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Abstract: Stress is a complex psychological and physiological state that exerts profound effects on human health, performance, 
and quality of life. With the growing incidence of stress-related disorders among students, employees, and healthcare 
populations, accurate and timely stress detection has emerged as a critical research priority. Traditional approaches, though 
valuable in controlled laboratory settings, are constrained by reliance on manual feature engineering, limited adaptability, and 
poor scalability in real-world applications. Recent advances in deep learning have transformed this field by enabling automated 
feature extraction and multimodal data integration, spanning physiological signals (EEG, ECG, GSR), behavioral modalities 
(facial expressions, speech, and text), and wearable sensor data. 
This review provides a comprehensive synthesis of existing studies on deep learning–based stress detection, systematically 
examining convolutional neural networks, recurrent networks, long short-term memory architectures, attention mechanisms, 
and hybrid models. Benchmark performance across widely used datasets such as WESAD, SWELL, DREAMER, and DEAP is 
critically compared using metrics including accuracy, precision, recall, F1-score, and latency. Beyond performance evaluation, 
this study highlights challenges in data scarcity, generalizability across populations, computational complexity, and ethical 
considerations related to privacy and bias. Finally, future research directions are outlined, emphasizing opportunities in real-
time stress monitoring, multimodal fusion, transfer learning, and privacy preserving frameworks. This review aims to serve as a 
structured and authoritative reference for advancing deep learning applications in stress detection and mental health 
monitoring. 
Keywords: Stress Detection, Deep Learning, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), 
Multimodal Fusion, Affective Computing, Wearable Sensors, Emotion Recognition. 
 

I. INTRODUCTION 
Stress is a natural human response that emerges when individuals perceive a mismatch between external demands and their ability to 
cope effectively. While acute stress can sometimes enhance concentration and short-term performance, persistent stress has been 
strongly associated with adverse psychological and physiological outcomes, including anxiety, depression, cardiovascular 
complications, and diminished productivity [1], [2]. The growing incidence of stress in education, workplace, and healthcare 
contexts highlights the urgent need for reliable tools that enable early detection and timely intervention [3]. 
Conventional stress assessment methods, such as psychometric questionnaires, clinical evaluations, and basic physiological 
measurements (e.g., heart rate or skin conductance), have provided valuable insights in controlled settings. However, these 
approaches face limitations when applied in everyday environments. They often rely on subjective reporting, lack scalability for 
large populations, and show poor adaptability in capturing the dynamic, real-time nature of stress [4]. These constraints have 
motivated the development of automated and objective stress detection systems that can function seamlessly in real-world contexts. 
Recent advances in artificial intelligence (AI), and particularly deep learning, have opened new opportunities for stress recognition 
[5]. In contrast to traditional machine learning methods that depend heavily on manual feature design, deep learning techniques 
automatically extract layered feature representations from multimodal data [6]. This capability is particularly important in stress 
detection, where data originates from diverse and complex sources. Widely used modalities include physiological signals such as 
electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response (GSR), and heart rate variability (HRV); behavioral 
indicators such as facial expressions, vocal characteristics, and linguistic patterns; along with continuous input from wearable 
sensors that capture stress in daily life [7], [8]. 
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Different deep learning architectures have shown strengths in processing these modalities. Convolutional Neural Networks (CNNs) 
are effective for extracting spatial or structural features from images and physiological waveforms [9]. Recurrent models such as 
Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) are widely applied to capture temporal dynamics in 
sequential data [10]. More recently, Transformer-based attention models have gained momentum, offering strong capabilities in 
multimodal integration, contextual reasoning, and performance generalization [11]. Together, these models have driven significant 
advances in stress detection accuracy and robustness. 
Nevertheless, several challenges continue to hinder progress. Many studies use relatively small or imbalanced datasets, limiting the 
generalizability of results across populations [12]. The computational demands of advanced models also raise concerns about 
latency and energy efficiency for real-time applications [13]. Additionally, ethical considerations—including privacy protection, 
fairness, and transparency—remain critical issues in the deployment of AI-based stress detection systems [14], [15]. Another 
limitation is that much of the current research relies on laboratory data, which may not capture the complexity and variability of 
stress responses in natural environments [16]. 

Fig 1 FLOW DIAGRAM OF STRESS DETECTION 
 
To address these issues, this review aims to provide a comprehensive overview of how deep learning techniques are being applied in 
stress detection. The contributions are threefold: 
1) Classification of deep learning models used for stress detection, including CNNs, RNNs, LSTMs, attention-based frameworks, 

hybrid approaches, and multimodal fusion strategies. 
2) Comparative analysis of datasets, modalities, and performance benchmarks, supplemented by tables, taxonomies, and 

evaluation figures. 
3) Discussion of challenges and emerging research trends, such as explainable AI, federated and transfer learning, real-time 

deployment, and privacy-preserving frameworks. 
By consolidating existing knowledge and highlighting both progress and open questions, this review seeks to guide future research 
toward more accurate, generalizable, and ethically responsible stress detection systems. 
 

II. CONCEPTUAL PERSPECTIVES ON STRESS 
A. Physiological and Psychological Models of Stress 
Stress has long been explained through both physiological and psychological perspectives. From a biological standpoint, stress is 
triggered by the activation of the autonomic nervous system (ANS) and the hypothalamic–pituitary–adrenal (HPA) axis, which 
release stress-related hormones such as cortisol and adrenaline. These responses are adaptive in short-term situations, preparing the 
body for rapid reaction. In contrast, the psychological model emphasizes the role of individual appraisal, coping strategies, and 
perception of environmental challenges.  
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Cognitive theories suggest that stress is not merely a reaction to external pressure but also shaped by how individuals interpret and 
evaluate situations. Together, these models highlight the integrative nature of stress, where biological mechanisms and psychological 
appraisal jointly determine its impact. 
 

 
Fig 2 Overview Of A Stress Detection Process 

 
B. Classifications of Stress 
Stress can be classified into acute, episodic, and chronic categories based on duration and intensity. Acute stress represents 
shortlived responses to immediate challenges such as examinations, deadlines, or unexpected tasks. Although temporary, it can 
cause sharp increases in heart rate and tension. Episodic stress occurs when individuals repeatedly encounter stressful conditions, 
often due to high-pressure professions or interpersonal conflicts. This type is associated with recurrent anxiety, fatigue, and 
cardiovascular strain. Chronic stress, the most harmful form, emerges from prolonged exposure to unresolved stressors such as 
financial instability, family disputes, or long-term workload. Over time, chronic stress disrupts immune functioning and elevates the 
risk of psychiatric and cardiovascular disorders. These categories emphasize that stress can range from adaptive short-term reactions 
to harmful long-term conditions. 
 
