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Abstract: Landslide susceptibility mapping (LSM) is essential for assessing landslide risk and preventing geological hazards. 

Despite the advances in deep learning, convolutional neural networks (CNNs) and transformer models still face challenges in 

achieving optimal mapping accuracy and effectively extracting multilevel landslide features. This study introduces CTLGNet, a 

CNN-transformer local-global feature extraction network, combining the strengths of both models to capture both local and 

global landslide features. We applied CTLGNet to LSM in the Three Gorges Reservoir and Jiuzhaigou, using nine landslide 

conditioning factors to construct the dataset. The dataset was randomly split into training, validation, and test sets (6:2:2 ratio). 

CTLGNet was compared to CNN, ResNet, DenseNet, ViT, and FrIT using various evaluation metrics. The results showed that 

CTLGNet outperforms all other models in terms of landslide prediction, with AUC values of 0.9817 and 0.9693 for the two 

regions. Although its Recall was slightly lower than some models, CTLGNet effectively extracts both local and global landslide 

features, achieving precise landslide localization and detail capture. Overall, CTLGNet excels in multilevel feature extraction 

and demonstrates strong potential for widespread LSM applications.  

Keywords: Convolutional neural network (CNN), landslide local-global features, landslide susceptibility mapping (LSM), 

transformer.  

I. INTRODUCTION 

Landslides are one of the most devastating natural disasters, threatening human life, property, and sustainable development. 

Landslide susceptibility mapping (LSM), which estimates the spatial likelihood of landslides based on geological, environmental, 

and historical data, provides crucial information for disaster mitigation and planning[1]. Many academics have evaluated different 

machine learning (ML) algorithms in LSM tasks during the past 20 years due to the rapid development of artificial intelligence 

(AI)[2],[3]. Recent advancements in artificial intelligence (AI) have led to the application of machine learning (ML) algorithms for 

LSM, enabling the automatic detection of patterns in landslide data and modeling complex relationships[4]. However, ML methods 

often require extensive feature engineering and are prone to issues like overfitting and underfitting. Deep learning (DL), a subset of 

ML, has shown significant success in imagerelated tasks[5],[6]. DL models, trained on large datasets in parallel computing 

environments, can automatically capture complex patterns in landslide and conditioning factors (LCFs), making them particularly 

effective for LSM[7],[8],[9]. Popular DL models, such as convolutional neural networks (CNNs) and transformers, each have 

distinct strengths and weaknesses[10]. CNNs excel at extracting local features (LLFs) from multisource remote sensing data but 

struggle with processing global contextual information due to their limited receptive field[11].  

 CNN-based models were able to effectively extract landslide local features (LLFs) from data because of the spatial translation 

invariance and minimal inductive bias of convolutions Remote sensing photos from multiple sources [13]. However, CNN-based 

models' small receptive field limits their capacity to handle large amounts of contextual data, which makes it difficult to capture 

landslide global features (LGFs) [14]. Transformer is an encoder-decoder sequence transformation model that captures global 

contextual information by expanding the receptive field through the use of the self-attention (SA) mechanism. Vision Transformer 

(ViT) is a noteworthy application that effectively uses the pure transformer backbone for image classification tasks, resulting in 

competitive performance in LSM tasks [15]. Compared to CNN, the SA mechanism enables the transformer to extract LGFs more 

accurately by calculating the correlations and weights between each pixel and every other pixel in the image [16]. Transformer-

based models, however, usually need to be trained on vast amounts of data and have comparatively poor LLF extraction capabilities 

[17]. Transformers, particularly the vision transformer (ViT), use the self-attention mechanism to capture global features (LGFs) but 

are less effective at extracting local features and require large-scale training data.  
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Both LGFs and LLFs are crucial for LSM. LGFs provide key information about the size, location, and distribution of landslides, 

while LLFs capture specific characteristics like edges, textures, and shapes. Combining the strengths of CNNs and transformers can 

improve the extraction of both types of features, enhancing LSM accuracy. Hybrid CNN-transformer models have been successfully 

used in tasks like image classification and semantic segmentation, but their effectiveness in LSM has not been extensively studied. 

To address this gap, we propose a hybrid CNN-transformer model, CTLGNet, designed specifically for LSM tasks. CTLGNet 

combines CNNs for LLF extraction and transformers for LGF modeling, enabling comprehensive feature extraction and improved 

landslide prediction. This paper presents a comparative analysis of CTLGNet with individual models, evaluating their capabilities in 

feature extraction and computational efficiency, to enhance the accuracy and reliability of LSM.  

  

II. STUDY AREA AND DATA 

Two landslide-prone areas were chosen as study areas to confirm the universality and dependability of the suggested model.  

