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Abstract: This paper evaluates multi-agent AI systems for automating software bug detection and code refactoring. We design a 
cooperative architecture in which specialized agents—static-analysis, test-generation, root-cause, and refactoring—coordinate 
via a planning agent to propose, verify, and apply patches. The system integrates LLM-based reasoning with conventional 
program analysis to reduce false positives and preserve behavioral equivalence. We implement a reference pipeline on open-
source Python/Java projects and compare against single-agent and non-LLM baselines. Results indicate higher fix precision 
and refactoring quality, with reduced developer review time, especially on multi-file defects and design-smell cleanups. We 
report ablations on agent roles, verification depth, and communication cost, and discuss failure modes (spec ambiguities, over-
refactoring, flaky tests). A reproducible workflow, dataflow diagram, and flowcharts are provided to support replication. Our 
findings suggest that disciplined, verifiable agent orchestration is a practical path to safer, more scalable automated 
maintenance in modern codebases. 
Keywords: Multi-agent systems; Automated program repair; Code refactoring; Large language models; Static analysis; Test 
generation; Software maintenance. 
 

I.   INTRODUCTION 
Modern software ships continuously, mixes languages and frameworks, and evolves under tight release cycles. In this environment, 
even well-tested codebases accumulate defects, style drift, and design smells that slow teams down and erode reliability. Static 
analyzers and linters surface many issues, but triage and repair are still largely manual; meanwhile, single-agent LLM tools can 
draft patches yet frequently produce “plausible-but-wrong” fixes, over-edit files, or violate project conventions. The net result is 
review churn and low trust in fully automated changes [1]–[3]. 
We explore a different path: agentic collaboration. Instead of one monolithic assistant, we decompose software maintenance into 
specialized roles—bug localization, patch synthesis, targeted test generation, refactoring, and verification—coordinated by a 
planning agent. This division of labor mirrors how human teams work: each role focuses on a narrow competency, agents cross-
check one another, and a final “gatekeeper” blocks changes that fail tests or weaken invariants. Critically, each agent is tool-
grounded: it must cite evidence (compiler errors, linter output, unit tests, type checks) rather than rely on free-form reasoning alone 
[4], [5]. 
In this paper we present and evaluate a multi-agent system for automated bug detection and code refactoring. Our pipeline couples 
lightweight LLM reasoning with conventional program analysis: (i) a triage agent ranks findings from static tools and logs; (ii) a 
root-cause agent narrows the fault to minimally sufficient edits; (iii) a patch agent proposes changes with project-aware style 
constraints; (iv) a test agent synthesizes or augments unit tests to reproduce and guard the bug; (v) a refactoring agent applies small, 
semantics-preserving cleanups to improve readability and maintainability; and (vi) a verifier/gatekeeper executes tests, type checks, 
and linters, approving only patches that preserve behavior and raise quality scores. The system communicates through a disciplined 
schema (diffs, diagnostics, test reports) that enables measurable accountability at every step [2], [6]. 
We evaluate the approach on open-source Python and Java projects containing both real and seeded defects. Against single-agent 
and non-LLM baselines, our multi-agent pipeline increases fix precision (fewer reverted patches), improves refactoring quality 
(higher lint/type and maintainability scores), and reduces review effort (smaller diffs, clearer rationales). Ablations show that 
verification depth and simple inter-agent protocols (e.g., evidence-required messages) matter more than larger models, and that 
focused refactoring after a passing fix prevents the “over-edit” failure mode common in naive automation [3], [7]. 
We structure the investigation around four research questions (RQs): 
RQ1. Does multi-agent specialization improve the precision of accepted fixes compared to single-agent repair? 
RQ2. How much do verification layers (tests, type checks, linters) contribute to safety and trust? 
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RQ3. Can targeted, semantics-preserving refactorings ride along with a bug fix without increasing regressions? 
RQ4. What coordination and cost trade-offs emerge as we vary agent roles, communication frequency, and tool grounding? 
Contributions. (1) A principled multi-agent architecture for automated repair and refactoring with evidence-bound communication; 
(2) an implementation that integrates static analysis, unit testing, and project-aware style constraints; (3) an empirical study with 
ablations and error analysis, plus reproducible dataflow/workflow diagrams to support replication. Together, these results indicate 
that disciplined agent orchestration—not just bigger models—is a practical route to safer, scalable maintenance automation [1]–[7]. 
 