C. Physiological Indicators of Stress 
Stress manifests in distinct physiological signals that are measurable using biomedical methods. Heart rate variability (HRV) is one 
of the most widely recognized indicators, with lower variability reflecting higher stress levels and reduced adaptability of the 
autonomic nervous system. Electro dermal activity (EDA), measured through skin conductance, reflects heightened sympathetic 
arousal and emotional reactivity. In addition, cortisol levels in saliva, blood, or urine remain reliable biomarkers of stress, providing 
insights into HPA axis activity. These indicators are frequently applied in both clinical research and real-time monitoring to 
objectively assess stress responses. 
 
D. Behavioural Indicators of Stress 
Behavioural cues offer non-invasive and observable evidence of stress. Speech alterations, including elevated pitch, irregular 
rhythm, or hesitations, are common stress markers detectable through audio analysis. Facial expressions such as frowning, muscle 
tension, and reduced eye contact also provide cues of underlying strain. Postural rigidity and repetitive movements are additional 
signs of behavioral stress responses. While these indicators may not be as precise as biochemical markers, they are valuable for real-
time applications where immediate feedback is necessary, such as workplace assessments or classroom environments. 
 
E. Psychological Indicators of Stress 
Psychological stress indicators focus on subjective experiences, cognitive appraisal, and emotional states. Standardized selfreport 
tools, such as the Perceived Stress Scale (PSS) and the State–Trait Anxiety Inventory (STAI), are widely used to measure individual 
perceptions of stress. These tools capture dimensions such as anxiety, tension, and emotional fatigue, providing complementary 
evidence to physiological and behavioural markers. Despite being subjective, psychological assessments remain essential because 
they reflect how stress is personally experienced, which often influences coping strategies and outcomes. 
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F. Importance of Early Stress Detection. 
The early recognition of stress is essential for preventing its progression into chronic health conditions. In healthcare, timely 
identification aids in reducing risks of metabolic, immune, and psychiatric disorders. Within organizational contexts, stress 
monitoring helps sustain productivity, lower absenteeism, and support employee well-being through targeted interventions. In 
education, detecting stress among students and teachers ensures sustained academic performance and promotes resilience. Early 
intervention through counselling, mindfulness, or adaptive learning approaches enhances coping capacity and mitigates longterm 
adverse effects. 

 
Fig 3 Classifications And Indicators Of Stress. 

 
III. LITERATURE SEARCH STRATEGY 

A structured search was conducted across leading scientific databases, including Scopus, Web of Science, IEEE Xplore, PubMed, 
and ScienceDirect, which were selected for their broad coverage of engineering, medical, and interdisciplinary research. The search 
terms combined keywords and Boolean operators to maximize coverage, including: “stress detection,” “deep learning,” 
“physiological signals,” “multimodal emotion recognition,” “wearable stress monitoring,” and “machine learning in mental 
health.” To capture the surge in deep learning applications, the search was limited to studies published between 2013 and 2025, a 
period that reflects the transformative impact of deep learning architectures in healthcare and human-centered computing. 
 
A. Inclusion and Exclusion Criteria 
The selection of studies for this review was guided by clearly defined inclusion and exclusion criteria to ensure methodological 
rigor and relevance. Articles were included if they specifically employed deep learning algorithms—such as convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) architectures, attention mechanisms, or 
hybrid models—for stress detection or recognition. Eligible works considered physiological signals (EEG, ECG, GSR), behavioural 
modalities (speech, text, facial expressions), or multimodal and wearable sensor data. Furthermore, only studies reporting 
quantitative performance metrics such as accuracy, precision, recall, F1-score, or latency, and those published in peerreviewed 
journals or reputable conference proceedings between 2015 and 2024, were included. In contrast, studies relying exclusively on 
traditional machine learning approaches, theoretical stress models without empirical validation, or works addressing general emotion 
recognition and mental health prediction without explicit focus on stress detection were excluded.  
Non-English publications, non-peer-reviewed sources such as blogs and whitepapers, and studies lacking methodological detail 
were also omitted. 
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B. Scope and Number of Articles Considered 
The scope of this review centres on literature situated at the intersection of deep learning, stress detection, and multimodal data 
analysis. Relevant articles were systematically retrieved from major academic databases, including IEEE Xplore, Scopus, Web of 
Science, PubMed, and the ACM Digital Library, using keywords such as “deep learning for stress detection,” “CNN stress 
recognition,” “wearable stress monitoring,” and “multimodal affective computing.” After applying the defined inclusion and 
exclusion criteria, approximately 110 articles were initially identified. Out of these, 82 studies were shortlisted and analyzed in 
depth. These works span physiological signal–based methods, behavioral and multimodal approaches, as well as advanced hybrid 
architectures integrating CNN, LSTM, and attention mechanisms. Benchmark datasets such as WESAD, SWELL, DREAMER, and 
DEAP were frequently employed across the reviewed studies, enabling comparative evaluation through standardized performance 
metrics. By consolidating these contributions, this review offers a structured and comprehensive overview of methodological 
advancements, dataset usage, and performance trends in deep learning–based stress detection. 
 
C. Systematic Review Considerations 
Although this work is primarily a narrative and critical review, it was structured to incorporate systematic principles to minimize 
bias. For reviews adopting a fully systematic approach, the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses) framework is recommended. A PRISMA flow diagram provides a clear visual representation of the study selection 
process, including the number of records identified, screened, excluded, and included in the final synthesis. In the context of stress 
detection and deep learning, such visualization strengthens methodological transparency and facilitates reproducibility for future 
meta-analyses. 
 

IV. DEEP LEARNING FOUNDATIONS 
Deep learning has emerged as a transformative paradigm within artificial intelligence, enabling the automatic learning of 
hierarchical feature representations from raw data. Its relevance to stress detection arises from the ability to model complex, 
multimodal inputs such as facial expressions, voice patterns, and biosignals without relying exclusively on handcrafted features 
[17], [18]. The following subsections highlight the principal architectures and methodological advances that underpin deep learning 
applications in stress research. 
 
A. Convolutional Neural Networks (CNNs): Spatial Feature Extraction 
Convolutional Neural Networks (CNNs) represent one of the most influential architectures in deep learning, particularly for tasks 
involving spatially structured data such as images and video. CNNs exploit the principle of local connectivity through convolutional 
layers, where kernels learn spatially invariant patterns such as edges, textures, and higher-order visual cues. Pooling operations 
further enhance robustness by reducing spatial resolution while preserving salient features [19]. 
For stress detection, CNNs are frequently employed in the analysis of facial expressions and posture, which serve as reliable 
behavioral indicators of stress. Subtle muscle movements and micro-expressions captured from high-resolution images can be 
processed by CNN models to infer emotional states. For example, deep CNNs trained on facial expression datasets have achieved 
superior performance compared to traditional feature-based methods, demonstrating robustness across diverse lighting and pose 
conditions [20]. Extensions of CNNs, such as 3D CNNs, also incorporate temporal dynamics, making them suitable for videobased 
stress monitoring. 
 
