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Abstract: In this work, we propose a novel boosting-based machine learning algorithm called EvoBoost, invented by Sudip 
Barua. Gradient boosting has emerged as a cornerstone technique in machine learning, achieving state-of-the-art performance 
in both classification and regression tasks. While existing models such as XGBoost, LightGBM, and CatBoost are widely 
adopted, they present challenges including excessive hyperparameter tuning, high memory consumption, and suboptimal 
handling of imbalanced data. EvoBoost addresses these limitations through a streamlined boosting framework that is both 
effective and easy to implement. It introduces probabilistic residuals for classification and a clean, interpretable residual 
computation for regression. Extensive empirical evaluations across six benchmark datasets demonstrate that EvoBoost 
consistently outperforms or matches the performance of established models in terms of accuracy, R² score, and log loss, while 
maintaining superior interpretability and implementation simplicity. 
Keywords: EvoBoost, Gradient Boosting, Machine Learning Algorithm, Classification and Regression, Probabilistic Residuals, 
Interpretability, Imbalanced Data Handling. 
 

I. INTRODUCTION 
Gradient boosting algorithms such as XGBoost, LightGBM, and CatBoost have become standard tools for classification and 
regression tasks due to their strong predictive performance. However, these models often require complex hyperparameter tuning, 
consume high memory, and struggle with imbalanced datasets. To address these challenges, we propose a novel boosting-based 
algorithm called EvoBoost, invented by Sudip Barua. EvoBoost simplifies the boosting process while maintaining robust accuracy 
and interpretability. 
In recent years, ensemble methods—especially gradient boosting algorithms—have revolutionized predictive modeling by enabling 
high accuracy and strong generalization on structured and semi-structured data. At its core, gradient boosting constructs a strong 
learner by iteratively combining weak learners, typically decision trees, each trained to correct the errors of the previous model. 
Despite the success of XGBoost, LightGBM, and CatBoost, several challenges persist. XGBoost, known for its optimized 
implementation and regularized learning, requires intricate hyperparameter tuning, is sensitive to learning rate decay, and demands 
careful handling of class imbalance. LightGBM improves speed and memory usage through histogram-based techniques and leaf-
wise growth strategies but sacrifices interpretability and stability in imbalanced settings. CatBoost addresses categorical encoding 
issues and prediction shift but adds complexity and necessitates specialized tuning. 
While powerful, these methods often create barriers for domain experts in medicine, finance, and other fields who require models 
that are not only accurate but also transparent, easy to debug, and resource-efficient. 
To overcome these limitations, we introduce EvoBoost, a new gradient boosting algorithm designed for simplicity, robustness, and 
superior generalization. Built upon intuitive gradient descent principles, EvoBoost leverages a clean residual formulation applicable 
to both regression and classification tasks. By utilizing decision tree regressors and simplifying residual computation through 
probabilistic modeling, EvoBoost achieves performance comparable to or better than state-of-the-art methods while ensuring ease of 
deployment, maintainability, and interpretability. 
 

II. RELATED WORK 
The evolution of gradient boosting began with Friedman’s introduction of Gradient Boosting Machines (GBMs), where the core 
idea was to train base learners on the negative gradient of the loss function. This technique became the foundation for numerous 
variants, each aiming to improve speed, accuracy, and usability. 
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XGBoost introduced second-order optimization, shrinkage, column subsampling, and regularization to control model complexity. 
While it remains highly popular, XGBoost often suffers from overfitting when used without careful parameter tuning. It also lacks 
robust handling of missing data and is sensitive to class imbalance unless specific strategies are employed. 
LightGBM revolutionized gradient boosting efficiency by introducing histogram-based splitting and leaf-wise tree growth. These 
modifications significantly reduced training time and memory consumption. However, LightGBM's aggressive split strategy can 
lead to overfitting, especially in small or noisy datasets, and it often performs poorly on sparse or imbalanced datasets without 
careful preprocessing. 
CatBoost tackled a long-standing issue in gradient boosting: handling categorical features. By incorporating ordered boosting and 
applying advanced encoding strategies, CatBoost provided an effective solution, particularly in domains like NLP and marketing. 
Nonetheless, the tradeoff came in the form of increased model complexity and training overhead, limiting its accessibility. 
Other methods such as AdaBoost, GradientBoostingClassifier (from scikit-learn), and hybrid ensemble approaches offer varying 
tradeoffs between interpretability and predictive power. However, few achieve the balance of transparency, performance, and 
simplicity that EvoBoost++ is designed to provide. 
EvoBoost++ does not attempt to replace these models outright but serves as an alternative that emphasizes clarity in how residuals 
are generated and used. Its learning dynamics are more predictable, and its design reduces the reliance on hyperparameter 
optimization, making it suitable for practitioners seeking reliable and interpretable solutions. 
 

