

iJRASET

International Journal For Research in
Applied Science and Engineering Technology

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: XII Month of publication: December 2025

DOI: <https://doi.org/10.22214/ijraset.2025.76332>

www.ijraset.com

Call: 08813907089

E-mail ID: ijraset@gmail.com

Exploring the Potential of IoT Technologies for Real-Time Radiation Monitoring in Nuclear Medicine

Alok Kumar Yadav¹, Neeraj Sharma², Sanjiv Kumar³

^{1, 2, 3}*Nuclear Medicine Physicist, Department of Nuclear Medicine, GGSMCH, Faridkot Punjab*

Abstract: *Background: The expanding scope of nuclear medicine, particularly with the rise of theranostics and personalized dosing regimens, demands a paradigm shift in radiation safety management. Traditional monitoring methods, while foundational, are often characterized by data latency and spatial gaps, failing to provide the dynamic and comprehensive oversight required in modern clinical environments.*

Methods: *This perspective article synthesizes and conceptually analyzes current Internet of Things (IoT) architectures, wireless sensor technologies, and data processing frameworks. These technological capabilities were mapped onto the specific operational and safety requirements of a nuclear medicine department to propose a novel monitoring ecosystem.*

Results: *A three-tier IoT enabled framework is proposed, comprising a perception layer of networked smart sensors, a network/edge layer for data aggregation and immediate analysis, and an application layer for centralized visualization and analytics. This system conceptually enables real-time dose mapping, predictive exposure alerts, and enhanced workflow intelligence, as illustrated by hypothetical clinical use cases.*

Conclusion: *The integration of IoT principles into radiation monitoring holds transformative potential. It can elevate safety protocols from passive, compliance-driven exercises to active, intelligent systems that support advanced therapeutic applications, optimize departmental operations, and provide unprecedented levels of safety assurance for staff and patients.*

Keywords: *Radiation Monitoring; Internet of Things; Nuclear Medicine; Real-Time Systems; Radiation Safety*

I. INTRODUCTION

Nuclear medicine is undergoing significant evolution, moving beyond routine diagnostic imaging to targeted radionuclide therapy, a field collectively known as theranostics [1]. Nuclear medicine procedures utilize various isotopes such as Tc-99m, F-18, Ga-68 along with I-131, Lutetium-177 and Yttrium-90. These radionuclides deliver unprecedented diagnostic and therapeutic efficacy but also introduce new complexities in radiation safety management due to higher administered activities and varied patient emission profiles [2]. In this dynamic landscape, ensuring the As Low As Reasonably Achievable (ALARA) principle for staff, patients, and the public is becoming increasingly challenging.

Current radiation monitoring practices in most departments rely on a combination of passive and periodic methods of monitoring. Thermoluminescent dosimeters (TLDs) or optically stimulated luminescence (OSL) badges provide accurate personal dose records but offer retrospective data, often with a reporting lag of several weeks [3]. Handheld survey meters and installed area monitors provide real-time point measurements but are typically not interconnected, requiring manual logging and interpretation by a Radiation Safety Officer (RSO) [4]. This creates a fragmented safety picture with inherent temporal and spatial blind spots, making it difficult to correlate dose events with specific procedural steps or monitor transient exposures in real time.

Concurrently, the Internet of Things (IoT) has emerged as a transformative force in healthcare, enabling the creation of "smart" environments through networks of interconnected sensors, devices, and data analytics platforms [5]. Applications range from remote patient vital sign monitoring to asset tracking and the predictive maintenance of hospital equipment [6]. The core IoT tenets of pervasive sensing, wireless connectivity, and intelligent data synthesis present a compelling solution to the limitations of traditional radiation monitoring.

This study posits that the deliberate integration of a purpose-built IoT framework into nuclear medicine departments can bridge existing monitoring gaps. Such a system promises to transition radiation safety from a lagging, siloed function to a proactive, integrated component of clinical workflow. We argue that a coherent IoT ecosystem can facilitate real-time exposure tracking, predictive analytics for preventive safety, and data-driven optimization of departmental protocols.