B. Recurrent Neural Networks and LSTMs 
While CNNs are well-suited to capturing spatial dependencies, stress-related biosignals often display temporal dynamics that require 
sequential modeling. Recurrent Neural Networks (RNNs) are designed to process such sequential data by maintaining internal states 
that capture dependencies across time steps. However, classical RNNs are hindered by vanishing and exploding gradient problems, 
which limit their ability to learn long-term dependencies. 
To overcome these challenges, Long Short-Term Memory (LSTM) networks were introduced [21]. LSTMs employ memory cells 
and gating mechanisms that regulate information flow, enabling them to capture both short-term fluctuations and long-term 
temporal patterns in signals such as electrocardiograms (ECG), electroencephalograms (EEG), or speech recordings under stress. In 
stress detection studies, CNN-LSTM hybrid models have proven effective, with CNNs handling spatial or spectral features and 
LSTMs modeling temporal evolution, thereby improving recognition accuracy. 
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C. Transformer Architectures and Attention Mechanisms 
Recent years have witnessed the rise of attention-based architectures, particularly Transformers, which have redefined stateoftheart 
performance across multiple domains. Unlike RNNs, Transformers rely entirely on attention mechanisms to capture relationships 
between different elements of a sequence, enabling parallel computation and effective modeling of long-range dependencies [22]. In 
the context of stress detection, Transformers offer two major advantages. First, their self-attention mechanism allows models to 
focus on the most informative parts of multimodal inputs, such as emphasizing stressed intonations in speech or highlighting 
specific regions of the face during emotional expression. Second, Transformers are highly effective for multimodal fusion, as they 
can jointly attend to diverse input streams, such as facial video, audio signals, and physiological biosignals. This makes them 
particularly suitable for building comprehensive stress recognition systems that integrate heterogeneous data sources. 
 
D. Comparative Insights 
The examination of CNNs, LSTMs, and Transformers underscores the fact that no single deep learning architecture offers a 
universally optimal solution for stress detection tasks. Each model exhibits unique advantages tailored to specific modalities and 
application contexts. CNNs remain the architecture of choice for visual data analysis, particularly when stress indicators are 
expressed through facial micro-expressions or posture cues. However, their limited ability to model temporal continuity restricts 
their role in biosignal-driven applications where stress evolves dynamically over time. In contrast, LSTMs excel in capturing 
sequential dependencies in signals such as ECG, EEG, and speech, but their reliance on recurrent processing introduces training 
inefficiencies and scalability issues. Transformers, though computationally demanding, provide a paradigm shift by enabling 
scalable modeling of long-range dependencies and offering advanced multimodal integration capabilities. Their ability to attend to 
stress-relevant features across diverse input streams makes them particularly well-suited for complex real-world applications, such 
as adaptive learning in classrooms or workplace stress monitoring. Nonetheless, the higher data and computational requirements 
pose barriers for deployment in resource-constrained environments, such as mobile or wearable devices. These insights suggest that 
hybrid and ensemble approaches, which leverage the strengths of multiple architectures, hold significant potential for advancing stress 
detection systems. For example, CNNs can be employed for spatial feature extraction from visual data, with LSTMs or Transformers 
integrating temporal and contextual information to provide holistic predictions. Such integrated designs can address the limitations of 
single-model approaches while moving closer to real-time, accurate, and context-aware stress recognition [23]–[29]. 
 
E. Tools and Frameworks Supporting Deep Learning 
The widespread adoption of deep learning has been accelerated by the availability of open-source libraries and high-performance 
hardware. Frameworks such as TensorFlow, PyTorch, and Keras provide accessible interfaces for building and deploying complex 
neural architectures, while GPU- and TPU-based computing platforms offer the necessary scalability for training large models [30], 
[31]. These developments have facilitated rapid prototyping, reproducibility, and deployment of deep learningbased stress detection 
systems, bridging the gap between laboratory research and real-world applications. 
 
F. Summary 
Deep learning represents a paradigm shift in stress detection research by automating representation learning and enabling integration 
of multimodal data. CNNs excel in extracting spatial features from visual cues, LSTMs capture temporal dependencies in 
physiological and speech signals, and Transformers extend these capabilities through attention-based multimodal fusion. Supported 
by advanced optimization strategies and powerful software-hardware ecosystems, deep learning provides a robust foundation for 
developing scalable and accurate stress recognition frameworks. 

Table : 1 Comparative Analysis of Deep Learning Architectures for Stress Detection 
ARCHITECTURE STRENGTHS WEAKNESSES STRESS DETECTION USE 

CASES 
CNNs • Excellent at extracting spatial 

features (e.g., facial microexpressions, 
posture cues). • Robust to variations in 
lighting, pose, and noise. 
• Efficient training due to local 
connectivity and parameter sharing. 

• Limited ability to capture 
temporal dynamics. • Requires large 
annotated datasets for generalization. 
• Performance may degrade 
for subtle emotional cues. 

• Facial expression-based 
stress monitoring. 
• Posture and gesture 
analysis. 
• Image/video-based 
multimodal stress recognition. 
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RNNs / LSTMs • Specialized in modeling 
sequential/temporal dependencies. 
• Effective for biosignals such as 
ECG, EEG, and speech. 
• Can capture both short- and 
longterm patterns. 

• Prone to vanishing/exploding 
gradients (mitigated by LSTMs). 
• Computationally expensive for long 
sequences. 
• Slower training compared to 
CNNs/Transformers. 

• ECG-based stress detection. 
• EEG and galvanic skin 
response (GSR) analysis. 
• Speech-based stress 
recognition with temporal dynamics. 

Transformers (Attention 
Models) 

• Superior in modeling 
longrange dependencies. • Parallelizable 
and scalable for large datasets. 
• Highly effective for 
multimodal fusion (video, audio, 
biosignals). 
• Self-attention highlights 
stressrelevant features automatically. 

• Require very large datasets 
to train effectively. • High 
computational and memory 
demands. 
• Interpretability challenges 
in 
complex multimodal tasks. 

• Multimodal stress 
recognition (facial + speech + 
biosignals). 
• Real-time adaptive learning 
and affective computing applications. 
• Large-scale stress 
monitoring in digital classrooms or 
workplaces. 