1)  Site A: located in the western Hubei Province of China within the Three Gorges Reservoir area, including Zigui and Badong. It 

has a subtropical monsoon climate with hot summers and cold winters, experiencing heavy rainfall, especially from June to 

September, averaging 1100 mm annually. The region's rugged topography and unstable lithology, combined with developed faults, 

make it prone to landslides. As a key area for water conservation, assessing landslide risk in Site A is crucial.  

2 Site B: located in Jiuzhaigou County, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan Province, China. It has a highland 

humid climate with less precipitation and is characterized by steep topography, deep valleys, and high peaks where the Sichuan 

Basin meets the Tibetan Plateau. The region's complex geology and active tectonic movement contribute to geological risks. A 7.0 

magnitude earthquake in 2017 triggered numerous landslides, posing significant danger to locals and visitors. Therefore, accurate 

landslide susceptibility mapping (LSM) in Site B is crucial for risk assessment and mitigation.  

 

A. Landslide Inventory Map 

The landslide inventory maps for Site A and Site B were created using historical landslide data, remote sensing imagery, and on-site 

field survey data for Site A, and past landslide documentation and Google Earth imagery for Site B. Site A covers 23.40 km² and 

contains 202 landslides, mainly along the Yangtze River’s reservoir banks. Site B spans 9.51 km² and has nearly 4,000 landslides.  

These maps show landslide distribution and generate labels for model training in landslide susceptibility mapping.  

 

B. Landslide Conditioning Factors 

LCF selection is essential for LSM, as landslides occur in areas with similar geological and environmental conditions to past events. 

Nine LCFs were chosen: elevation, aspect, slope, lithology, distance from fault (DTF), distance from river (DTR), precipitation, 

land use/land cover (LULC), and NDVI. The digital elevation model generated the first three LCFs, while lithology and fault data 

were obtained through vectorization from the National Geological Archive’s 1:2,000,000 scale geological map database.TABLE 1 

shows detailed information on LCFs in Sites A and B.  

 

  

Table   1   
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III. METHODOLOGY 

 

 
Fig 1  

 

We designate nine geo-environmental parameters as LCFs and analyze their multicollinearity and significance. Patch blocks from 

images are created to form landslide datasets, which are then split into training, validation, and test sets (6:2:2 ratio). LSM is 

generated using CNN, ResNet, DenseNet, ViT, FrIT, and CTLGNet. Finally, the models' generality and accuracy are compared. The 

comprehensive flowchart is shown in Fig. 1. 

 

A. Preprocessing of Data 

Data preprocessing involved coordinate system unification, resampling, and picture normalization. We standardized the coordinate 

systems and used bilinear interpolation for resampling to unify spatial resolution. This ensured consistent row and column counts 

for LCFs. The Z-score method was applied to normalize the LCF images, reducing magnitude differences between variables and 

speeding up model convergence[20].  

 

B. LCFs Selection 

Since low importance or significant multicollinearity can have a detrimental effect on model stability and efficiency, it is imperative 

to ensure the independence and relevance of LCFs throughout the LSM process. In order to generate the landslide datasets, 

multicollinearity analysis and importance rating are necessary[21].  

1) Multicollinearity Analysis: We used the Variance Inflation Factor (VIF) and tolerance (TOL) to do a multicollinearity analysis 

to evaluate the correlation between LCFs. VIF's mathematical expression is as follows, and it aids in quantifying 

multicollinearity;  

VIF     

  

2) Evaluation of Importance: We used the random forest model to compute the Gini index for Sites A and B to assess the 

significance of each LCF in the occurrence of landslides. When the total of all LCF Gini indices equals 1, a higher Gini 

coefficient denotes greater relevance.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue III Mar 2025- Available at www.ijraset.com 

     

 

4 51  
© IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

C. Building a Landslide Dataset 

Following preprocessing and LCF selection, the LCFs are stacked into a 3-D matrix (H, W, C), where T is the number of LCFs, W is 

the width, and H is the height. The center of a patch block, which is enlarged to 72 × 72 × 9, is chosen at random from a landslide 

pixel. Ten thousand landslide patch blocks and an equal number of non-landslide blocks are produced for Sites A and B. A 6:2:2 

ratio is used to separate the dataset into training, validation, and test sets. While keeping the block size for model training constant, 

data augmentation methods such as random horizontal flipping, rotation, and scaling are applied to the training set to improve 

sample diversity.  