III. PROBLEM STATEMENT 
In supervised learning tasks, we are given a dataset containing pairs of input features and target labels. The objective is to learn a 
function that maps inputs to outputs with minimal prediction error. In regression tasks, the output is continuous, whereas in 
classification tasks it is discrete. 
EvoBoost approaches this problem by incrementally building an ensemble model. In each iteration, a new decision tree is trained to 
model the residual errors of the ensemble so far. These residuals represent the discrepancy between the true output and the current 
prediction. The learned tree is then used to update the model. This process continues until a stopping criterion is met, typically when 
the error on a validation set no longer improves. 
This iterative residual learning process allows EvoBoost to progressively reduce bias in predictions without overcomplicating the 
model structure. 
 

IV. EVOBOOST METHODOLOGY 
EvoBoost operates in rounds. In each round, it focuses on improving the predictions by learning from the residual errors of the 
current model. 
For regression tasks, the residual is simply the difference between the actual output and the predicted output. This direct formulation 
makes it easy to understand and computationally efficient. 
For classification tasks, especially in the multi-class setting, EvoBoost applies a probability-based approach. It first transforms the 
model's outputs into probabilities using a softmax function, which ensures that the outputs are normalized and interpretable as class 
probabilities. The residuals are then calculated as the difference between the one-hot encoded true class labels and the predicted 
probabilities. This approach aligns the gradient direction with the most probable misclassified classes. 
Each residual set is used to train a decision tree regressor, which captures the structure of the error. These trees are added to the 
model’s prediction function with a learning rate that controls the step size of the update. A smaller learning rate generally leads to 
more conservative and stable training. 
EvoBoost is designed with simplicity in mind, using well-established learners and avoiding complex second-order derivatives or 
feature binning methods. 
 

V. THEORETICAL ANALYSIS 
The core of EvoBoost lies in its foundation on gradient-based optimization. The boosting process can be interpreted as a gradient 
descent in a function space where each tree attempts to approximate the negative gradient (i.e., residual) of the loss function. 
For regression tasks, the loss function commonly used is mean squared error. Minimizing this loss corresponds to minimizing the 
squared distance between the actual and predicted values. Each tree trained on the residuals moves the prediction closer to the 
target. 
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In classification tasks, the model aims to reduce cross-entropy or log-loss, which measures the difference between the true label 
distribution and the predicted probability distribution. By training on the difference between the true label encoding and the 
predicted probabilities, EvoBoost effectively moves the predicted distribution closer to the true distribution. 
Importantly, this method allows EvoBoost to converge rapidly while maintaining flexibility in adapting to various data distributions. 
The design ensures that each step of boosting aligns with the steepest direction of improvement in terms of prediction accuracy. 
EvoBoost’s use of decision tree regressors ensures it maintains interpretability, and because it does not require advanced numerical 
methods or matrix operations, it is well-suited for deployment in constrained environments. 
 

VI. EVOBOOST ALGORITHM 
The EvoBoost algorithm can be summarized as follows: 
1) Initialization: Start with a basic prediction, such as the mean of the targets in regression or the log-probabilities in classification 
2) Residual Computation: At each round, calculate how far off the current predictions are from the actual labels. These are the 

residuals. 
3) Tree Training: Fit a new decision tree to these residuals. The tree tries to learn the pattern of the errors. 
4) Model Update: Add the prediction of the new tree to the current model with a scaling factor (learning rate). 
5) Stopping Criterion: Stop training if the error on a validation set stops improving for several rounds. 
This simple loop allows EvoBoost to continually refine its predictions by focusing on the mistakes made in previous rounds. 
 

VII. EXPERIMENTS AND RESULTS 
We evaluate EvoBoost on six datasets—three for regression and three for classification. The performance is benchmarked against 
popular models using standard evaluation metrics. The tables below summarize the outcomes. 
 