 
The comparative analysis presented in Table 1 highlights the distinct contributions of CNNs, LSTMs, and Transformers within the 
domain of stress detection. CNNs demonstrate strong performance in capturing spatial and appearance-based cues such as facial 
expressions and postural variations, making them highly suitable for image- and video-driven applications. However, their inability to 
capture temporal dependencies limits their effectiveness when stress manifests through sequential physiological changes. LSTMs 
address this limitation by modeling temporal dynamics in biosignals such as ECG, EEG, and speech, thereby enabling more 
nuanced recognition of stress over time. Yet, their sequential nature often leads to higher computational costs and slower 
convergence. Transformers, with their self-attention mechanisms, have emerged as a powerful alternative by efficiently modeling 
long-range dependencies and integrating heterogeneous data streams in multimodal frameworks. Despite their significant 
computational demands, Transformers offer enhanced scalability and adaptability, positioning them as a promising foundation for 
next-generation stress detection systems [32]–[38]. 
 

V. DEEP LEARNING IN STRESS DETECTION 
Deep learning has emerged as a transformative paradigm in stress detection research, addressing limitations of traditional statistical 
and machine learning approaches. Unlike handcrafted feature engineering, deep learning models automatically extract hierarchical 
representations from raw physiological, behavioral, and multimodal data, allowing for more accurate, scalable, and real-time stress 
monitoring solutions. 
 

 
Fig 4 Architecture Of Deep Learning In Stress Detection 
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A. Rationale for Adopting Deep Learning 
The primary motivation for adopting deep learning in stress detection lies in its ability to perform automatic feature extraction from 
high-dimensional, complex inputs. Physiological signals such as EEG, ECG, and GSR, as well as behavioral modalities like facial 
expressions and speech, often exhibit nonlinear and noisy characteristics that are difficult to model using conventional techniques. 
Deep neural networks capture latent representations without requiring handcrafted domain knowledge, thereby reducing bias and 
improving generalization. Another key advantage is the ability of deep learning to integrate multimodal data streams. Stress is 
inherently multimodal—manifested through neural activity, cardiovascular responses, speech prosody, and facial micro- 
expressions. Deep learning frameworks can seamlessly fuse these heterogeneous data sources, uncovering interdependencies that 
enhance predictive accuracy [39], [40]. 
 
B. Common Deep Learning Architectures in Stress Research 
Several specialized deep learning architectures have been employed to address different aspects of stress detection: 
1) Convolutional Neural Networks (CNNs): Widely used for analyzing spatial structures, CNNs excel in extracting localized 

patterns from EEG spectrograms, ECG waveforms, or facial images. For example, CNN models can identify subtle facial 
muscle changes that indicate stress or recognize spectral shifts in physiological signals [41], [42]. 

2) Recurrent Architectures (RNN, LSTM, GRU): Since stress evolves over time, temporal modeling is critical. RNNs and their 
advanced variants like LSTMs and GRUs capture long-range temporal dependencies in sequential data such as heart rate 
variability or speech patterns, enabling recognition of stress trends over time [43], [44]. 

3) Autoencoders: Unsupervised autoencoder networks are valuable for feature learning and dimensionality reduction, especially in 
cases with limited labeled stress datasets. They help discover compact representations of multimodal data while preserving 
essential stress-related variations, which can then be fed into classifiers [45]. 

4) Transformer-Based Models: Recently, transformer architectures have demonstrated strong performance in stress detection due 
to their self-attention mechanisms, which model global dependencies across time and modalities. Transformers have proven 
particularly effective in multimodal fusion tasks, where EEG, facial images, and speech inputs are combined to form holistic 
stress assessments [46]. 

 
C. Comparative Advantages over Conventional Machine Learning 
Compared to traditional machine learning approaches such as Support Vector Machines (SVM), Random Forests, or k-Nearest 
Neighbors (kNN), deep learning offers several critical advantages. First, manual feature engineering—often required in ML 
methods—introduces subjectivity and may fail to capture complex patterns. Deep learning, by contrast, automatically learns 
hierarchical features that adapt to specific modalities. Second, deep models achieve higher scalability and robustness when exposed 
to large, heterogeneous datasets. Third, deep learning methods support end-to-end training pipelines, reducing preprocessing 
complexity and aligning feature extraction with classification objectives. Finally, in multimodal stress detection, deep learning 
architectures—especially transformers—enable fusion at both feature and decision levels, an area where conventional ML 
algorithms struggle due to modality misalignment [47], [48]. 

Table 2 : Deep Learning Architectures For Stress Detection: Modalities, Applications, And Key Advantages 
ARCHITECTURE PRIMARY MODALITIES STRESS DETECTION 

APPLICATIONS 
KEY ADVANTAGES 

Convolutional Neural 
Networks (CNNs) 

EEG spectrograms, ECG signals, 
Facial images 

Identifying spatial patterns in brain activity, 
cardiac stress markers, and 
facial micro-expressions 

Strong in localized pattern 
recognition; robust against noise in 
physiological data 

Recurrent Networks 
(RNN, LSTM, GRU) 

ECG/PPG sequences, 
Speech, HRV time series 

Capturing temporal evolution of stress levels; 
detecting prosodic changes in speech 

Models long-term 
temporal 

   dependencies; effective for sequential stress 
data 

Auto encoders Multimodal data (EEG + ECG), 
GSR, Wearable sensor streams 

Feature learning from unlabeled data; 
dimensionality reduction in 
multimodal fusion 

Learns compact stress-related 
representations; useful in 
lowlabeleddata scenarios 

Transformers EEG + facial expressions + 
speech (multimodal) 

Fusion of heterogeneous data sources for 
holistic stress monitoring 

Global self-attention for crossmodal 
dependencies; strong 

performance in multimodal fusion 
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VI. DATA SOURCES FOR DEEP LEARNING IN STRESS DETECTION 
The effectiveness of deep learning approaches in stress detection is heavily dependent on the quality and diversity of the data 
employed. Stress is a multidimensional construct, involving physiological, behavioral, and contextual manifestations that 
collectively shape human responses under pressure. Consequently, research in this domain has progressively moved towards 
harnessing heterogeneous data sources to enhance model robustness and generalizability. These sources can be broadly categorized 
into physiological signals, behavioral data, environmental context, and multimodal integrations. Each of these domains provides 
distinct advantages and limitations, shaping their applicability across laboratory-based studies and real-world deployments. 
 