  

D. CNN-Based Models  

1) CNN: CNN: The LeNet-5 CNN model, which was first used for digit recognition in the 1990s, is useful for extracting LLFs 

from input data since it has local perception, parameter sharing, and translation invariance. CNNs have shown great success in 

landslide susceptibility mapping (LSM) and are frequently used in computer vision (CV). In this work, we used 2-D 

convolutional kernels to build a ten-layer CNN network for LSM. The architecture efficiently extracts high-dimensional 

landslide features and produces good LSM results thanks to its two convolutional layers (3 × 3 kernel), two max-pooling layers, 

two ReLU activation layers, a batch normalization (BN) layer, and a fully connected layer.  

2) ResNet: ResNet addresses network degradation and gradient vanishing issues by introducing residual learning, where input 

feature maps are added to the output after convolution operations through skip connections. This allows the network to learn 

residuals directly. We used ResNet18 for the landslide susceptibility mapping (LSM) model, with an architecture of 18 layers. 

The residual blocks in ResNet18 help train deeper networks efficiently, ensuring better propagation and retention of landslide 

features.  

3) DenseNet: DenseNet addresses gradient vanishing and feature reuse by introducing dense and skip connections, where each 

layer connects to all previous layers, ensuring rich information flow. Its structure includes multiple dense blocks, each with 

convolutional layers and a transition layer to control feature map dimensionality and reduce complexity. In this study, we used 

DenseNet-BC (with bottleneck and compression) to enhance LSM results by reducing feature map dimensionality and 

improving performance.  

 

E. Transformer-Based Model  

1) VIT: Introduced by Google in 2020, extends the transformer model to computer vision by treating images as 1-D sequences. It 

divides the image into patch blocks, flattens them into vectors, and uses an embedding layer to map them to a high-dimensional 

space. The vectors then pass through multiple encoder layers, including a self-attention (SA) layer, to extract global features. 

For LSM, we used the original ViT structure with four attention heads and eight transformer layers, effectively capturing 

landslide global features and focusing on key areas of the image.  

2) FrIT: Introduced to address the limitations of CNN and ViT by capturing both global and local contextual features[24]. Unlike 

ViT, which uses the self-attention (SA) mechanism, FrIT utilizes 2-D fractional Fourier transform layers to extract global 

context. The rest of its structure is similar to ViT. We adapted FrIT for the LSM task and compared its performance with the 

model proposed in our study.  

  

 
Fig 2 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue III Mar 2025- Available at www.ijraset.com 

     

 

4 5 2  
© IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

F. CTLGNet 

It is a hybrid model designed to improve landslide spatial prediction accuracy by simultaneously extracting local (LLFs) and global 

features (LGFs). It combines a convolutional architecture for LLF extraction and an improved transformer architecture for LGF 

extraction, as shown in Fig. 2. 

1) The LLFs extraction module in CTLGNet consists of three blocks: two convolution layers (3×3 kernel) with BN and ReLU to 

capture low- and high-level LLFs, and a final block with a convolutional layer, ReLU, and max pooling to extract higher-level 

LLFs. This structure ensures the effective extraction of LLFs from landslide areas of various sizes. X  RH*W*C represents the 

input image  

Xp = MaxPool(Conv(Conv(Conv(X))))   

X is transformed into a 1-D sequence Xp  R1×(P²·C), where p is the resolution of each image patch, enabling the model to 

effectively capture a broader range of high-dimensional and critical LLFs.  

 

2) LGFs Extraction Module: The LGFs extraction module uses an improved transformer after patch and position embedding. Each 

transformer encoder includes multihead self-attention (MSA), layer normalization (LN), multilayer perceptron (MLP) with 

GELU activation, and skip connections. The encoder input is XL.  

= MLP(LN(XL))+ XL  

XL+1 = MSA    

In CTLGNet, we replace the class token with sequence pooling (SeqPool), which captures relevant information from different input 

image regions. SeqPool is an attention-based method that balances the sequential embeddings in the transformer encoder's output. 

This enhances the model's ability to handle spatially sparse data, improving LSM performance.  

 

G. Model Evaluation Metrics 

This study uses several evaluation metrics to assess model performance, including overall accuracy (OA), precision, recall, F1-

score, Matthews correlation coefficient (MCC), Kappa coefficient, root mean square error (RMSE), mean absolute error (MAE), 

area under the curve (AUC), and receiver operating characteristic (ROC). Landslide density (LD) is a measure of landslide 

distribution within LSM results, classified into five categories: very low (VL), low (L), moderate (M), high (H), and very high 

(VH). LD is calculated as the ratio of landslide area to the total zone area within the susceptibility zones.  

