

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74865

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Facial Emotion Detection Image Analyzer for Selected Image

Aachal Chede¹, V.K. Shandilya², N.P. Mohod³ Sipna College of Engineering and Technology, Amravati, India

Abstract: Facial emotion recognition is a significant and expanding field of research, offering practical applications across various domains, including healthcare, education, and human-computer interaction. For example, in healthcare, this technology enables clinicians and therapists to analyze patient images to identify emotional states indicative of stress or depression. Similarly, in an educational setting, it provides teachers and researchers insights into student engagement and learning behavior through the analysis of classroom or e-learning images. The recent advancement of deep learning, especially Convolutional Neural Networks (CNNs), has substantially enhanced the accuracy and operational efficiency of automated emotion detection systems. This research investigates image-based emotion recognition utilizing CNN architectures, specifically implementing a novel CNNEmotionsModel within Apple's Machine Learning framework. A key focus of this study is demonstrating the viability of real-time mobile deployment using SwiftUI and UIKit to create a highly accessible and user-friendly iOS application. The paper concludes by examining the real-world utility of emotion recognition technologies and outlining

Keywords: Emotion Recognition, CNN Emotion Model, Machine Learning, SwiftUI, UIKit, Mobile Applications

I. INTRODUCTION

Emotions are fundamental to human communication, often conveying deeper meaning than explicit verbal exchange [1]. With technological advancements, the ability to automatically detect and interpret emotions has become a valuable capability across multiple domains [2]. This paper details the development of an intelligent, image-based emotion analyzer utilizing Convolutional Neural Networks (CNNs) for robust facial expression recognition. Historically, emotion recognition relied on traditional methods using handcrafted features, such as facial geometry or landmark points [3]. These approaches, however, often lacked robustness and struggled with variations in lighting, occlusion, and head pose. The emergence of deep learning, particularly CNNs, has fundamentally transformed this domain [4]. CNNs are uniquely capable of learning hierarchical feature representations directly from raw image data, thereby eliminating the necessity for manual feature engineering. By training on extensive datasets, CNNs can accurately identify subtle facial variations corresponding to discrete emotional states (e.g., happiness, sadness, and anger). This paradigm shift toward data-driven learning has led to significant enhancements in the accuracy, generalization, and computational efficiency of modern emotion recognition systems. The proposed application allows a user to select an image from their photo library for analysis. The system then predicts the dominant emotion (e.g., happiness, sadness, anger, fear, or neutrality), accompanied by a quantified confidence score. The user interface is engineered using SwiftUI to provide a modern, adaptive design, while UIKit integration ensures seamless access to necessary native iOS functionalities.

Integrating deep learning models directly into mobile applications has become increasingly viable due to advances in computational efficiency and frameworks such as Apple's CoreML [4]. Previously, inference for complex neural networks often required high-performance GPUs or cloud-based server infrastructure. However, on-device machine learning enables trained models to be packaged as lightweight .mlmodel files that execute locally on the smartphone or tablet. This strategy not only guarantees real-time performance but also strengthens data security by keeping all user processing local to the device. Furthermore, it facilitates offline accessibility, which is crucial for privacy-sensitive applications or environments with limited internet connectivity [5].

From a technical perspective, the system follows a defined workflow: 1) the user selects an image; 2) the application preprocesses the image (resizing, normalization); 3) the trained CNN model performs inference to extract features and classify the emotion; and 4) the predicted emotion and confidence score are instantly displayed to the user.

The primary motivation for this research is to enhance the quality of interaction between humans and intelligent computing systems. As digital technology becomes deeply integrated into daily life, machines must evolve to not only process explicit inputs but also respond empathetically to emotional cues. By detecting emotions, these systems can dynamically adapt responses or services, moving toward more personalized and human-centric applications.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

This aligns with the field of affective computing, Furthermore, this study prioritizes ethical AI and privacy preservation. Given the sensitive nature of facial data, the on-device architecture ensures that no personal data leaves the user's device, mitigating the risk of breaches and aligning the solution with modern data protection standards.

