bandwidth. This 
causes problems for rural clinics with weak internet connections. A 100MB update from 500 hospitals takes up 50GB each time. 
Impact: High communication costs slow down training and may leave out hospitals with limited resources, which affects fairness 
and participation in the network. For instance, a rural clinic’s poor bandwidth might not allow timely updates, which can distort 
model performance. 
Mitigation: Techniques like gradient compression, which include sparsification and quantization, can reduce data size by up to 70% 
[10]. However, as Ruan et al. (2023) point out, additional calculations are needed to ensure that important fairness-related data 
remains intact [11]. Validation checks help ensure that compressed updates maintain fairness for minority patient groups in COVID-
19 models. 

 
C. Interpretability and Validation 
Model Interpretability and Validation 
Issue: Fairness-aware FL models, such as those for lung cancer prediction, need clear decisions to build clinical trust. Tools like 
SHAP, which approximate Shapley values to explain predictions, add 40% extra processing in distributed settings [6].  
Impact: A lack of clear explanations reduces trust among healthcare providers and slows down adoption. Validating across different 
patient groups requires more processing, which can be tough for smaller hospitals. For example, unclear predictions in a lung cancer 
model may cause clinicians to reject it.  
Mitigation: Federated explainable AI tools, like LIME integrated into FL interfaces, offer clear explanations with lower 
computational costs [12]. Securing the aggregation of fairness metrics across subgroups allows for strong validation without risking 
privacy. These tools help clinicians understand model decisions, like why a patient was flagged for lung cancer risk, which builds 
trust. 

 
D. Real-World Healthcare Context 
The application of fairness-aware federated learning (FL) in healthcare faces many real-world challenges related to operations, 
regulations, and resources. Hospitals encounter issues like complying with regulations, integrating into existing workflows, staying 
within budget, and training staff. These factors make it difficult to adopt FL systems that emphasize fair and privacy-protecting AI. 
The practical challenges, along with the ethical and technical issues previously mentioned, fall into three main categories: 
Regulatory and Privacy Constraints, Operational and Workflow Integration, and Resource and Training Limitations. Each category 
presents its own problems, impacts, and solutions. Specific examples clarify these issues and link them to ethical concerns like fair 
participation and technical challenges such as high resource needs. 

 
E. Regulatory and Privacy Constraints 
Compliance with Privacy Regulations 
Issue: Healthcare institutions must follow strict regulations such as HIPAA (U.S.) and GDPR (Europe) that require strong protection 
of patient data. FL's model update sharing does not include raw data. However, it risks information leaks through inference attacks, 
emphasizing the ethical challenge of privacy [6]. For instance, a hospital that contributes to an FL-based cancer prediction model 
must make sure its updates do not accidentally disclose patient identities. 
Impact: Not following these rules could result in legal penalties and loss of patient trust, especially for vulnerable groups with 
limited digital skills. The complicated regulations might discourage hospitals from joining FL networks. This, in turn, reduces data 
diversity and fairness. 
Mitigation: Using differential privacy can help. This method adds noise to model updates, protecting sensitive data while keeping 
the model useful [7]. A digital platform with different levels of consent, which provides simple visuals for patients with low 
literacy, can help ensure informed consent meets GDPR standards. For example, a rural hospital might use this platform to safely 
join a diabetes prediction network, improving compliance and trust. 
F. Operational and Workflow Integration 
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Integration with Hospital Workflows 
Issue: Hospital workflows often focus on immediate patient care. This focus can be interrupted by the additional steps needed for 
federated learning (FL) participation, such as local model training and fairness validation. For example, a busy urban hospital may 
find it hard to allocate staff time to manage FL processes for a sepsis prediction model. These tasks can conflict with clinical 
priorities. 
Impact: Workflow disruptions make it harder to adopt FL, especially in understaffed hospitals, limiting fair participation. This bias 
skews models toward well-resourced institutions, raising concerns about equal access. Consequently, models may not work well for 
rural or minority patients. 
Mitigation: Automated FL pipelines within existing EHR systems could reduce manual work and consequently ease participation 
for the hospitals. For instance, a simplified FL might enable a rural clinic to join a national stroke prediction network without 
unbearably interfering with their day-to-day work. Although expensive initially, training hospital IT personnel to manage the 
pipelines would guarantee seamless integration. 