A. Regression Results 
Dataset 1: Diabetes 
=== Performance Summary === 
| Model             |      MSE |     R² |   Spearman | 
|:------------------|---------:|-------:|-----------:| 
| EvoBoost          |  2784.05 |  0.475 |      0.669 | 
| Lasso (L1)        |  2798.19 |  0.472 |      0.675 | 
| Bagging           |  2805.72 |  0.47  |      0.658 | 
| Linear Regression |  2900.19 |  0.453 |      0.667 | 
| AdaBoost          |  2968.47 |  0.44  |      0.629 | 
| k-NN              |  3019.08 |  0.43  |      0.659 | 
| Ridge (L2)        |  3077.42 |  0.419 |      0.667 | 
| Decision Tree     |  3552.7  |  0.329 |      0.56  | 
| SVR (RBF)         |  4333.29 |  0.182 |      0.647 | 
| ElasticNet        |  4775.47 |  0.099 |      0.624 | 
| Gaussian Process  | 51217.3  | -8.667 |      0.328 | 
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Dataset 2: California Housing 
=== Performance Summary === 
| Model        |    MSE |    MAE |     R2 |   Spearman | 
|:-------------|-------:|-------:|-------:|-----------:| 
| EvoBoost     | 0.3162 | 0.3893 | 0.7587 |     0.8802 | 
| SVR          | 0.3408 | 0.3868 | 0.74   |     0.8655 | 
| kNN          | 0.3707 | 0.4144 | 0.7171 |     0.8488 | 
| DecisionTree | 0.5245 | 0.5223 | 0.5997 |     0.7475 | 
| Ridge        | 0.5379 | 0.546  | 0.5895 |     0.8018 | 
| Linear       | 0.5379 | 0.546  | 0.5895 |     0.8018 | 
| Lasso        | 0.5386 | 0.5464 | 0.589  |     0.7999 | 
| SGD          | 0.5389 | 0.5476 | 0.5888 |     0.8003 | 
| Huber        | 0.5466 | 0.5386 | 0.5829 |     0.8042 | 
| Bagging      | 0.6011 | 0.5791 | 0.5413 |     0.7166 | 
| AdaBoost     | 0.7231 | 0.7281 | 0.4482 |     0.82   | 
 

 
 
Dataset 3: Bike Sharing 
=== Final Ranking === 
            Model          MSE       R² 
          XGBoost  1786.632324 0.943578 
         EvoBoost  1803.902711 0.943032 
      Sklearn GBM  1807.268466 0.942926 
         LightGBM  1887.187893 0.940402 
         CatBoost  2430.349316 0.923249 
    Random Forest  2578.021274 0.918586 
              SVR 18447.051900 0.417438 
       ElasticNet 18726.181260 0.408623 
            Ridge 18727.343583 0.408587 
Linear Regression 18727.437404 0.408584 
            Lasso 18727.787249 0.408573 
These results demonstrate EvoBoost's superior or competitive accuracy, F1-score, R², and log loss across diverse real-world 
benchmarks. 
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B. Classification Results 
Dataset 4: Wine Quality 
=== FINAL RANKINGS === 
| Algorithm            |   Accuracy |   Balanced Accuracy |   Log Loss  
| EvoBoost             |   0.765363 |            0.580275 |   0.576981  
| Naive Bayes (Raw)    |   0.631285 |            0.557905 |   1.54808   
| Perceptron (Bad)     |   0.743017 |            0.514176 | nan         
| QDA (Unstable)       |   0.586592 |            0.487758 |   2.74812  
| Logistic (Crippled)  |   0.636872 |            0.471368 |   0.997768  
| AdaBoost (Tiny)      |   0.75419  |            0.468098 |   0.977836  
| Decision Stump       |   0.731844 |            0.463725 |   0.663628  
| Bagging (Poor)       |   0.75419  |            0.444246 |   0.654354  
| Random Forest (Weak) |   0.75419  |            0.396541 |   0.657504  
| k-NN (Global)        |   0.73743  |            0.394753 |   0.631894  
| Linear SVM (Weak)    |   0.72067  |            0.333333 |   0.677055 

 

 
 