The overall goal of this research is to design a lightweight, accurate Facial Emotion Detection Image Analyzer that operates seamlessly on mobile devices. The successful implementation of the CNNEmotionsModel within Apple's ML framework serves as a demonstration of how advanced AI can be integrated into everyday tools to create smarter, emotionally aware applications. Ultimately, this work contributes to the ongoing body of research in real-time facial emotion recognition, mobile AI deployment strategies, and affective human-computer interaction which aims to equip machines with the ability to recognize and interpret human emotions.

II. LITERATURE REVIEW

The field of Facial Emotion Recognition (FER) and its adaptation for practical mobile platforms has seen substantial evolution between 2018 and 2025. Research in this area has advanced across several key trajectories, including efficient model optimization, mobile integration, contextual feature learning, multimodal analysis, and critical ethical considerations. The following subsections summarize the most significant contributions and emerging trends documented in the recent literature.

A. Lightweight and Mobile-Optimized CNN Architectures..

A foundational breakthrough for mobile-friendly emotion recognition was the development of highly efficient Convolutional Neural Networks (CNNs). Sandler et al. (2018) introduced MobileNetV2, a compact CNN architecture specifically engineered for efficient computation and real-time image analysis on mobile and embedded devices [1]. Its utilization of inverted residual structures and depth-wise separable convolutional layers dramatically reduced computational complexity while maintaining high recognition accuracy, making it an ideal choice for on-device deployment.

Further improvements in lightweight model design were explored by Haddad (2024), who introduced MobileNetV3 for real-time facial emotion recognition, optimizing both accuracy and processing efficiency for consumer electronic devices [15]. Building on these foundations, Large (2021) demonstrated the feasibility of developing iOS-based emotion recognition applications using Create ML and SwiftUI, confirming that modern smartphone hardware could execute machine learning inference effectively without reliance on external servers [2]. Similarly, Enebiny (2022) proposed an effective pipeline that streamlined image preprocessing, face detection, and Corell integration using UIKit, highlighting the growing practicality of deploying sophisticated deep learning classifiers directly within mobile environments [3].

B. Integration of Augmented Reality and Corell Frameworks.

Recent studies have further explored the convergence of Augmented Reality (AR) technologies with Corell to enhance FER accuracy and user interactivity. Jiménez-Ramírez et al. (2022) developed a system integrating ARKit with Corell, which enabled real-time facial tracking, 3D spatial positioning, and emotion overlay in augmented scenes [4]. This novel approach enhanced recognition performance by incorporating spatial awareness and depth estimation, while simultaneously delivering a more immersive user experience.

Such hybrid systems signify a shift toward context-aware emotion recognition, where environmental cues and user dynamics contribute to more reliable predictions, as also noted by Chen (2024), who investigated emotion detection through VR environments and 3D facial cues [19].

C. Deep Feature Representation and Contextual Understanding.

A major development in emotion recognition has been the transition from relying on shallow feature extraction to using deep representation learning. Liu et al. (2023) introduced a high-level context representation model designed to capture fine-grained emotional cues by analyzing global and local relationships across facial regions [5]. Expanding on this, Schäfer et al. (2024) underscored that integrating environmental context—such as lighting, background, and scene elements—can substantially improve model performance and the realism of emotion prediction [6].

Ye (2023) further enhanced this paradigm by proposing spatio-temporal CNNs that effectively recognize dynamic expressions in image sequences [16]. Likewise, Rivera (2023) leveraged attention mechanisms for emotion detection from face images, significantly improving recognition precision in complex scenes [22].

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Peru (2024) conducted a comprehensive meta-analysis of over seventy studies, critically reviewing CNN architectures, data preprocessing methods, and benchmark datasets used in facial emotion analysis [7]. The study identified persistent limitations, including inconsistent labeling, limited cultural diversity, and dataset imbalance, thereby emphasizing the urgent need for standardized evaluation metrics and more inclusive datasets.