 
G. Resource and Training Limitations 
1) Budget Limitations 
Issue: Fairness-aware FL requires significant computation resources, like GPUs for local training and network bandwidth for model 
updates, and these are expensive. Small or rural hospitals may not have the budget to upgrade hardware or employ specialized staff, 
due to the computational challenge of high-cost states. For example, a community clinic may be unable to afford the necessary 
infrastructure for COVID-19 prediction modeling.  
Impact: Budgetary impediments eliminate under-resourced hospitals, reducing the scope of the model. This perpetuates disparities 
for such under-resourced hospitals or marginalized communities with under-funded health systems, like low-income patients, which 
goes back to the ethical challenge of equitable participation.  
Mitigation: The government or charities can offer subsidized cloud credits or partner with tech vendors to provide scalable compute 
resources that small clinics can utilize [5]. For example, a subsidized cloud could enable a rare disease FL network to include a 
remote hospital with improved fairness. Other options worthy of consideration are open-source, lightweight FL frameworks for 
under-resourced settings, which, if pursued, will go some way toward further reducing costs but will require coordinated funding to 
develop. 
2) Staff Training and Expertise 
Issue: Fairness-aware FL implementation requires experts in AI, data science, and fairness metrics, which many hospitals, 
particularly small ones, lack. Clinicians and IT staff hardly understand complex fairness algorithms like the q-FedAvg algorithm 
that gives priority to under-represented data to enhance fairness [5], inasmuch as the complexity obstructs interpretability. 
Impact: Without adequate training, trust in the FL model will erode; clinicians may well reject a system that is viewed as 
sufficiently opaque; and participation will remain limited, thus putting already underserved patient groups at a disadvantage. For 
instance, any fairness amendment made to a lung cancer model may be disregarded by staff if they cannot interpret the outcomes, 
thus setting back for adoption. 
Mitigation: The Formation of comprehensive training programs for healthcare workers without a background in computer science 
can clarify the entire FL and fairness processes. For example, workshops pertaining to the use of federated SHAP [13], which helps 
interpret model predictions, could instill confidence among clinicians in decisions made by the cancer screening model. Online 
training programs, coupled with partnerships with academic institutions, could bridge the gap in expertise; however, scaling such 
partnerships would require ongoing investment. 

 
V. DISCUSSION AND SOLUTIONS 

Fairness-aware federated learning (FL) in healthcare faces a mix of ethical and technical challenges that make it hard to adopt and 
use effectively. These challenges include fair access, privacy risks, bias, accountability, cultural sensitivity, transparency, data 
differences, high computing costs, balancing fairness and accuracy, scalability, communication issues, and interpretability. Real-
world limits like regulations and budget constraints add to the complexity. This section brings together these challenges and offers 
practical solutions in three key areas: Improving Equity and Access, Protecting Privacy and Accountability, and Boosting 
Computational Efficiency and Fairness. Each solution targets specific problems, their effects, and ways to address them, involving 
stakeholders and promoting transparency to build trust and fairness. A summary table is also included to show how these issues 
connect and to make the information easier to understand. 
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A. Enhancing Equity and Access 
1) Addressing Equitable Access and Budget Limitations 
Issue: Small and rural hospitals often don’t have the computing power or expertise to join FL networks. This problem is made worse 
by tight budgets, which can lead to groups like Indigenous or low-income patients being left out. 
Impact: Leaving out under-resourced institutions causes models to favor well-funded hospitals, which keeps healthcare disparities 
alive. For example, a cancer screening model might miss early signs in minority groups. This problem is linked to the high costs 
involved in computation. 
Mitigation: Government-funded cloud credits or partnerships with tech companies can offer scalable computing resources, helping 
small clinics join FL networks [5]. For example, a rural clinic using affordable cloud services could join a national diabetes 
prediction network, helping to make the model more inclusive. By 2025, open-source, lightweight federated learning frameworks 
designed for low-resource settings will make it easier for clinics to take part. Involving people like hospital administrators and 
community leaders ensures the solutions fit local needs and encourages them to be used. 
 
B. Ensuring Privacy and Accountability 
1) Mitigating Privacy Risks and Informed Consent 
Issue: Sharing model updates can risk exposing sensitive information through inference attacks, as gradients might reveal private 
details like a patient’s HIV status [6]. Complex consent processes make it hard for patients with low health or digital literacy to 
participate, which creates challenges in meeting regulatory requirements. 
Impact: Privacy breaches can damage patient trust and result in regulatory penalties. Meanwhile, complex consent processes might 
exclude vulnerable groups, which goes against the ethical use of federated learning (FL). 
Mitigation: Using differential privacy, which adds noise to model updates, helps protect sensitive data while keeping the model 
effective [7]. A digital platform that provides different consent options—simple visuals for patients with low literacy and detailed 
information for others—can help ensure patients understand and agree to how their data is used. For example, a patient in a rural 
area might use a visual tool to better grasp how their data helps build a sepsis prediction model. Involving patient advocacy groups 
in creating these consent processes boosts transparency and trust, while also helping to meet GDPR and HIPAA standards. 
 