The following sections will (a) analyze the relevant components of IoT technology applicable to radiation monitoring, (b) propose a tailored conceptual architecture for an IoT-enabled monitoring system, (c) explore its practical value through illustrative use cases, and (d) critically discuss the implementation challenges and future research directions necessary to realize this potential.

II. TECHNOLOGICAL FOUNDATIONS: CURRENT PRACTICE AND IOT COMPONENTS

A. Established Radiation Monitoring Modalities and Their Limitations

A radiation safety program in a typical nuclear medicine department is based on several pillars. *Personal Dosimetry* via TLD/OSL badges is the regulatory standard for recording the individual cumulative dose [3]. *Area Monitoring* involves fixed installed detectors in hot labs or near scanners and periodic surveys with handheld ionization chambers or Geiger-Müller counters [4]. *Contamination monitoring* is performed using swipe tests and dedicated probes.

Even though it works well, this system has some drawbacks. Personal dose data is typically retrospective, which limits the ability to intervene immediately when necessary. Handheld surveys offer only brief snapshots of radiation levels, while fixed monitors cover only specific, limited locations, creating spatial and temporal gaps in monitoring.[5]

Additionally, dose information is often stored separately in logs, databases, and physical reports, making it difficult to conduct a comprehensive analysis. Radiation Safety Officers (RSOs) face a significant manual workload due to the need for surveying, logging, and compiling data. Moreover, there is often insufficient context to directly associate a dose measurement with a particular task, such as drawing up a dose or positioning a patient. These limitations underscore the need for a system that is continuous, comprehensive, and connected.

B. Core IoT Technologies for Medical Deployment

An IoT solution for radiation monitoring would leverage a stack of established technologies adapted to the clinical environment.

- 1) **Sensing Layer:** The most important factor that makes this possible is the creation of very small, power-saving radiation sensors that work without wires. Solid-state detectors using materials such as silicon photomultipliers (SiPMs) coupled with scintillators (e.g., Ce:YAG and CsI(Tl)) or advanced CMOS-based radiation-sensitive pixels are becoming commercially viable [6]. These can be packaged into wearable badges (for staff and potentially patients), embedded into equipment, or deployed as environmental nodes in the workplace. Advances in microprocessors and in microelectronics have enabled the incorporation of basic processing and wireless communication modules into these sensors. [7]
- 2) **Connectivity Layer:** Reliable data transmission in a hospital is nontrivial. Thick concrete walls and lead shielding can attenuate the signals. A hybrid network approach is likely to be optimal.
 - **Bluetooth Low Energy (BLE):** Ideal for wearable badges to communicate with nearby gateways (e.g., in a procedure room) with very low power consumption [8].
 - **Wi-Fi (802.11ac/ax):** For high-bandwidth data from fixed nodes and gateways, leveraging existing hospital IT infrastructure where possible.
 - **Low-Power Wide-Area Network (LPWAN):** Technologies such as LoRaWAN are promising for long-range, low-power communication across a department or campus, and are capable of penetrating walls effectively to reach sensors in storage areas or remote corridors [9].

C. Data Processing and Intelligence

- 1) **Edge Computing:** Gateways or sensors can perform initial data processing (e.g., dose rate calculation and spike detection). This allows for immediate local alerts (e.g., a visual/audible alarm on a gateway in a hot lab) without cloud latency, which is crucial for safety.
- 2) **Cloud Computing:** Aggregated data are sent to a secure cloud or hospital server for long-term storage, advanced analytics, trend analysis, and dashboard visualization.
- 3) **Security & Compliance:** As a medical data system, it must comply with regulations such as HIPAA (US) or GDPR (EU). This requires end-to-end encryption, secure device authentication, and robust access control from the sensor to the dashboard [10].