A. Physiological Signal-Based Data 
Physiological signals represent the most direct and objective measures of stress because they capture internal body responses that 
cannot be easily manipulated by individuals. Among the most studied signals are electrocardiography (ECG) and heart rate 
variability (HRV), which provide insights into autonomic nervous system regulation. Increased sympathetic activity under stress 
conditions often leads to reduced HRV, a phenomenon widely used in stress recognition studies (Schmidt et al., 2018). Similarly, 
electroencephalography (EEG) captures brainwave activity and offers information on cognitive load and emotional regulation, while 
electromyography (EMG) reflects muscle activity associated with tension. Galvanic skin response (GSR), also termed electrodermal 
activity (EDA), is another key modality indicating variations in sweat gland activity that correlate strongly with stress levels 
(Rehman et al., 2020). Furthermore, respiratory signals—capturing rate, depth, and variability—serve as valuable proxies of stress-
induced physiological arousal. Deep learning models have successfully leveraged these signals for classification tasks, with 
convolutional neural networks (CNNs) and recurrent architectures (e.g., LSTMs) outperforming traditional methods in identifying 
subtle temporal variations (Roy et al., 2025). However, despite their high reliability, physiological signals often require specialized 
sensors and can sometimes be intrusive, limiting their scalability outside clinical or controlled environments. 
 
B. Behavioral Data for Stress Recognition 
Unlike physiological signals, behavioral data provide a less invasive yet equally informative avenue for stress monitoring. Stress 
frequently alters external behaviors such as speech patterns, facial expressions, and motor activity. Speech-based indicators— such as 
pitch, jitter, intensity, and speech rate—have been integrated into deep learning pipelines, where CNN–LSTM hybrids have 
demonstrated high classification performance (Cho et al., 2022). Likewise, facial micro-expressions, captured using visionbased 
methods, reveal involuntary muscular changes that correlate with stress states. Emerging studies also explore digital behavioral 
markers, such as typing rhythms, cursor movements, and gait patterns. For instance, keystroke dynamics and touch-based inputs on 
mobile devices have been employed to infer stress, enabling nonintrusive and continuous assessment in naturalistic settings 
(Alshurafa et al., 2022). Such approaches are particularly promising in ubiquitous computing environments, where individuals’ digital 
footprints can serve as a proxy for psychological states. Nevertheless, behavioral signals are highly context-dependent and 
susceptible to external variability, necessitating robust normalization and feature-extraction pipelines. 
 

C. Environmental and Contextual Data 
Beyond individual physiology and behavior, environmental context provides critical information for stress detection. The advent of 
smartphones, wearable devices, and IoT sensors has made it possible to collect contextual features such as activity levels, mobility 
traces, ambient noise, and interaction logs. For example, accelerometer and gyroscope data from smartphones have been integrated 
into deep learning frameworks to detect physical restlessness, a known correlate of stress (Schmidt et al., 2018). Similarly, wearable 
devices can continuously track sleep patterns and daily routines, offering a longitudinal perspective on stress fluctuations (Tiwari et 
al., 2025). These environmental data sources extend the applicability of stress detection systems from laboratory environments into 
realworld conditions. However, they also raise challenges concerning privacy, data heterogeneity, and integration of highdimensional 
inputs. Addressing these challenges often involves adopting advanced fusion strategies and privacy-preserving techniques to ensure 
both effectiveness and ethical compliance. 
 
D. Multimodal Data Integration 
In recent years, multimodal learning approaches have emerged as the most effective paradigm for stress detection. By integrating 
physiological, behavioral, and contextual inputs, multimodal frameworks exploit complementary information that would otherwise be 
missed in unimodal approaches. Deep learning architectures such as CNN–LSTM hybrids, attention mechanisms, and transformer-
based models have been applied to fuse heterogeneous data streams, achieving state-of-the-art performance. 
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For example, Singh et al. (2025) reported an accuracy of 90.45% using a CNN–LSTM applied to the WESAD dataset, which 
contains ECG, EDA, and respiration signals. Similarly, Coutts et al. (2023) demonstrated effective stress recognition using 
HRVbased features with LSTMs, while Roy et al. (2025) achieved 98.1% accuracy with a CNN–BiLSTM–GRU hybrid model on 
EEG signals. These findings underscore the superiority of multimodal frameworks in capturing complex stress dynamics, though 
they require significant computational resources and present challenges related to interpretability and deployment. 
 

VII. DATASETS AND BENCHMARK STUDIES 

Fig 5 Data Collection Platform 
 
A. Widely Used Datasets 
The development of reliable stress detection models strongly depends on the availability of high-quality datasets. One of the most 
widely recognized resources is the WESAD (Wearable Stress and Affect Detection) dataset, which provides multimodal 
physiological recordings, including electrocardiography (ECG), electrodermal activity (EDA), respiration, and skin temperature, 
collected using wearable sensors. WESAD has become a benchmark in the field due to its inclusion of both stress and affective 
states under controlled laboratory conditions [49]. Another widely used dataset is DEAP (Database for Emotion Analysis Using 
Physiological Signals), which consists of electroencephalography (EEG) and peripheral physiological signals recorded while 
participants were exposed to affective video stimuli. DEAP has played a critical role in advancing stress and emotion recognition, 
particularly in multimodal deep learning studies [50]. In addition, the SWELL dataset was specifically designed for workplace stress 
analysis, providing EEG, ECG, and other physiological recordings from participants exposed to task interruptions and time pressure. 
This dataset is particularly relevant for occupational stress research, as it replicates cognitive and workload-related stressors in semi-
naturalistic office-like environments [51]. Beyond these, other datasets such as AMIGOS (emotions in individuals and groups), 
DREAMER (EEG and ECG data collected under audiovisual stimuli), and smartphone or wearable sensor-based datasets (capturing 
real-life stress and activity) have also been extensively used in stress and affective computing research [52]. Together, these datasets 
form the backbone of experimental evaluation, enabling researchers to benchmark algorithms and validate multimodal stress 
detection systems. 
 
B. Strengths and Limitations of Current Datasets 
Existing datasets provide a solid foundation for research; however, they also present both strengths and limitations. A key strength of 
datasets such as WESAD, DEAP, and SWELL lies in their multimodal nature, enabling the fusion of diverse physiological and 
behavioral signals to improve robustness. Furthermore, their availability has promoted comparability across studies, facilitating fair 
benchmarking of machine learning and deep learning methods under similar conditions [53]. 
Nevertheless, several limitations remain. Most datasets are collected in controlled laboratory environments, which do not accurately 
capture the complexity and unpredictability of real-world stressors. For instance, stress induced by video stimuli or experimental 
protocols may not fully represent the dynamic stress responses observed in daily life [54]. Another challenge is small sample size, 
with many datasets including fewer than 50 participants, restricting the generalizability of models across diverse populations. 
Similarly, demographic homogeneity (e.g., young adults or university students) limits applicability to broader contexts, such as 
elderly populations or high-risk occupational groups. Data imbalance between stressed and non-stressed states further complicates 
the training of models, often resulting in biased predictions and reduced performance in naturalistic conditions [55]. 
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C. Need for Standardized Benchmarking 
Given these challenges, there is a growing consensus in the research community regarding the need for standardized benchmarking 
protocols. Currently, there is no universally accepted standard governing dataset selection, annotation practices, or evaluation 
metrics in stress detection research. This lack of harmonization creates inconsistencies and makes cross-study comparisons difficult 
[56]. Establishing a standardized framework would ensure more objective evaluation of machine learning models, while enabling 
researchers to assess performance under uniform conditions. Such a benchmark should include large-scale, demographically diverse 
datasets collected in both laboratory and real-world environments. It should also provide clear annotation guidelines, preprocessing 
pipelines, and baseline model implementations to facilitate reproducibility. Importantly, integration of multimodal data sources—
such as physiological signals, behavioral indicators, and contextual information—would help capture stress more holistically. With 
standardized benchmarks, research outcomes could be compared fairly across studies, accelerating scientific progress and enabling 
practical applications of stress detection technologies in healthcare, workplace monitoring, and adaptive learning environments [57]. 
 