 

H. Experimental Environment and Hyperparameter Settings 

Microsoft Visual Studio 2021, PyCharm 2021, and Python 3.8 were used in the software's development, and the Linux-Ubuntu 

18.04.05 LTS operating system was used for testing. DL was constructed using the Keras 2.4.3 framework. Using the stochastic 

gradient descent optimizer, a learning rate of 0.001, and a batch size of 16, hyperparameters were adjusted by trial and error. The 

output layer selected cross-entropy loss with label smoothing and employed the "Softmax" activation function. 100 training epochs 

were conducted, and the best model was chosen by tracking validation accuracy.  

IV. RESULTS AND ANALYSIS 

A. Analysis of the LCFs 

The multicollinearity analysis of LCFs in Sites A and B (Fig. 3) shows low multicollinearity. In Site A, all LCFs have VIF values 

below 2, with elevation having the highest VIF of 1.933. In Site B, all LCFs have VIF values below 5, with elevation and 

precipitation having the highest VIFs of 4.560 and 4.649, respectively. Fig. 4 shows that all LCFs influence landslide occurrence to 

varying degrees, with DTF having low importance in both sites. NDVI is less important in Site A but significant in Site B, while 

slope is highly important in Site A but less so in Site B. Due to the lack of strong multicollinearity and the importance of all LCFs, 

we will use them to obtain LSM results.  

 
Fig 4  
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Fig 3 

 

B. Comparison of LSM Results 

Using six network architectures, we classified landslide susceptibility in Sites A and B into five categories: VL, L, M, H, and VH. 

Most areas were classified as VL and L, with H and VH zones closely aligning with historical landslides. The CTLGNet model 

showed the best alignment with historical landslides. In Site A, VL and L zones are mainly along the Yangtze River, while in Site B, 

they are in the western and central regions. In Site A, 87.21% of the area is low landslide-prone, and CTLGNet accurately predicted 

97.71% of historical landslides. The VH zones accounted for 6.27% of the area but represented 88.95% of predicted susceptibility. 

LD values increased with susceptibility levels, with CTLGNet showing the highest LD values, indicating its superior predictive 

power over other models.  

 

C. Comparative Evaluation of Model Performance 

The dataset was split into training, validation, and test sets to evaluate the performance of six models. ROC curves and AUC values 

(Fig. 5) showed that CTLGNet outperformed all models, achieving the highest AUC values for both Site A (0.9817) and Site B 

(0.9693). Table 2 compares model metrics, with CTLGNet leading in most, including accuracy, precision, F1-score, MCC, and 

Kappa. In Site A, CTLGNet achieved an OA of 95.45%, precision of 93.55%, F1-score of 95.46%, and MCC of 0.910. In Site B, it 

achieved an OA of 93.48%, precision of 91.14%, and recall of 96.62%. These results confirm CTLGNet as the top-performing 

model for landslide susceptibility mapping.  

 

 
fig 5 
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Table 2  

 

V. CONCLUSION 

In this article, we propose CTLGNet, a model that incorporates both LLFs and LGFs for landslide susceptibility mapping (LSM). It 

was applied in the Three Gorges Reservoir area and Jiuzhaigou, using historical landslide data and nine LCFs. CTLGNet's 

performance was evaluated against five models: CNN, ResNet, DenseNet, ViT, and FrIT.The results show that CTLGNet provides 

accurate LSM, with the VH and H susceptibility zones closely matching historical landslide locations. It outperforms other models 

in all evaluation metrics except Recall, achieving AUC values of 0.9817 and 0.9693 for the two regions. Additionally, CTLGNet 

produces the highest mean landslide susceptibility values and the lowest MAD and SD within historical landslide areas, indicating 

superior localization and detail extraction. It also has the lowest number of parameters and FLOPs among transformer-based 

models, making it more computationally efficient. In conclusion, CTLGNet demonstrates excellent predictive power and 

generalization, making it highly promising for a wide range of LSM applications.  

  

VI. CHALLENGES AND FUTURE WORK 

The accuracy and credibility of landslide susceptibility mapping (LSM) are heavily influenced by the quality of data sources. With 

advancements in remote sensing technology, multimodal remote sensing data can provide complementary information, but 

integrating such data to create a high-quality landslide dataset remains a challenge. In addition, training samples are essential for 

building LSM models. While this study used basic data augmentation techniques like flipping and rotation, more advanced methods, 

proven effective in image classification, could further improve LSM accuracy. Exploring the potential of these sophisticated 

techniques to enhance landslide feature detection is an important area for future research. Finally, the chosen model architecture 

significantly impacts LSM performance. Different deep learning models may vary in how they extract and process landslide 

features. While this study used a sequential CNN-transformer structure, future research could explore parallel or hierarchical 

architectures to improve LSM model performance.  
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