III. PROPOSED IOT-ENABLED MONITORING ECOSYSTEM: A CONCEPTUAL FRAMEWORK

A. System Architecture: A Three-Tier Model

We propose a conceptual architecture comprising three integrated layers for a workflow comparison and for the architecture.

Three-Tier IoT System Architecture for Nuclear Medicine

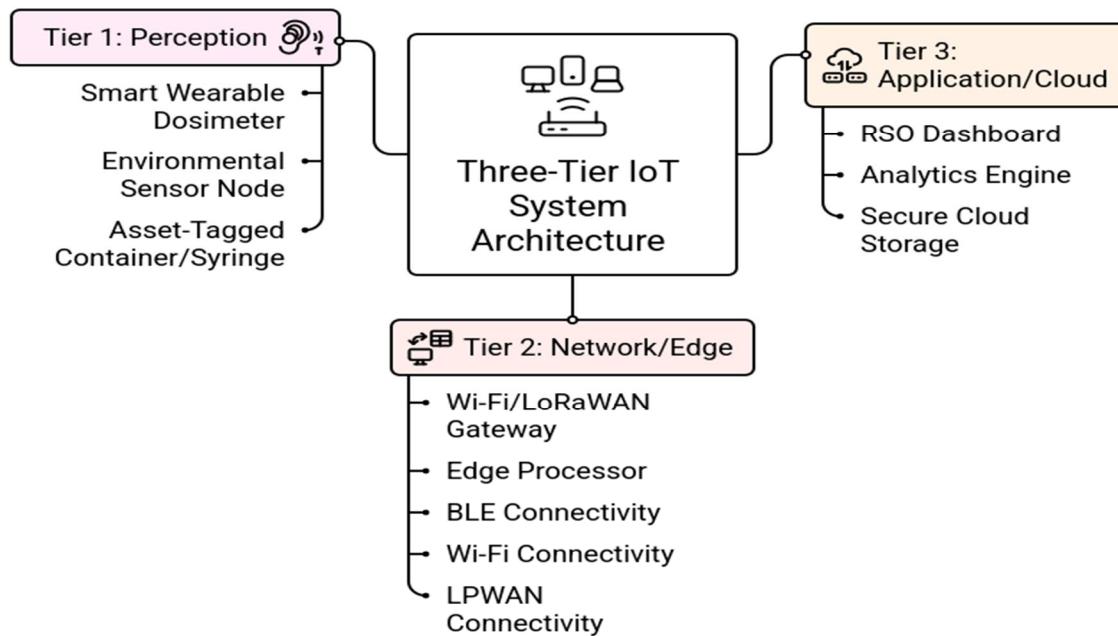


Fig 1: Three tier IOT architecture

- 1) Tier 1: The Perception Layer, which is the physical network of sensors spread throughout the department. This tier includes Smart Wearable Dosimeters worn by all staff in restricted areas, which provide real-time personal dose information and can issue immediate alerts through vibrations or sound. Additionally, Environmental Monitoring Nodes are strategically placed in key areas, such as the radiopharmacy, injection bays, imaging suites, and waste storage, to continuously measure the ambient dose rate, along with temperature and pressure, where necessary. Finally, Asset-Integrated Sensors are attached to specific items, such as shielded syringes, transport containers, and mobile lead shields, to track the location and current status of all radioactive sources and materials.
- 2) Tier 2: Network and Edge Intelligence Layer. This layer uses strategically placed gateway devices (e.g., one in every clinical room) to collect information from the sensors in Tier 1. These gateways serve several key purposes: they gather all data from the local Bluetooth (BLE) and Wi-Fi sensors; they perform immediate "edge processing" where the data is collected, meaning they apply necessary adjustments and run basic safety algorithms (such as immediately triggering a local alarm and flashing a light if the radiation dose rate in a specific area exceeds a safety limit); and finally, they securely send this collected and processed data to the cloud using the hospital's network or a specialized low-power wide-area network (LPWAN).
- 3) Tier 3: The Application & Cloud Analytics Layer functions as the central command and intelligence center. This tier relies on a secure Cloud or Server Infrastructure to store all historical and real-time data. The primary tool is the Radiation Safety Officer (RSO) Dashboard, a user-friendly visual interface (accessible on desktop or tablet) that provides a comprehensive overview of safety. This dashboard displays real-time facility-wide radiation heat maps, live status and dose rates of all tracked assets (such as vials and waste), and immediate staff dose summaries with color-coded alerts. Crucially, it includes an integrated Analytics Engine that not only automates regulatory reporting but also identifies important trends (such as noting that "high exposures consistently occur during Tuesday morning Y-90 administrations") and provides predictive alerts, such as estimating when a waste container will reach capacity.

