

12 II February 2024

 https://doi.org/10.22214/ijraset.2024.58460

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

825 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Evaluating the Performance of SPDK-based io

uring and AIO Block Device

Gaurav Chawda
1
, Gauri Vijaykar

2
, Yash Kalavadiya

3
, Siddhesh Kotkar

4
, Dr. Girish Potdar

5

1, 2, 3, 4
Student,

5
Associate Professor, Dept. of Computer Technology PICT, Pune

Abstract: In the context of contemporary data processing and storage, this article examines the performance of asynchronous

I/O interfaces that are provided by the Linux Kernel. Specifically, this study utilizes an SPDK-based block device module of io

uring and AIO which offers features like request queueing and lockless queues.

Our benchmarks comparing io uring and aio performance revealed an interesting dichotomy in their handling of random I/O

patterns. Both approaches exhibited similar performance trends for random-read operations, showcasing a clear benefit from

increasing the IO queue depth. This suggests both methods efficiently leverage parallel processing to boost read throughput.

However, the story flips for random-write operations. Unlike read workloads, increasing queue depth for writes yielded no

performance improvement. This increase significantly inflated latency, introducing undesired delays.

Index Terms: IO URING, LIBIO, IO-Engines, Storage Per-formance Development Kit

I. INTRODUCTION

The relentless ascent of Solid State Drive (SSD) technology, particularly Non-Volatile Memory has ushered in an era of

unparalleled storage performance. However, unlocking the full potential of this hardware necessitates advancements in the software

interfaces responsible for harnessing its power. This is where three key solutions emerge: SPDK, libaio, and io uring [1,2,3].

The Storage Performance Development Kit (SPDK) stands out as a groundbreaking initiative that aims to revolutionize the way we

interact with Non-Volatile Memory Express (NVMe) devices. It offers a high-performance, user-space driver opti-mized

specifically for NVMe-based solid-state drives (SSDs), unlocking significant performance gains and addressing lim-itations

commonly encountered in traditional kernel-based approaches. The user-space driver supports features like zero-copy,

asynchronous operations, and lockless NVMe driver [4].

Several studies have demonstrated that user-space drivers built upon the Storage Performance Development Kit (SPDK) achieve

significantly higher performance compared to kernel-based alternatives like libaio and io uring, particularly under diverse system

workloads [1].

SPDK also offers a versatile block device layer that abstracts underlying storage devices, empowering applications to inter-act with

them efficiently and exploit their full performance potential. This layer goes beyond the standard kernel-based block device drivers,

providing additional features such as cre-ation of involuted I/O pipelines, request queuing, and multiple lockless queues for

maintaining outstanding I/O requests [7].

For this article, we will utilize SPDK’s block device layer with libaio and io uring.

Linux kernel and its libraries provide different mechanisms for asynchronous I/O. One of the early and notable libraries is libaio.

Introduced in kernel version 2.6, it offered one of the first dedicated asynchronous APIs for storage devices [1].

libaio offers two crucial system calls: io submit and io getevents. These calls enable non-blocking, unbuffered I/O (O DIRECT

flag), bypassing the system’s I/O cache for potentially significant performance gains [1].

io uring, introduced in Linux kernel version 5.1, is a powerful and versatile asynchronous I/O interface designed to address the

limitations of traditional methods like read(), write(), and aio * functions. It consists of two queues namely

‘submission queue’ and ‘completion queue’ which is shared by kernel and user space [6].

io uring boasts remarkable flexibility by offering no restric-tions on request types. Whether initiating a file read or write operation,

each request is encapsulated as a submission queue entry (SQE) and subsequently appended to the submission queue’s tail [2,6].

It relies on two key system calls amoung many: io uring setup andio uring enter. The former establishes the foundation, initializing

the submission and completion queues that manage I/O requests. On the other hand, io uring enter

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

826 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 TABLE I

 BENCHMARK ENVIRONMENT SETUP

CPU

Intel(R) Core(TM) i7-9750H CPU @2.60GHz,

Hyper-

threading disabled

Memory 16GB, DDR4

Storage

256GB NVMe SSD,

SKHynix HFS256GD9TNG-L3A0B

OS Arch Linux, x86 64, 6.7.0-arch3-1

SPDK v24.01

acts as the conductor, orchestrating both the submission of new requests and the retrieval of completed ones, seamlessly handling

asynchronous I/O operations.

Due to the efficient polling design, io uring’s performance can get close to the SPDK’s user-space driver given it uses double the

cores as SPDK [1].

II. PERFORMANCE EVALUATION

Instead of the widely used fio tool, we opted for SPDK’s bdevperf for benchmarking the performance of SPDK’s uring block device

against its aio counterpart. The advantage of bdevperf lies in its light footprint, minimizing latency overhead within the I/O path [8].

Our investigation focused on two common I/O patterns: random read (randread) and random write (randwrite). To ensure

consistency, we fixed the block size at 4096 bytes during bdev creation and mirrored it in the benchmark’s I/O size setting.

Additionally, a benchmark time of 180 seconds was chosen for robust results.

We commenced by setting the I/O depth (queue depth) to 1, simulating a single outstanding request queue. Subsequently, we

incrementally increased the queue size to emulate scenarios with parallel workloads.