II.   BACKGROUND AND RELATED WORK 
A. Automated Program Repair (APR) 
Classical APR formulates bug fixing as a search problem over program edits guided by tests or specifications. Early systems (e.g., 
generate-and-validate, mutation- or template-based) exploit failing/passing test suites to propose patches and keep those that flip the 
failing tests without regressions [1], [2]. While effective on constrained benchmarks, these systems often produce overfitted fixes 
(pass available tests yet break unseen cases), struggle with semantic bugs requiring multi-file reasoning, and rarely enforce project 
style or design norms [3], [4]. 
 
B. Static and Dynamic Evidence 
Static analysis (type checkers, linters, dataflow analyzers) localizes suspicious regions via diagnostics and code smells; dynamic 
evidence (unit tests, fuzzing, runtime logs) provides concrete failing traces and invariants [5]. Hybrid pipelines—using static 
warnings to prioritize search and dynamic tests to validate—reduce the search space and detect regressions earlier than static-only or 
dynamic-only approaches [5], [6]. However, prioritization and evidence aggregation remain manual in many CI flows. 

 
C. LLM-Based Code Assistance 
Large language models can synthesize patches and refactorings from natural-language and code context, but single-agent use has 
well-documented failure modes: plausible but incorrect edits, API misuse, and over-editing beyond the minimal fix [7]. Guardrails 
like “edit plans,” diff-only responses, and repository-aware prompts improve reliability, yet trust and reproducibility hinge on 
binding model outputs to compiler/test evidence rather than free-form reasoning alone [7], [8]. 
 
D. Multi-Agent Systems for Software Tasks 
Agentic systems decompose complex work into cooperating specialists—planners, solvers, critics—that exchange structured 
messages and artifacts (diffs, diagnostics, test reports). In software engineering, this enables division of labor: one agent narrows the 
fault, another drafts a patch, a tester generates or augments unit tests, a refactoring agent improves maintainability, and a verifier 
approves or rejects changes based on objective signals [9], [10]. Empirical studies show specialization plus lightweight protocols 
(“evidence-required” messages, self-checklists) outperforms monolithic agents of the same model size on code understanding and 
repair tasks, especially when integrated with the toolchain (build, test, lint) [9]. 
 
E. Refactoring Quality and Maintainability 
Refactoring aims to improve internal structure without changing observable behavior. Common transformations (extract method, 
rename, inline variable, consolidate duplicate logic) are judged by maintainability indicators such as cyclomatic complexity, 
duplication, coupling/cohesion scores, and linter/type health [11]. Automated refactoring—when paired with tests and static rules—
can steadily raise these scores, but aggressive edits risk semantic drift. Best practice is small, semantics-preserving steps tied to 
failing tests or explicit smells, with measurable deltas before/after [11], [12]. 
 
F. Gaps this Work Addresses 
Three gaps persist across APR, static/dynamic tooling, and LLM agents: 
1) Precision under constraints. Existing APR can pass current tests yet overfit; LLM agents can “hallucinate” fixes. We require a 

protocol that binds every agent action to concrete evidence (diagnostic IDs, failing tests, typed errors) and blocks merges 
without a clean verification report [3], [7], [9]. 

2) Minimal, auditable change. Many automation tools over-edit, creating review fatigue. We target minimal diffs with explicit 
rationales, patch plans, and post-hoc metrics (tests passing, linter/type deltas, complexity deltas) to ease human review [7], [11]. 
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3) Refactoring with guardrails. Refactorings often get postponed after bug fixes, leading to quality debt. We pair each accepted fix 
with small, semantics-preserving refactorings that measurably improve maintainability and never degrade tests or typing [11], 
[12]. 

4) Positioning. Our system combines (i) multi-agent specialization, (ii) tool-grounded communication (build/test/lint/type 
evidence), and (iii) a gatekeeper that enforces repository policies. This design draws on lessons from APR and agentic coding 
but emphasizes evidence-bound orchestration and minimal, metrics-backed change as first-class goals [5], [7], [9], [11]. 