Table 1 provides a comparative analysis of the proposed paradigm and traditional methods.

Table 1: Comparative Analysis: Traditional vs. IoT-Enabled Radiation Monitoring Paradigms

Parameter	Traditional Paradigm	IoT-Enabled Paradigm
Data Latency	Retrospective (days/weeks) to periodic (minutes/hours)	Real-time to near-real-time (seconds)
Spatial Coverage	Point measurements (handheld) or fixed locations	Continuous, pervasive network coverage
Data Integration	Siloed (badge reports, survey logs)	Unified, centralized data repository
Alerting Mechanism	Manual review and follow-up	Automated, immediate local & centralized alerts
Decision Support	Based on historical analysis	Proactive, predictive analytics & trend visualization
Primary Cost Driver	Recurrent labor for surveys/logs	Initial capital investment in infrastructure
Workflow Context	Limited correlation	Direct correlation of dose to specific assets/locations/times

B. Hypothetical Cases & Value Proposition

The value of this framework is best illustrated through clinical scenarios.

- 1) Case 1: End-to-End Radiopharmaceutical Tracking. From the moment a shipment of F-18 FDG arrives, a sensor-equipped transport container logs its location and ambient dose rate. In radiopharmacy, vial movement from receipt to QC to dispensing is tracked. During administration, the nurse's wearable badge and syringe sensor provided correlated data. This ensures chain-of-custody, prevents misplacement, and creates a complete exposure profile for the entire handling process of the samples.
- 2) Case 2: Dynamic Management of High-Dose Therapy (Y-90). During a Y-90 radioembolization procedure, the patient, staff, and room are instrumented. The dashboard displayed a real-time heat map of the therapy suite. As the staff approach the patient for post-infusion checks, their wearable badges and room sensors feed data to the edge gateway. If the cumulative dose to a staff member in a specific zone approaches a pre-set limit, the system alerts the RSO and can send a discreet notification to the staff member's badge, prompting rotation. All exposure data are automatically tagged to the specific patient procedure for a precise ALARA review.
- 3) Case 3: Long-Term Operational Analytics. Over months, the analytics engine processes the aggregated data. It might be identified that dose rates in a particular corridor consistently spike at 10 AM, correlated with the transport of therapy patients to imaging. This data-driven insight could justify a schedule adjustment or the installation of additional shielding, thereby optimizing safety proactively rather than reactively.

IV. CRITICAL DISCUSSION: CHALLENGES AND PATHWAYS FORWARD

The conceptual promise of the IoT for radiation monitoring is significant; however, its practical implementation faces substantial hurdles that must be addressed.

A. Technical Challenges

A successful radiation monitoring system must overcome three key technical challenges. First, Sensor Performance is critical: the detectors must be accurate across a broad range of radiation energies (from lower energy isotopes to high-energy) and different dose rates, all while being small, using very little power, and remaining affordable.[11] Regular calibration and validation against reference instruments are essential for accuracy. Second, Network Reliability must be guaranteed, as wireless communication needs to remain strong and stable even in environments that block signals, such as lead-lined rooms or concrete bunkers; this requires a hybrid, redundant network design to ensure that no data are lost. Finally, effective Power Management is vital, as both wearable and remote sensors must have an extremely long battery life (ideally months to years) or use energy-harvesting methods to be truly practical and maintenance-free.