VIII. DEEP LEARNING MODELS FOR STRESS DETECTION 
In recent years, deep learning has become one of the most influential paradigms for stress detection research due to its ability to 
extract hierarchical and non-linear patterns from multimodal data sources. Unlike traditional stress recognition systems that rely on 
handcrafted feature engineering, deep learning enables direct representation learning from raw data streams, such as physiological 
signals, visual cues, and spoken or written language. The adaptability of these models allows them to capture complex 
interdependencies between stress biomarkers, thereby improving accuracy and robustness across diverse experimental and real- 
world settings. This section provides an in-depth overview of deep learning–based stress detection models, categorized into four 
main domains: signal-based, image and video-based, speech and text-based, and multimodal fusion architectures. 
 
A. Signal-Based Models 

Fig 6 Stress Detection From Eeg Signal 
 
Physiological signals, particularly electrocardiograms (ECG) and electroencephalograms (EEG), serve as primary biomarkers for 
stress due to their strong associations with the autonomic and central nervous systems [58]. Deep learning models, such as 
convolutional neural networks (CNNs), are well-suited for analyzing these signals because of their ability to learn spatially invariant 
representations from time–frequency maps or spectrograms. For instance, CNNs have been used to classify stress states from EEG-
derived spectrograms by capturing frequency-domain changes linked to stress-induced cortical activity [59]. 
To complement CNN-based spatial feature extraction, recurrent neural networks (RNNs) such as long short-term memory (LSTM) 
networks are employed to capture temporal dependencies in ECG and EEG sequences. Hybrid CNN–LSTM architectures have been 
shown to improve classification accuracy by modeling both local and long-term signal variations [60].  
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These architectures are particularly advantageous in wearable and Internet of Things (IoT) environments, where real-time stress 
monitoring requires high sensitivity to transient fluctuations. Moreover, attention mechanisms have recently been incorporated into 
these hybrid models, enabling the network to focus selectively on stress-indicative signal segments while ignoring irrelevant noise 
[61]. Overall, signal-based models provide high reliability and sensitivity, but they often require high-quality sensor data and 
controlled acquisition environments, which can limit scalability in everyday applications. 
 
B. Image and Video-Based Models 
Facial expressions and physiological changes in skin temperature have long been recognized as external indicators of stress. Deep 
CNNs are frequently employed to analyze static facial images, detecting micro-expressions and subtle muscular activations that may 
not be visible to the human eye [62]. Recent advances extend these approaches to video-based systems, where spatiotemporal 
architectures such as 3D-CNNs and CNN–LSTM hybrids capture temporal dynamics in facial expressions and body posture under 
stress [63]. 
Thermal imaging has emerged as another promising modality, as stress activates the sympathetic nervous system, leading to 
measurable changes in facial skin temperature, especially around the perinasal and forehead regions [64]. Deep learning–based 
thermal analysis models have shown strong potential for contactless stress assessment in real-time scenarios, such as classroom 
monitoring and workplace environments. Compared to purely physiological sensors, image-based methods are less intrusive, 
making them more acceptable for long-term monitoring. 
Nonetheless, these models face challenges in uncontrolled environments where illumination, occlusion, and camera angles may 
affect performance. Integrating robust preprocessing pipelines, transfer learning, and domain adaptation has been proposed to 
mitigate these issues [65]. 

Fig 7 TWO IMAGE SEQUENCES OF THE SAME PERSON WHEN WATCHING AN UNSTRESSED VIDEO CLIP (UPPER) 
AND STRESSED VIDEO CLIP (LOWER) 

 
C. Speech and Text-Based Models 
Speech has proven to be a highly informative channel for stress detection, as vocal features such as pitch, jitter, energy, and prosody 
are directly influenced by stress-induced changes in the vocal tract and respiratory system [66]. CNNs and spectrogrambased 
LSTMs have been successfully applied to raw audio signals, enabling the automatic extraction of discriminative acoustic patterns 
without handcrafted feature engineering [67]. In addition to acoustic cues, natural language processing (NLP) models analyze 
textual or transcribed speech data to detect stressinduced changes in linguistic expression. For instance, stressed individuals often 
display reduced lexical diversity, increased use of negative sentiment words, and shorter sentence structures [68]. Transformer-
based models such as BERT and its variants have advanced this domain by enabling contextualized understanding of stress-related 
linguistic cues [69]. Combined speech– text pipelines are now increasingly explored, as they capture both how individuals speak and 
what they say under stress [70]. However, speech- and text-based approaches are susceptible to cultural, linguistic, and situational 
variability, which may affect their generalizability. Multi-lingual pre-training and domain adaptation strategies are being developed 
to address these challenges [71]. 
 
D. Multimodal Fusion Models 
Stress is inherently multimodal, manifesting simultaneously across physiological, behavioral, and linguistic domains. Hence, 
multimodal fusion models have gained significant attention for their ability to integrate heterogeneous data sources. Early fusion 
approaches combine raw or low-level features from different modalities at the input stage, whereas late fusion strategies merge 
independent model decisions at the classification level [72].  
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While early fusion offers richer joint representations, it is more computationally intensive and prone to modality-specific noise. Late 
fusion, on the other hand, provides robustness and flexibility but may lose fine-grained cross-modal interactions. 
More recently, hybrid fusion architectures that incorporate CNNs, LSTMs, and Transformers have achieved state-of-the-art results in 
stress recognition. These models balance local feature learning (via CNNs), temporal sequence modeling (via LSTMs), and long-
range cross-modal attention (via Transformers), thereby enhancing both accuracy and interpretability [73]. Such systems have 
demonstrated superior performance in real-world applications such as classroom stress monitoring, telehealth interventions, and 
workplace productivity analysis [74]. 
Nevertheless, multimodal fusion models also pose challenges in terms of synchronization, computational cost, and privacy 
concerns, especially when combining sensitive physiological and behavioral data. Federated learning and privacy-preserving deep 
learning are emerging solutions to mitigate these risks [75]. 
 