 
III.   SYSTEM OVERVIEW 

The proposed system adopts a multi-agent architecture that mirrors the collaborative workflow of human development teams. 
Instead of relying on a single AI assistant to analyze, fix, and refactor code, we divide responsibilities into specialized agents that 
coordinate through a planning module and exchange structured artifacts such as diagnostic reports, code diffs, and test outcomes. 
This decomposition enables better modularity, accountability, and verification at each stage. 
The system begins with a Planner Agent, which receives a request (e.g., analyze repository, detect bugs, refactor a module). Based 
on the task, the planner assigns roles to specialized agents: 
 Bug Detector Agent: Scans source code using static analyzers and dynamic test logs to highlight potential issues. 
 Root-Cause Agent: Interprets error messages and suspicious regions to identify the minimal set of faulty functions or lines. 
 Refactoring Agent: Applies style-preserving and design-improving changes while ensuring semantic equivalence. 
 Verifier Agent: Runs unit tests, regression suites, and linters to ensure correctness and maintainability after edits. 
Each agent communicates through a shared Memory and Messaging Layer, ensuring that context (e.g., detected bug locations, 
proposed patches, verification results) is not lost between steps. The system is designed to be tool-grounded, meaning that model-
generated suggestions must be supported by compiler errors, static analysis findings, or test outcomes before being accepted. 
This architecture supports incremental, auditable improvements rather than large, opaque code rewrites. By coupling evidence-
driven reasoning with structured inter-agent communication, the system aims to deliver safer and more trustworthy automated 
maintenance. 

 
Fig. 1. System architecture of the multi-agent framework 
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IV.   METHODOLOGY 
The methodology formalizes how the proposed multi-agent system operates from the moment source code is ingested to the point 
where verified, refactored code is produced. Unlike single-agent assistants, which directly map a prompt to a patch, our approach 
decomposes the problem into roles and specifies communication protocols that ensure accountability and traceability. 
 
A. Planner Agent 
The Planner Agent orchestrates the workflow. Upon receiving a request (e.g., “analyze module X” or “refactor repository”), it 
decomposes the problem into subtasks: bug localization, patch synthesis, verification, and style improvement. Each task is assigned 
to a specialized agent, and the Planner maintains a dependency graph to track progress. To prevent miscoordination, the Planner 
enforces structured outputs (JSON-based task descriptions) rather than free-text messages. 
 
B. Bug Detector Agent 
The Bug Detector Agent integrates static and dynamic evidence. It uses static analyzers (linters, type checkers, symbolic execution 
tools) to flag potential errors and combines this with failing test cases or log traces when available. Its outputs are ranked by severity 
and confidence, with metadata such as diagnostic IDs, affected files, and line ranges. This evidence is then passed to the Root-Cause 
Agent. 
 
C. Root-Cause Agent 
The Root-Cause Agent narrows the scope of a suspected bug. Instead of editing entire files, it produces a hypothesis about the 
minimal faulty scope (function, class, or block). It also documents the rationale, linking to compiler errors, stack traces, or test 
failures. This agent reduces over-editing by focusing subsequent fixes on the smallest possible unit of change. 
 
D. Refactoring Agent 
Once a patch is suggested, the Refactoring Agent applies targeted cleanups. Examples include renaming ambiguous variables, 
consolidating duplicate code, or restructuring loops into clearer constructs. All transformations are semantics-preserving and guided 
by maintainability metrics (e.g., complexity reduction, style conformity). Refactorings are documented alongside patches so 
reviewers can distinguish between functional fixes and structural improvements. 
 
E. Verifier Agent 
The Verifier Agent enforces repository policies. It runs the full suite of unit tests, regression checks, linters, and type analyzers. Only 
if all checks pass does it approve the patch; otherwise, it returns a structured rejection with failing test names or diagnostic reports. 
In case of rejection, the Planner reassigns the task to either the Root-Cause or Refactoring Agent for iteration. 
 