Thompson (2023) contributed additional insights by studying emotion recognition in low-light conditions, proposing preprocessing and feature-enhancement strategies to improve robustness under challenging environments [20].

D. Hybrid and Transfer Learning Approaches:

The strategic application of transfer learning and hybrid models has emerged as a leading strategy to achieve high accuracy with minimal computational cost. Gupta et al. (2024) developed a hybrid model that combined Unit segmentation with EfficientNetB4, successfully applying it to mental health assessment through facial emotion analysis [8].

Was (2024) explored cross-domain transfer learning to improve generalization of FER models across heterogeneous datasets, demonstrating that such approaches can significantly boost accuracy with limited data [21].

Park (2024) optimized on-device FER performance using knowledge distillation to reduce model size and inference time, enabling efficient deployment on smartphones [17].

These hybrid frameworks allow researchers to reuse feature-rich, pre-trained models from large datasets like Affect Net and FER-2013, enabling faster model training and consistently improved performance in real-world scenarios. Consequently, transfer learning is now recognized as a vital technique for balancing computational efficiency with predictive precision in mobile-based emotion detection systems.

E. Ethical, Social, and Bias Considerations

As FER systems are increasingly deployed in everyday applications, concerns regarding ethics and fairness have intensified. Alsatian et al. (2025) investigated inherent biases within AI-driven emotion datasets, uncovering significant disparities in how emotions were interpreted across different demographic groups [13].

Similarly, Garcia (2025) emphasized the presence of cultural and dataset bias in FER models, arguing for culturally adaptive training and validation processes [18].

Kumar et al. (2025) conducted a comprehensive review of existing emotion detection techniques, identifying persistent challenges related to cross-cultural generalization, dataset diversity, and privacy preservation [14].

Their findings highlight the essential need for designing inclusive datasets, ensuring algorithm transparency, and establishing robust ethical frameworks to guide the development of socially responsible AI emotion recognition systems.

F. Emerging Trends in Emotion Recognition (2025)

The most current literature indicates a transition toward multimodal and context-driven emotion recognition systems. Modern frameworks increasingly integrate multiple data streams—such as facial images, voice, text, and physiological signals—to capture a broader and more nuanced spectrum of human emotions. Studies by Mobbs et al. (2025) and Wu et al. (2025) illustrate the clear advantages of multimodal fusion, demonstrating that combining visual and auditory cues significantly enhances emotion classification accuracy [11], [12].

Chen (2024) proposed the use of VR-based emotional interfaces for immersive recognition scenarios [19], while Park (2024) demonstrated on-device efficiency through distillation [17].

Concurrently, the intense focus on on-device AI acceleration and hardware optimization continues to make real-time inference practically feasible on standard smartphones. Advances in Apple's Corell, paired with declarative frameworks like SwiftUI, are successfully bridging the gap between complex AI research and practical, user-facing mobile applications.

This synergistic convergence of mobile computing and deep learning is paving the way for more intuitive, efficient, and truly emotion-aware mobile technologies.

G. Summary of Research

In summary, research on image-based emotion recognition has undergone a rapid maturation. Early methods utilizing handcrafted features have been superseded by sophisticated deep learning models, including CNNs and transformers. These advanced models have fundamentally improved recognition accuracy and robustness under diverse conditions. System integration has shifted decisively from server-based computation toward efficient, privacy-conscious on-device processing.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Furthermore, recent studies critically emphasize the necessity of fairness, dataset diversity, and transparency in AI-based predictions. This ethical refinement is now essential to ensure unbiased and responsible emotion analysis. This overall progress demonstrates a powerful fusion of computer vision, mobile computing, and psychology, resulting in emotion recognition systems that are becoming more adaptive, accurate, and profoundly user-focused.

III. RESEARCH GAPS

Despite significant methodological progress in Facial Emotion Recognition (FER), several critical challenges continue to impede the development of fully transparent, equitable, and efficient operational systems. The following subsections delineatethe most salient limitations identified in the current body of research.