2) Improving Accountability for Fairness Outcomes 
Issue: The decentralized nature of FL can obscure responsibility for biased predictions, which in turn complicates accountability 
among various stakeholders, including hospitals, algorithm designers, and FL platforms [8]. This issue is closely tied to the 
computational challenge of interpretability.  
Impact: The lack of transparent accountability can have profound and lasting effects, notably impeding access to legal remedies and 
undermining trust, especially in instances where biased results have a disproportionate impact on marginalized communities, such as 
when a patient from a minority background receives an inaccurate diagnosis as a result of biased data, which in turn can lead to 
severe and far-reaching real-world consequences. 
Mitigation: Implementing audit trails that thoroughly document data lineage and fairness interventions can help clarify 
responsibility [8]. Also, the development of standardized fairness auditing protocols, created through collaboration with regulators, 
ethicists, and other stakeholders, can ensure accountability - for example, a hospital could trace a biased stroke prediction back to its 
data contribution and take corrective action, and by involving stakeholders like legal experts and healthcare providers in the design 
of these protocols, transparent accountability frameworks can be fostered. 
 
C. Optimizing Computational Efficiency and Fairness 
1) Addressing Data Heterogeneity and Scalability 
Issue: The presence of non-independent and identically distributed (non-IID) data - a phenomenon where patient demographics vary 
significantly across hospitals, with older populations often found in rural areas and younger cohorts in urban settings - can 
substantially impact model performance, and as noted in reference [9], large-scale federated networks that encompass hundreds of 
hospitals face considerable coordination challenges, which are underscored by the computational difficulties associated with 
scalability. 
Impact: Compromising not only fairness but also generalizability; meanwhile, the constraints imposed by scalability have a 
disproportionate effect on smaller institutions, which in turn exacerbate disparities in predictive models, particularly those related to 
rare diseases.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue VII July 2025- Available at www.ijraset.com 
     

155 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

Mitigation: Techniques like q-FedAvg have been proposed, which prioritize underrepresented data to enhance fairness, although 
they come with a notable computational overhead of 30-50%, as referenced in [5]. On the other hand, clustered federated learning 
offers a viable alternative by grouping hospitals based on demographic similarities, thus streamlining the aggregation process, as 
discussed in [9]; for instance, implementing a clustered FL strategy could facilitate the incorporation of rural patient data into a 
diabetes prediction model, ultimately promoting greater equity. Ultimately, it's crucial for stakeholders and data scientists to 
collaborate in refining these algorithms, striving to strike a balance between efficiency and fairness to maintain scalability. 
 
2) Balancing Fairness-Accuracy Trade-offs and Communication Efficiency 
Issue: Enforcing fairness, such as equal performance across genders in a stroke model, reduces accuracy, while adversarial training 
doubles GPU memory needs [6]. Frequent model updates consume significant bandwidth, especially for rural clinics with poor 
connectivity [10]. 
Impact: Reduced accuracy limits clinical utility, and high computational and communication costs exclude smaller hospitals, 
undermining equitable outcomes. 
Mitigation: Pareto optimization balances fairness and accuracy during aggregation, while fairness-aware distillation reduces 
computational demands [7]. Gradient compression, like sparsification, cuts bandwidth use by 70% but requires validation to 
preserve fairness-critical data [10, 11]. For instance, a COVID-19 prediction model could use compression to enable rural clinic 
participation without compromising fairness. Involving clinicians in validating trade-offs ensures models remain practical. 
 
3) Enhancing Interpretability and Transparency 
Issue: Complex fairness algorithms, like adversarial training, are opaque, and tools like federated SHAP, which explain predictions, 
add 40% computational overhead [6]. This links to the ethical challenge of transparency. 
Impact: Lack of interpretability erodes clinician trust, hindering adoption, as seen when a lung cancer model’s fairness adjustments 
are unclear, reducing confidence in its predictions. 
Mitigation: Federated explainable AI tools, such as LIME, integrated into FL interfaces, provide transparent explanations with 
lower computational costs [12]. Transparent reporting of fairness interventions, co-designed with clinicians and patients, fosters 
trust. For example, a clinician could use LIME to understand a cancer risk prediction, enhancing adoption. An international task 
force to standardize culturally adaptive fairness metrics by 2027 could further align solutions with diverse needs. 

 
VI. SUMMARY OF SOLUTIONS 

 
Challenge Impact Mitigation 

Equitable Access & Budget Excludes marginalized groups 
Subsidized cloud credits, 
lightweight FL 

Privacy & Consent Erodes trust, regulatory risks 
Differential privacy, tiered 
consent 

Accountability Hinders recourse for bias 
Audit trails, standardized 
protocols 

Data Heterogeneity & 
Scalability 

Skews performance, marginalizes 
small sites q-FedAvg, clustered FL 

Fairness-Accuracy & 
Communication 

Reduces utility, excludes rural 
sites 

Pareto optimization, gradient 
compression 

Interpretability & Transparency Erodes trust, limits adoption LIME, transparent reporting 
 
Such fixes, which are based on cross-disciplinary collaboration and the involvement of interested parties in an active manner, 
address the ethical and computational difficulties that are fairness-aware in federated learning (FL) in a very intricate way. Not 
acting quickly can worsen biases, which in turn can lead to a loss of trust in the use of AI in healthcare. Focusing on these three 
principles - transparency, fairness, and efficiency - these approaches facilitate the development of FL systems that are not only just 
and trustworthy but also privacy-compliant. 
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