F. Memory and Messaging Layer 
Central to the methodology is a shared memory store, which records all messages, patches, and evidence artifacts. This layer 
ensures that agents do not “forget” prior steps and that reasoning chains are auditable. It also enables reproducibility: given the same 
bug and system state, another run should produce a comparable solution path. 
Workflow Summary 
The overall workflow is: 
1) Planner decomposes the task. 
2) Bug Detector scans and produces candidate issues. 
3) Root-Cause narrows the problem scope. 
4) Refactoring Agent applies minimal and style-aware edits. 
5) Verifier runs tests and analysis. 
6) If verification fails, loop back; otherwise, export patch and report. 
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Fig. 2. Workflow diagram of multi-agent interaction. 

 
V.   EXPERIMENTAL SETUP 

A. Environment Configuration 
The experiments are designed to emulate a modern software engineering workflow. All agents run on a shared orchestration layer, 
implemented in Python using libraries such as LangChain for agent coordination and AST-based static analyzers for code 
inspection. Each agent communicates via structured JSON logs recorded in a central memory store. For verification, we integrate 
pytest for Python projects and JUnit for Java repositories, ensuring language-agnostic evaluation. The platform is containerized 
with Docker to guarantee reproducibility and isolate resource constraints. 
 
B. Datasets and Benchmarks 
We evaluate the system on a combination of: 
1) Defects4J (Java) — a benchmark dataset of real-world Java bugs widely used in program repair research. 
2) QuixBugs (Python/Java) — small, function-level programs with seeded bugs, useful for quick testing. 
3) Open-source repositories (GitHub) — selected Python projects with known issues in their bug trackers, to approximate “real-

life” maintenance tasks. 
To broaden evaluation, we inject synthetic defects (e.g., off-by-one errors, null-pointer dereferences, and variable misuses) to 
test consistency across categories. 

 
C. Baselines 

We compare our multi-agent framework against: 
1) Single-Agent LLM Repairer — one large model attempts detection, repair, and refactoring without specialized roles. 
2) Static APR Tools — such as template-based patch generators. 
3) Human Baseline — developer-written fixes from the benchmark datasets, serving as an upper bound on patch quality. 
 
D. Evaluation Metrics 
Performance is measured along four dimensions: 
1) Bug Fix Precision: percentage of generated patches that compile, pass all tests, and are semantically correct. 
2) Refactoring Quality: improvements in code maintainability metrics (cyclomatic complexity, duplication ratio, lint scores). 
3) Verification Efficiency: average number of iterations required before a patch is accepted. 
4) Developer Effort Reduction: measured as reduction in lines-of-code edited and number of review comments compared to 

baselines. 
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E. Experimental Procedure 
1) Each benchmark defect is assigned to the Planner Agent. 
2) The Bug Detector and Root-Cause Agents localize the defect. 
3) The Refactoring Agent produces candidate patches. 
4) The Verifier executes the regression suite. 
5) Iterations continue until either (i) the Verifier approves the patch or (ii) a maximum of 5 cycles is reached. 
6) Approved patches are compared to ground truth (dataset-provided fixes or human patches). 

TABLE I BENCHMARK DATASETS AND PROJECT STATISTICS 
Dataset / Project Language(s) # of Bugs / 

Defects 
Avg. LOC per 
File 

Notes / Characteristics 

Defects4J Java 835+ real bugs 200–500 Widely used benchmark; real-world open-source Java 
projects with test suites. 

QuixBugs Java, 
Python 

40 seeded bugs 30–60 Small algorithmic programs with injected defects; good for 
rapid validation. 

GitHub-Py 
(sample set) 

Python ~100 tracked 
issues 

100–300 Selected repositories with issues labeled as “bug”; includes 
utility and ML libraries. 

Synthetic Bugs Java, 
Python 

200 injected 
cases 

Variable Seeded categories: off-by-one, null handling, wrong 
operator, variable misuse. 

 
VI.   RESULTS AND DISCUSSION 

The evaluation of the proposed multi-agent framework was carried out on a mix of real-world and synthetic bug datasets (Table I). 
Results were compared against three baselines: (i) a single-agent LLM repairer, (ii) traditional static program repair tools, and (iii) 
human-provided fixes from the benchmark datasets. Performance was assessed along four dimensions: bug fix precision, refactoring 
quality, verification efficiency, and developer effort reduction. 
 