IX. APPLICATIONS OF DEEP LEARNING STRESS DETECTION 
Deep learning–based stress detection frameworks have moved beyond theoretical research into a wide range of real-world 
applications. By leveraging multimodal signals such as physiological biomarkers, facial expressions, speech, and text, these models 
enable timely interventions, adaptive environments, and predictive analytics in domains where stress can significantly affect health, 
performance, and decision-making. The following subsections discuss the major application areas where deep learning has 
demonstrated substantial impact. 
 
A. Healthcare: Early Diagnosis and Personalized Therapy 
In healthcare, stress is a critical factor influencing both mental and physical health outcomes. Prolonged stress contributes to 
cardiovascular disorders, weakened immunity, and mental illnesses such as anxiety and depression. Deep learning models trained on 
physiological data (e.g., heart rate variability, EEG, and galvanic skin response) have enabled early detection of pathological stress 
states and offered tools for personalized mental health monitoring . For instance, CNN–LSTM architectures applied to wearable 
device data can identify early signs of chronic stress and provide real-time recommendations for relaxation or therapy Moreover, 
federated learning approaches allow decentralized training of stress detection systems across multiple healthcare institutions without 
compromising patient privacy. Such advancements pave the way for personalized therapeutic interventions, digital phenotyping, and 
preventive care solutions. 
 
B. Workplace: Stress Management and Employee Well-being 
Workplace stress has become a major concern, affecting productivity, job satisfaction, and long-term employee well-being. Deep 
learning–enabled stress detection systems integrated into wearable devices and ambient sensors can monitor employees’ stress 
levels continuously and non-invasively. These systems can be embedded in occupational health platforms to detect high-stress 
events and provide adaptive interventions such as guided breathing exercises, break reminders, or workload redistribution. Beyond 
individual monitoring, enterprise-level stress analytics can assist organizations in designing data-driven stress management 
programs, ensuring healthier work environments and reducing burnout. 
 
C. Education: Stress-Aware Learning Systems and Exam Anxiety Monitoring 
In educational contexts, stress significantly impacts cognitive performance, memory retention, and learning outcomes. Deep 
learning–based stress recognition systems can monitor students’ facial expressions, speech tones, and physiological signals to detect 
exam-related anxiety or classroom stress. By integrating such systems into adaptive e-learning platforms, educators can personalize 
teaching strategies, adjust content difficulty, or provide emotional support when students exhibit signs of stress. Additionally, real-
time emotion and stress monitoring can help prevent dropout risks and foster engaged, stress-aware learning environments, 
especially in online or hybrid education. 
 
D. Human-Computer Interaction (HCI): Adaptive and Responsive Systems 
Human-Computer Interaction (HCI) has evolved toward affective and stress-aware computing, enabling machines to adapt their 
responses based on user stress levels. Stress-adaptive systems powered by deep learning use multimodal inputs—such as keystroke 
dynamics, facial cues, and speech—to modify system behavior in real time. For example, virtual assistants can adjust their 
communication tone, game systems can adapt difficulty levels, and online platforms can reduce information overload for stressed 
users. Such adaptive systems enhance usability, reduce cognitive burden, and improve overall user satisfaction. 
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E. Military and High-Stress Professions: Monitoring Pilots, Surgeons, and Soldiers 
Professions involving high-stakes decision-making under pressure, such as aviation, surgery, and military operations, require 
continuous monitoring of stress to ensure safety and performance. Deep learning models analyzing physiological signals (EEG, 
ECG, thermal imaging) and behavioral data can provide early warnings of cognitive overload, fatigue, and acute stress. In military 
applications, multimodal deep learning systems can monitor soldiers’ stress in combat training and real missions, thereby enhancing 
resilience and operational readiness. Similarly, in aviation, cockpit-integrated stress monitoring can assist pilots in maintaining 
situational awareness, while in surgery, stress-aware systems can improve surgical precision and reduce medical errors. These 
applications demonstrate the critical role of deep learning stress detection in life-critical domains, where errors caused by stress can 
have severe consequences. 
 

X. CHALLENGES AND LIMITATIONS 
Despite the rapid progress of deep learning (DL) in stress detection, several challenges remain before its widespread translation into 
clinical, occupational, and real-world environments. These limitations span data-related issues, privacy and ethical concerns, 
generalizability across populations, interpretability of models, and real-time deployment constraints. Addressing these concerns is 
crucial for developing reliable, ethical, and scalable DL-based stress detection systems. 
 
A. Data Challenges 
One of the most pressing limitations in DL-based stress detection is the scarcity of large-scale, labeled, and standardized datasets. 
Physiological data such as EEG, ECG, GSR, and multimodal signals are difficult to acquire due to high costs, invasive procedures, 
and participant compliance issues. Furthermore, most available datasets are collected in controlled laboratory conditions, which lack 
the ecological validity required for real-world stress monitoring. Data imbalance—where certain stress levels (e.g., mild stress) are 
overrepresented while severe stress is underrepresented—further complicates model training, often leading to biased predictions. 
Another critical limitation is demographic and cultural diversity. Many datasets are dominated by specific age groups, genders, or 
cultural contexts, reducing model robustness when applied across heterogeneous populations. 
 
B. Privacy and Ethical Concerns 
Stress detection systems often rely on sensitive physiological and behavioral data, raising concerns about privacy, informed consent, 
and ethical data handling. For example, EEG, thermal imaging, or speech recordings can inadvertently reveal information unrelated to 
stress but highly personal to the individual. In workplace or educational contexts, the misuse of stress detection technologies could 
lead to surveillance, stigmatization, or discrimination. Regulations such as GDPR and HIPAA enforce strict rules on the storage, 
sharing, and processing of biometric data, posing challenges for large-scale deployment of DL-based systems. Ensuring data 
anonymization, secure storage, and ethical governance frameworks is essential to protect users while leveraging the potential of 
stress detection technologies. 
 
C. Generalization and Robustness 
A major limitation of current models is their inability to generalize effectively across populations and environments. Models trained on 
laboratory-acquired signals often underperform when exposed to noisy, real-world data. Environmental factors such as lighting 
variations in facial recognition, background noise in speech, or motion artifacts in wearable sensors significantly reduce accuracy. 
Furthermore, inter-individual variability in physiological responses to stress makes it difficult to design universal detection models. 
For instance, while heart rate variability (HRV) may be a reliable biomarker for one group, it may not consistently reflect stress in 
another due to genetic, lifestyle, or medical differences. To address this, transfer learning and domain adaptation approaches are 
being explored, but their scalability and robustness remain limited. 
 