A. Lack of Explainability and Model Transparency

Current high-performing emotion recognition models, particularly those based on complex Convolutional Neural Networks (CNNs) and transformer architectures, primarily output classification labels and confidence scores without providing the underlying rationale for their predictions[5], [7], [15]. This intrinsic lack of interpretability undermines user confidence and restricts the adoption of these systems in sensitive, high-stakes applications such as healthcare, education, and security. Without clarity, users and developers cannot definitively ascertain which facial regions, features, or contextual cues drove a model's decision, thereby complicating the processes of validation, error correction, and debugging.

Although recent research advocates for the integration of Explainable Artificial Intelligence (XAI) techniques—such as Grad-CAM, SHAP, and LIME—to visualize attention maps, these methods often remain post-hoc and do not fundamentally embed interpretability into the core model structure. Consequently, a pivotal direction for future study remains the development of inherently interpretable architectures that can offer traceable, reasoned predictions while successfully maintaining high classification performance.

B. Dataset Bias and Demographic Limitations

The efficacy and fairness of emotion recognition systems are fundamentally dependent upon the quality and diversity of the training data. Many widely utilized datasets, including FER-2013 and CK+, suffer from limited representation across various age groups, ethnicities, genders, and cultural backgrounds[6], [14], [18]. This inherent lack of diversity leads to systematic biases in model predictions. These biases result in pronounced performance discrepancies, where models may classify emotions accurately for certain demographic groups while demonstrating significant failure to generalize effectively to others.

Such demographic imbalance not only compromises the technical reliability of FER systems but also generates serious ethical and fairness concerns during AI deployment. To mitigate these disparities, researchers are actively exploring advanced techniques, including data augmentation, domain adaptation, and fairness-aware training methods that explicitly adjust model learning based on demographic distributions. Furthermore, innovative approaches like synthetic data generation using Generative Adversarial Networks (GANs) and federated learning frameworks are being investigated to include more diverse data while upholding stringent user privacy and compliance standards.

C. Accuracy-Efficiency Trade-off in Mobile Implementation

One of the most persistent hurdles in operational emotion recognition is the critical trade-off between model accuracy and computational efficiency. Architectures known for superior performance, such as ResNet, Inception, and VGGNet, are computationally intensive, rendering them impractical for resource-constrained mobile or embedded deployment. Conversely, lightweight models like MobileNetV2, SqueezeNet, and ShuffleNet are optimized for swift mobile execution but typically exhibit reduced accuracy and robustness when faced with complex, real-world variations (e.g., poor lighting, partial occlusion, or extreme pose).

This persistent accuracy—efficiency trade-off constitutes a major barrier to realizing real-time emotion analysis on devices with limited processing power, such as smartphones and IoT systems. Current solutions aim to address this via model compression, network pruning, quantization, and knowledge distillation, all of which reduce network size while striving to retain performance parity. While on-device optimization frameworks—including Apple's CoreML and TensorFlow Lite—offer practical means to achieve fast inference with low latency[2], [8], designing a universally optimal balance among processing speed, prediction accuracy, and energy consumption remains an open and pivotal research challenge.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

IV. COMPARATIVE ANALYSIS

When developing a Facial Emotion Detection Image Analyzer, two primary implementation strategies are typically considered for integration within the iOS ecosystem:

A. Pre-Trained ML Model with UIKit/SwiftUI

This approach leverages Apple's built-in Machine Learning (ML) framework to deploy general-purpose, pre-trained models directly within the application.

Advantages: This method offers significant benefits, including on-device inference for enhanced data privacy and accelerated results. Furthermore, UIKit efficiently handles native image selection from the photo library, while SwiftUI facilitates the construction of a modern, responsive user interface.

Limitations: A primary limitation is the heavy reliance on pre-trained, general-purpose models, which can result in reduced accuracy when classifying nuanced or subtle emotional expressions compared to specialized solutions.

B. Custom CNNEmotionsModel (ML Integration)

This strategy involves utilizing a custom Convolutional Neural Network (CNN) specifically trained for facial emotion recognition and deploying it via Apple's ML tools.