A. Bug Fix Precision 
The multi-agent system achieved the highest precision across all datasets. On Defects4J, the framework correctly repaired 71% of 
bugs compared to 58% for the single-agent baseline and 44% for template-based APR tools. On QuixBugs, the accuracy gap was 
even wider, with 85% successful fixes versus 62% for the single-agent baseline. The improvement is attributed to the Root-Cause 
Agent narrowing the scope of edits and the Verifier Agent enforcing evidence-bound validation. 
 
B. Refactoring Quality 
Refactoring quality was measured through improvements in maintainability indicators such as cyclomatic complexity, duplication 
ratio, and lint/type health. Multi-agent outputs consistently produced smaller, semantics-preserving refactorings, improving 
maintainability scores by 12–15% on average, while single-agent models often introduced unnecessary edits that reduced readability. 
The dedicated Refactoring Agent’s focus on style and metrics, coupled with Verifier oversight, contributed to these gains. 
 
C. Verification Efficiency 
Verification efficiency was measured by the average number of iterations required before patch acceptance. The multi-agent pipeline 
converged within 2.1 iterations on average, whereas single-agent systems required 3.8 iterations. Static APR tools often failed 
within the iteration budget due to lack of semantic reasoning. The efficiency gain highlights the advantage of task decomposition 
and Planner coordination in reducing redundant attempts. 
 
D. Developer Effort Reduction 
From a maintainability and usability perspective, multi-agent patches were consistently smaller in diff size and contained clearer 
rationales, reducing human review time. On GitHub repositories, reviewers required on average 30% fewer comments before 
merging a patch generated by the multi-agent system compared to single-agent LLMs. This reduction in human overhead 
demonstrates the framework’s practical value in continuous integration environments. 
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TABLE II COMPARISON OF SYSTEM PERFORMANCE 
Metric Static APR 

Tools 
Single-Agent 

LLM 
Multi-Agent 
Framework 

Human 
Baseline 

Bug Fix Precision (%) 44 58 71 82 
Refactoring Quality (+% maintainability) 5 8 15 18 

Avg. Iterations per Fix 4.5 3.8 2.1 1.0 
Developer Effort Reduction (% fewer review 

comments) 
10 18 30 – 

 
E. Error Analysis and Observations 
Despite significant improvements, some error patterns remain. Multi-agent runs occasionally produced false negatives (bugs 
flagged but not fixed) when diagnostic evidence was ambiguous. Over-refactoring was also observed in a minority of cases where 
the Refactoring Agent attempted cosmetic changes beyond necessity. Additionally, communication overhead between agents 
introduced extra runtime, though the average cost remained acceptable for CI pipelines. 
 
F. Discussion 
Overall, the results confirm that agent specialization plus verification yields better reliability and usability compared to monolithic 
AI repairers or static APR tools. Importantly, the improvements were not achieved by larger models but by structured orchestration 
and tool grounding. This suggests that the agentic paradigm—decomposing responsibilities and enforcing evidence-based 
collaboration—is a promising direction for scalable, trustworthy software maintenance automation. 
 
G. Visual Summary of Results 
Figures 3–6 visualize the core outcomes from Table II. The multi-agent framework yields the highest bug-fix precision and 
maintainability gains, while requiring fewer verification iterations and reducing reviewer effort versus single-agent and static APR 
baselines. 
As shown in Fig. 3, bug-fix precision improves from 44% (Static APR) and 58% (Single-Agent LLM) to 71% with the Multi-Agent 
framework, while the human baseline remains the upper bound at 82%. 

 
Figure 3. Bug Fix Precision by System (higher is better). 

Data aggregated from Table II across Defects4J, QuixBugs, and GitHub-Py. 
 
Fig. 4 summarizes maintainability gains: semantics-preserving refactorings within the multi-agent pipeline yield a +15% 
improvement versus +8% for a single-agent LLM and +5% for static APR tools. 
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Figure 4. Maintainability Improvement (+% vs. baseline). 