B. Clinical and Regulatory Hurdles

Beyond the technical requirements, the successful deployment of a radiation monitoring system faces three major operational and regulatory challenges. First, Workflow Integration is essential; any new devices, features, or alerts must fit smoothly into existing clinical routines without overwhelming staff with unnecessary alarms or interfering with patient care. This success largely depends on effective staff training and buy-in. Second, obtaining Validation and Regulatory Approval is critical. Regulatory bodies (such as the NRC, EPA, or national health authorities) will require strong evidence that the dose data collected by the IoT system are at least as reliable and easy to audit as traditional methods to ensure compliance. This will likely require defining new standards for how "software as a medical device" applies in this specific context. [12] Finally, Data Security and Privacy are paramount. The system must be built using "privacy by design" principles and undergo rigorous cybersecurity testing to protect sensitive real-time staff location and exposure data from potential security breaches.

C. Economic Considerations

The upfront capital costs of sensors, gateways, and software platforms are non-trivial. A convincing cost-benefit analysis must demonstrate value through reduced labor for manual monitoring, decreased risk of regulatory non-compliance or over-exposure incidents, optimized shielding investments, and potentially lower insurance premiums.[13] A phased pilot implementation, starting in a high-value area such as a radiopharmacy or therapy suite, is a prudent strategy to demonstrate proof-of-concept and build a business case for wider deployment.

V. CONCLUSION

The integration of IoT technology into the field of nuclear medicine makes sense as it is a logical step toward improving the management of radiation safety in diverse nuclear medicine facilities. This analysis shows how an IoT platform can create a comprehensive system with extensive sensing capabilities, superior connection capabilities, and advanced data synthesis techniques that can overcome the deficiencies associated with traditional monitoring methods. This IoT solution allows healthcare professionals to access and respond to real-time information on radiation safety to the radiation professionals. Therefore, using IoT for radiation safety management can change the traditional method of radiation monitoring and safety.[14]

The proposed framework supports a safe and efficient method of radiation monitoring and safety, specifically in the rapidly developing field of theranostics. This framework provides Radiation Safety Officers with real-time situational awareness, supplies staff with instant feedback to ensure they remain compliant with (as low as reasonably achievable), and produces the required data-based insights necessary to improve departmental design and workflow analysis. Although there are numerous technical, regulatory, and economic challenges that must be confronted before achieving the proposed framework, these challenges can be met through concentrated inter-professional cooperation between physicians, physicists, scientists, and technologists working in nuclear medicine. A proposed path to achieving this goal includes conducting carefully designed pilot studies, developing interoperable standards, and working together to adopt new technologies used in all facets of medicine to help contribute to a safety culture related to the use of nuclear medicine and the people who work in this field.

Declarations:

Funding: None

Conflict of interest: None declared

REFERENCES

- [1] Herrmann K, Schwaiger M, Lewis JS, Solomon SB, McNeil BJ, Baumann M, Gambhir SS, Hricak H, Weissleder R. Radiotherapy: a roadmap for future development. *Lancet Oncol.* 2020 Mar;21(3):e146-e156. doi: 10.1016/S1470-2045(19)30821-6. PMID: 32135118; PMCID: PMC7367151.
- [2] Calais, P. J., & Turner, J. H. (2014). Radiation safety of outpatient 177Lu-octreotide radiopeptide therapy of neuroendocrine tumors. *Annals of Nuclear Medicine*, 28(6), 531–539. <https://doi.org/10.1007/s12149-014-0843-8>
- [3] Bhatt, B. C., & Kulkarni, M. S. (2013). Thermoluminescent Phosphors for Radiation Dosimetry. *Defect and Diffusion Forum*, 347, 179–227. <https://doi.org/10.4028/www.scientific.net/ddf.347.179>
- [4] Sandri S. Radiation monitoring in the working areas. In: Cappelli M, editor. *Instrumentation and Control Systems for Nuclear Power Plants*. Woodhead Publishing Series in Energy. Woodhead Publishing; 2023. p. 687-709. Available from: <https://doi.org/10.1016/B978-0-08-102836-0-00009-6>
- [5] Muniraj M, Qureshi AR, Vijayakumar D, Viswanathan AR, Bharathi N. Geo tagged internet of things (IoT) device for radiation monitoring. In: *Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI); 2017 Sep 13-16; Udupi, India*. New York (NY): IEEE; 2017. p. 431-6. doi: 10.1109/ICACCI.2017.8125878.
- [6] Liu J. Radiation detection with CsI + SiPM detectors [Internet]. Vermillion (SD): Advanced Laboratory Physics Association; 2023 Aug 10–12 [cited 2025 Dec 10]. Available from: https://advlab.org/Imm2023USD_CsI-SiPM_Detectors

- [7] You S, Eshraghian JK, Ju HC, Cho K. Low-power wireless sensor network using fine-grain control of sensor module power mode. *Sensors (Basel)*. 2021 May 4;21(9):3198. doi: 10.3390/s21093198. PMID: 34064503; PMCID: PMC8125488.
- [8] Chaari Fourati L, Said S. Remote health monitoring systems based on Bluetooth Low Energy (BLE) communication systems. In: The impact of digital technologies on public health in developed and developing countries. 2020 May 31;12157:41–54. doi: 10.1007/978-3-030-51517-1_4. PMCID: PMC7313288.
- [9] Yasmin R, Mikhaylov K, Pouttu A. LoRaWAN for smart campus: deployment and long-term operation analysis. *Sensors (Basel)*. 2020 Nov 24;20(23):6721. doi: 10.3390/s20236721. PMID: 33255405; PMCID: PMC7727831.
- [10] Barbaria S, Jemai A, Ceylan Hı, Muntean RI, Dergaa I, Boussi Rahmouni H. Advancing compliance with HIPAA and GDPR in healthcare: a blockchain-based strategy for secure data exchange in clinical research involving private health information. *Healthcare (Basel)*. 2025 Oct 15;13(20):2594. doi: 10.3390/healthcare13202594. PMID: 41154272; PMCID: PMC12563691.
- [11] Zong B. Design of nuclear radiation monitoring system in floor exploration based on deep learning. *Comput Intell Neurosci*. 2022 May 21;2022:4351339. doi: 10.1155/2022/4351339. PMID: 35637723; PMCID: PMC9148254.
- [12] Diallo AR, Homri L, Boeuf T, Dantan JY, Bonnet F. Quantifying and mitigating alarm fatigue caused by fault detection systems. *Reliab Eng Syst Saf*. 2026;267:111890. doi: 10.1016/j.ress.2025.111890.
- [13] Engström A, Isaksson M, Javid R, Lundh C, Båth M. A case study of cost-benefit analysis in occupational radiological protection within the healthcare system of Sweden. *J Appl Clin Med Phys*. 2021 Oct;22(10):295-304. doi: 10.1002/acm2.13421. Epub 2021 Sep 10. PMID: 34505345; PMCID: PMC8504601.
- [14] Senthil Kumar CK, Koshy A, Isaac SP. IOT-based framework for real-time occupational radiation monitoring in nuclear medicine staff. *Int J Mod Res Sci Eng Technol*. 2024 Sep;7(9):14718. doi: 10.15680/IJMRSET.2024.0709015.

10.22214/IJRASET

45.98

IMPACT FACTOR:
7.129

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 (24*7 Support on Whatsapp)