D. Model Interpretability 
The “black-box” nature of deep learning remains a critical barrier to trust and adoption in sensitive domains such as healthcare and 
education. While DL models can achieve high accuracy, they often fail to provide transparent reasoning for their predictions. For 
stress detection, clinicians, educators, and policy-makers require interpretable outputs that can inform decision-making processes. 
The lack of explainability makes it difficult to validate models in high-stakes environments, where erroneous predictions could have 
severe consequences. Recent efforts in explainable AI (XAI) have attempted to provide saliency maps, attention visualizations, and 
rule-based explanations for stress-related predictions, but these methods are still in their infancy]. 
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E. Real-time Implementation Issues 
Deploying DL-based stress detection systems in real-time environments poses significant challenges related to computational 
complexity, latency, and hardware limitations. Deep neural networks, especially multimodal architectures combining CNNs, 
LSTMs, and Transformers, demand substantial computational resources that are often unavailable in wearable or mobile devices. 
This leads to trade-offs between model complexity and inference speed. Moreover, battery life, memory constraints, and sensor 
calibration issues hinder the practicality of real-time stress monitoring. Edge computing and lightweight neural architectures have 
emerged as promising solutions, but ensuring accuracy while maintaining efficiency remains a key research frontier. 
 

XI. FUTURE DIRECTIONS 
Although deep learning–based stress detection has made considerable progress, current systems remain limited by interpretability, 
generalization, and deployment challenges. Moving forward, several research avenues can help establish stress detection as a 
clinically, socially, and technologically reliable tool. The following subsections outline key directions. 
 
A. Explainable AI for Stress Detection 
Deep learning models, despite their predictive power, often function as black-box systems. This opacity limits their acceptability in 
healthcare and other regulated domains where decision accountability is critical. Explainable AI (XAI) techniques such as Layer- wise 
Relevance Propagation (LRP), SHAP (SHapley Additive Explanations), and attention heatmaps can provide insights into which 
features—such as heart rate variability, facial micro-expressions, or vocal pitch—contribute to stress predictions. Future research 
must focus on context-sensitive interpretability, ensuring that explanations are not only technically accurate but also understandable 
to clinicians, educators, and end-users. In addition, interactive visualization tools should be developed to support decision-making in 
real time. 
 
B. Federated and Privacy-Preserving Learning 
Stress detection often involves sensitive physiological and behavioral data. Traditional centralized training risks privacy breaches 
and regulatory non-compliance (e.g., GDPR, HIPAA). Federated learning (FL) offers a solution by training models collaboratively 
across decentralized devices or institutions without moving raw data. This allows personalization while protecting privacy. 
Enhancements such as differential privacy, secure aggregation, and homomorphic encryption can further minimize risks. Future 
studies should optimize FL for resource-constrained devices, balancing latency and accuracy while ensuring system scalability. 
Integration of FL with wearable IoT devices may enable privacy-preserving, real-time stress monitoring in healthcare, workplace, 
and educational settings. 
 
C. Advances in Wearables and IoT for Continuous Monitoring 
Wearable devices have emerged as a cornerstone of stress detection research. Modern smartwatches, wristbands, and biosensors can 
non-invasively monitor electro dermal activity (EDA), heart rate variability (HRV), skin temperature, and even EEG using compact 
headbands. When embedded within IoT ecosystems, these devices can provide continuous multimodal stress monitoring in real-
world contexts. The challenge lies in lightweight deep learning deployment, where edge AI and on-device inference can reduce 
latency and minimize cloud dependency. Future directions include developing energy-efficient deep learning architectures (e.g., 
TinyML) and cross-sensor fusion frameworks that combine physiological and contextual signals for robust real-time stress 
assessment. 
 
D. Personalized Stress Detection Models 
Stress responses vary significantly between individuals due to genetic, cultural, and situational factors. Current one-size-fits-all 
models fail to capture such variability.  
Personalized approaches using transfer learning, domain adaptation, and reinforcement learning can dynamically adjust baselines for 
each user. For example, a student experiencing exam anxiety may show stress markers at different thresholds than a healthcare 
professional in a high-stakes surgery. Longitudinal data collection further enables trajectory modeling, allowing systems to identify 
chronic stress patterns and anticipate critical thresholds. Future research should prioritize adaptive personalization frameworks to 
support precision interventions. 
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E. Integration with Digital Mental Health Platforms 
The rapid adoption of telemedicine and mobile health (mHealth) applications provides a natural platform for deploying deep 
learning–based stress detection. Integrating models into mobile apps, chatbots, and wearable-linked dashboards enables real-time 
stress feedback and personalized intervention strategies, such as breathing exercises or mindfulness prompts. In healthcare, 
integration with Electronic Health Records (EHRs) can support continuous remote monitoring, while in workplaces, dashboards can 
help organizations design stress-aware environments. Future work must address interoperability, ethical considerations, and human-
centered design to ensure that stress detection technologies empower users rather than stigmatize them. 

XII. CONCLUSION 
The growing prevalence of stress in modern societies has underscored the urgent need for reliable, scalable, and ethically 
responsible detection frameworks. This review has highlighted how deep learning approaches—leveraging convolutional, recurrent, 
and transformer-based architectures—offer significant improvements in stress recognition by capturing complex, multimodal 
patterns from physiological, behavioral, and contextual signals. Across experimental studies, these models have consistently 
outperformed traditional machine learning techniques, demonstrating their capacity to handle high-dimensional, nonlinear data and 
enable real-time monitoring in both controlled and real-world environments. Despite these advancements, the field remains evolving 
rather than mature. One of the key takeaways from this survey is that while deep learning has unlocked powerful predictive 
capabilities, it still faces persistent challenges in data scarcity, population diversity, privacy protection, and explainability. Without 
addressing these limitations, widespread adoption of stress detection systems in healthcare, education, workplace well-being, and 
personalized digital platforms will remain constrained. Moving forward, the balance between technical performance and human-
centered considerations will be decisive. Future systems must not only achieve high accuracy but also ensure transparency, fairness, 
and accountability, especially in sensitive domains such as mental health. The integration of explainable AI, federated learning, and 
adaptive personalization strategies can help build trust while respecting user privacy. At the same time, deployment across wearable 
and IoT ecosystems demands models that are lightweight, computationally efficient, and accessible to diverse populations. In 
conclusion, deep learning represents a promising but still developing paradigm for stress detection. Its success will depend on 
reconciling algorithmic innovation with ethical safeguards, privacy-preserving frameworks, and user-oriented design. By addressing 
these critical intersections, the next generation of stress detection technologies can move beyond experimental prototypes 
toward becoming trusted, inclusive, and impactful tools in advancing mental health, well-being, and adaptive human– technology 
interaction. 
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