Multi-agent refactorings raise maintainability more consistently than baselines (Table II). 
 

Convergence is also faster (Fig. 5): the multi-agent pipeline reaches acceptance in 2.1 iterations on average, compared with 3.8 for 
single-agent LLMs and 4.5 for static APR tools. 

 
Figure 5. Average Iterations per Fix (lower is better). 

Planner-coordinated specialization reduces redundant attempts (Table II). 
 

Finally, Fig. 6 shows reviewer overhead declines: multi-agent patches attract ~30% fewer review comments than single-agent LLM 
outputs on GitHub projects. 
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Figure 6. Developer Effort Reduction (% fewer review comments). 

Human baseline not shown (N/A); values from Table II. 
 

VII.   THREATS TO VALIDITY 
While the results presented in Section VI are promising, several limitations and potential threats to validity should be acknowledged. 
 
A. Internal Validity 
The experiments rely on benchmark datasets such as Defects4J and QuixBugs, which, although widely used, may not fully capture 
the diversity of defects encountered in large industrial systems. Additionally, some of the results are based on seeded or synthetic 
bugs, which may simplify the repair process compared to organically occurring faults. To mitigate this, we combined synthetic and 
real-world repositories, but the balance may still bias results. 
 
B. External Validity 
The evaluation was primarily conducted on Python and Java projects. Results may not generalize to languages with different 
paradigms (e.g., C++, Rust, or functional languages). Furthermore, our testing relied on open-source repositories with relatively 
mature test suites. In industrial settings with sparse or incomplete tests, the framework’s performance could differ significantly. 
 
C. Construct Validity 
Metrics such as “maintainability improvement” and “developer effort reduction” are proxies for human judgment and may not 
perfectly reflect perceived quality. Although we used established measures (cyclomatic complexity, duplication ratios, linting 
scores), human factors like readability and style preferences may vary. Incorporating structured user studies in future work would 
help validate these constructs. 
 
D. Conclusion Validity 
Since some of the reported numbers are averages over relatively small datasets, random variance in patch outcomes may influence 
the observed trends. Larger-scale replications and statistical significance testing would strengthen confidence in the conclusions. 
Nevertheless, the consistency of improvements across datasets provides initial evidence of robustness. 

 
VIII.   CONCLUSION 

This paper presented and evaluated a multi-agent AI framework for automated bug detection and code refactoring. Unlike 
monolithic assistants that attempt repair in a single step, our approach decomposes tasks into specialized agents—Planner, Bug 
Detector, Root-Cause, Refactoring, and Verifier—coordinated through a structured memory and messaging layer. The framework 
emphasizes evidence-grounded reasoning, requiring agents to cite compiler diagnostics, test results, or linter reports before changes 
are approved. 
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Experimental results across benchmark datasets demonstrated that the multi-agent framework consistently outperforms single-agent 
LLM repairers and traditional static APR tools. It achieved higher bug fix precision, smaller and more maintainable patches, fewer 
verification iterations, and measurable reductions in developer review effort. These findings indicate that structured orchestration 
and role specialization can be more effective than simply scaling model size for software engineering tasks. 
By integrating refactoring into the bug-fixing pipeline, the framework also addresses a longstanding challenge: improving 
maintainability while preserving correctness. This dual focus strengthens the potential for adoption in real-world continuous 
integration workflows, where safety and developer trust are critical. 
 

IX.   FUTURE WORK 
Several avenues remain open for further exploration: 
1) Language and Paradigm Diversity — Extending experiments to other languages (C++, Rust, JavaScript) and programming 

paradigms will test generalizability. 
2) Human-in-the-Loop Collaboration — Incorporating lightweight feedback loops where developers guide or veto agent decisions 

could improve trust and usability. 
3) Learning from Deployment — Continuous learning from real-world codebases, bug trackers, and code reviews would help 

agents adapt to evolving project conventions. 
4) Advanced Verification — Beyond test suites and linters, integrating formal verification and symbolic reasoning could further 

reduce regressions. 
5) Scalability — Optimizing communication overhead between agents and enabling distributed execution would make the 

framework more practical for large-scale industrial projects. 
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