Fig. 1. Queue depth vs IOPS (randread)

Figure 1 depicts the performance of two block device types (io uring and AIO) under a 4KiB random read workload,measured in

IOPS (higher is better) across various queue depths.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

827 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

We observe a clear trend: increasing queue depth leads to significant performance gains, with the most dramatic improvement of

144% occurring at a queue depth of 16. However, further increases in queue depth yield only minor performance benefits.

Interestingly, both block device types exhibit similar per-formance characteristics across the workloads, with io uring bdevs

demonstrating a slight edge at low queue depths.

Fig. 2. Queue depth vs average latency (randread)

Figure 2 depicts a bar graph that illustrates the relationship between latency (with lower values signifying better perfor-mance) and

queue depths.

Examining the graph reveals that the latency between queue depths 1, 2, and 4 remains consistent, hovering around 90

microseconds. However, for queue depths of 16, 64, and 128, a significant rise in latency is observed.

Particularly, at a queue depth of 64, the latency is increased by approximately 210%. Interestingly, both types of block devices

exhibit comparable latency behavior.

Fig. 3. Queue depth vs IOPS (randwrite)

Figure 3 illustrates the IOPS metric for the randwrite I/O pattern, revealing an interesting contrast to the readrand workload. While

increasing queue depth led to a clear rise in IOPS for readrand, the same behavior is not observed for randwrite. Instead, IOPS

remain relatively stable at around 5500, regardless of queue depth.

Furthermore, when using fewer queue depths, io uring exhibits marginally better performance than aio. It’s also worth noting that

the range of IOPS observed in randwrite workloads is considerably smaller compared to readrand workloads.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue II Feb 2024- Available at www.ijraset.com

828 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig. 4. Queue depth vs average latency (randwrite)

Figure 4 paints a striking picture of how queue depth dramatically impacts latency for randwrite I/O patterns. The data reveals a

staggering contrast between a queue depth of 1 and 128, with block device latency soaring from a mere 175 microseconds to a

shocking 20,000 microseconds.

Interestingly, io uring consistently outperforms aio in terms of latency across almost all queue depths. At the maximum queue depth

of 128, io uring boasts a 10% latency advantage over aio. However, the true story unfolds in the magnitude of latency increases.

While both methods experience latency growth with rising queue depth, io uring exhibits a signif-icantly smaller hike. Notably, the

biggest performance hit occurs at a queue depth of 64, with latency ballooning by a whopping 272%.

III. CONCLUSION

SPDK’s bdevperf benchmark provides valuable insights into the performance characteristics of io uring and AIO SPDK block

devices. For random read workloads, both devices offer similar performance, with significant gains achieved by increasing queue

depth. However, latency increases for higher queue depths. For random write workloads, IOPS remain stable, but latency increases

significantly, especially for AIO. Overall, io uring slighly outperforms AIO in terms of both IOPS and latency.

These findings suggest that both io uring and aio are promising options for applications requiring high performance I/O, particularly

for read-heavy workloads. However, careful consideration should be given to queue depth settings to avoid latency spikes,

especially for write-intensive workloads.

REFERENCES
[1] Diego Didona, Jonas Pfefferle, Nikolas Ioannou, Bernard Metzler, and Animesh Trivedi. 2022. Understanding modern storage APIs: a system-atic study of

LIBAIO, SPDK, and IO-Uring. In Proceedings of the 15th ACM International Conference on Systems and Storage (SYSTOR ’22). Association for Computing

Machinery, New York, NY, USA, 120–127. doi: 10.1145/3534056.3534945

[2] Zebin Ren and Animesh Trivedi. 2023. Performance Characterization of Modern Storage Stacks: POSIX I/O, libaio, SPDK, and io uring. In Proceedings of the

3rd Workshop on Challenges and Opportunities of Efficient and Performant Storage Systems (CHEOPS ’23). Asso-ciation for Computing Machinery, New

York, NY, USA, 35–45. doi: 10.1145/3578353.3589545

[3] Gabriel Haas and Viktor Leis. 2023. What Modern NVMe Storage Can Do, and How to Exploit it: High-Performance I/O for High-Performance Storage

Engines. Proc. VLDB Endow. 16, 9 (May 2023), 2090–2102. doi: 10.14778/3598581.3598584

[4] Z. Yang et al., ”SPDK: A Development Kit to Build High Performance Storage Applications,” 2017 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom), Hong Kong, China, 2017, pp. 154-161, doi: 10.1109/CloudCom.2017.14.

[5] Youngjin Yu, Dongin Shin, Woong Shin, Nae Young Song, Jae-Woo Choi, Hyeong Seog Kim, Hyeonsang Eom, and Heon Young Yeom. 2014. Optimizing

the Block I/O Subsystem for Fast Storage Devices. ACM Trans. Comput. Syst. 32, 2 (2014), 6:1–6:48. doi: 10. 1145/2619092

[6] Benjamin Block. “An Introduction to the Linux Kernel Block I/O Stack” https://chemnitzer.linux-tage.de/2021/media/programm/folien/165.pdf (accessed Feb

15, 2024).

[7] SPDK. ”Block Device User Guide” https://spdk.io/doc/bdev.html (ac-cessed Feb 15, 2024).

[8] Karol Latecki. ”SPDK NVMe BDEV Performance Report Release 21.01’’ https://ci.spdk.io/download/performancereports/SPD nvme perf report

2101.pdf (accessed Feb 15, 2024)