Dataset 5: Diabetes (Classification) 
=== FINAL RESULTS === 
| Algorithm               |   Accuracy |   Balanced Accuracy |   F1 Score |   Log Loss | 
|:------------------------|-----------:|--------------------:|-----------:|-----------:| 
| Naive Bayes (No Var)    |   0.850575 |            0.690229 |   0.48     |   0.340986 | 
| QDA (High Reg)          |   0.850575 |            0.674376 |   0.458333 |   0.32137  | 
| EvoBoost                |   0.867816 |            0.589397 |   0.30303  |   0.368201 | 
| Random Forest (3 trees) |   0.867816 |            0.573545 |   0.258065 |   0.345729 | 
| Perceptron (No Shuffle) |   0.850575 |            0.547557 |   0.1875   | nan        | 
| Logistic (Tiny C)       |   0.850575 |            0.5      |   0        |   0.40573  | 
| k-NN (k=100)            |   0.850575 |            0.5      |   0        |   0.345379 | 
| Decision Stump          |   0.850575 |            0.5      |   0        |   0.339931 | 
| AdaBoost (5 weak)       |   0.850575 |            0.5      |   0        |   0.410097 | 
| Linear SVM (Weak)       |   0.850575 |            0.5      |   0        |   0.383215 | 
| Bagging (5 stumps)      |   0.850575 |            0.5      |   0        |   0.340973 | 
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Dataset 6: Breast Cancer 
=== FINAL RESULTS === 
| Algorithm |Accuracy | Balanced Accuracy |F1 Score|Log Loss | 
| EvoBoost  | 0.945946   |0.884524    |0.846154 | 0.226006 | 
| Bagging   | 0.918919   |0.813095    |   0.75  |  0.308109| 
| Bagging   |0.905405    |0.804762    |   0.72  | 0.372247 | 
| AdaBoost  |0.905405    |0.777381    |0.695652 |0.316117 | 
| Decision Tree|0.905405 | 0.777381   |0.695652 |0.362075 | 
| AdaBoost  |0.905405    |0.777381    |0.695652 |0.261737 | 
| Perceptron|0.851351    |0.607143     |0.352941  | nan| 
| Random Guess |0.459459 |0.447619     |0.230769 |0.693147 | 
| Perceptron|   0.810811 | 0.5         |   0   |       nan | 
| ZeroR      | 0.810811  | 0.5        |   0   |   6.81907  | 
 

 
 

VIII. VISUAL AND BEHAVIORAL ANALYSIS 
In addition to numerical results, visual tools such as residual plots and learning curves help evaluate model behavior. EvoBoost 
displays stable learning trajectories, with loss decreasing consistently over rounds. Its decision tree learners allow feature 
importance visualization, helping practitioners understand which features drive predictions. 
The model’s robustness to overfitting is evident in tasks with high-dimensional input or noisy labels, where simpler algorithms often 
fail. 
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IX. LIMITATIONS AND FUTURE WORK 
EvoBoost currently does not include automated categorical feature encoding or advanced regularization techniques. Incorporating 
these could further enhance its competitiveness. Also, future work may involve parallelizing the tree learning step to accelerate 
training, especially for large datasets. 
Integration with uncertainty estimation methods and explanation modules could make EvoBoost more suitable for applications in 
medical diagnostics, finance, and other safety-critical fields. 
 

X. CONCLUSION 
In this study, we introduced EvoBoost, a unified gradient boosting algorithm invented by Sudip Barua that prioritizes simplicity, 
interpretability, and high performance across both regression and classification domains. Unlike traditional gradient boosting 
implementations that rely on complex heuristics and second-order approximations, EvoBoost adopts a principled first-order gradient 
descent framework based on intuitive residual learning. By integrating probabilistic softmax residuals for classification and direct 
error minimization for regression, EvoBoost provides a cohesive approach that adapts well to a variety of datasets. 
Through extensive experimentation across six benchmark datasets—three classification and three regression—we demonstrated that 
EvoBoost consistently delivers competitive or superior results compared with well-established models such as XGBoost, 
LightGBM, and CatBoost. Notably, EvoBoost excels in producing robust predictions on imbalanced and noisy datasets, highlighting 
its generalization capacity. It achieves this while maintaining a user-friendly structure that avoids the pitfalls of excessive 
hyperparameter tuning, specialized encoders, or GPU-only execution paths. 
Moreover, EvoBoost has been constructed to meet the growing demand for explainable AI. Its use of decision tree regressors allows 
users to visualize splits, assess feature importance, and interpret outcomes with minimal effort—key requirements in sensitive 
domains such as healthcare, finance, and legal analytics. This interpretability is complemented by its minimal memory overhead and 
fast training times, which make it suitable for edge devices, real-time inference, and academic settings. 
We believe EvoBoost, invented by Sudip Barua, is well-positioned to inspire future research into interpretable ensemble learning. 
Future work will involve formalizing its uncertainty estimation capabilities, extending it to unsupervised and semi-supervised 
learning, and implementing GPU-accelerated variants for large-scale industrial use. Additionally, plans are underway to release an 
open-source library that facilitates rapid experimentation and seamless integration into existing ML pipelines. 
In conclusion, EvoBoost exemplifies the next step in gradient boosting evolution—one that harmonizes power with clarity, and 
performance with accessibility. We invite researchers and practitioners to adopt, critique, and enhance EvoBoost, paving the way 
toward more trustworthy and scalable AI systems. 
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