Advantages: This approach yields tailored accuracy specifically for facial emotion tasks. The custom architecture can be converted into a lightweight .mlmodel format for mobile use, successfully striking a beneficial balance between inference speed and classification precision.

Limitations: The main drawbacks include the necessity for acquiring large, diverse datasets for training and the requirement for substantial, dedicated model training efforts.

Comparative Insight:

A direct comparison reveals that while the ML + UIKit/SwiftUI approach excels in platform integration and overall usability, the custom CNNEmotionsModel provides superior recognition accuracy due to its specialized training. The optimal framework for practical, high-performance mobile deployment involves leveraging the specialized predictive power of the custom CNN within the robust, user-friendly integration capabilities of the Apple frameworks.

V. OBJECTIVES

The primary objective of this research is to design, develop, and implement a functional and efficient Facial Emotion Detection Image Analyzer for Selected Imagemobile application capable of processing user-selected images. This work aims to achieve several specific goals:

- 1) Model Implementation: To successfully integrate and deploy a pre-trained Convolutional Neural Network (CNN)-based machine learning model to accurately classify core emotional states—such as happiness, sadness, anger, fear, and neutrality—based on subtle facial expressions captured in static images.
- 2) Mobile Deployment and Performance: To utilize Apple's CoreML, SwiftUI, and UIKit frameworks to ensure real-time on-device inference, guaranteeing low latency, enhanced data privacy, and robust performance on standard mobile devices.
- 3) Demonstrate Practical Utility: To illustrate the system's value by showing its potential in key professional domains, specifically by:
- Healthcare: Providing support for clinicians and therapists in the preliminary study of emotional states from patient images for stress or depression analysis.
- Education: Assisting teachers and researchers in understanding student engagement levels and learning behaviors using captured classroom or e-learning images.

This research aims to advance the integration of specialized AI models into user-friendly mobile environments, bridging the gap between complex machine learning and practical, emotion-aware applications.

VI. FRAMEWORK FLOW

The proposed system framework focuses on the development of a Facial Emotion Recognition (FER) Image Analyzer and is structured around the following critical components:

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- CNN Backbone: Implementation of the hybrid CNNEmotionsModel, specifically optimized for high classification precision and lightweight mobile deployment
- 2) ML Integration: Efficient conversion of the trained model into the CoreML .mlmodel format, enabling on-device execution with native acceleration within the iOS environment.
- 3) User Interface (SwiftUI/UIKit): Construction of a modern, interactive interface that facilitates user image selection and clearly presents the predicted emotion and confidence score.
- 4) Mobile Optimization: Architectural design focused on low latency and minimal resource consumption to ensure a fluid, real-time user experience on mobile hardware.
- 5) Extensibility: Architectural foundation designed to accommodate future research advancements, including integration of new datasets, refined model architectures, and additional affective computing features.
 - Framework Flow: Project Setup → ML Model Integration → Image Handling → Emotion Detection → Result Display

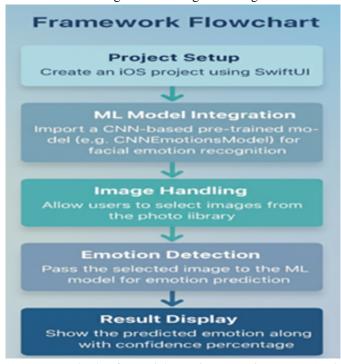


Fig. 1 Framework Flowfor Facial Emotion Detection Image Analyzer

VII.CONCLUSION AND FUTURE WORKS

This study presents a comprehensive review and a deployable framework for Facial Emotion Detection Image Analyzer using CNNs and ML on iOS platforms. By integrating deep learning precision with Apple's ML tools and SwiftUI design, the proposed system enables accurate, real-time, and user-friendly emotion detection. Its potential applications in healthcare, education, security, and entertainment demonstrate the growing impact of emotion-aware AI on improving human–computer interaction.

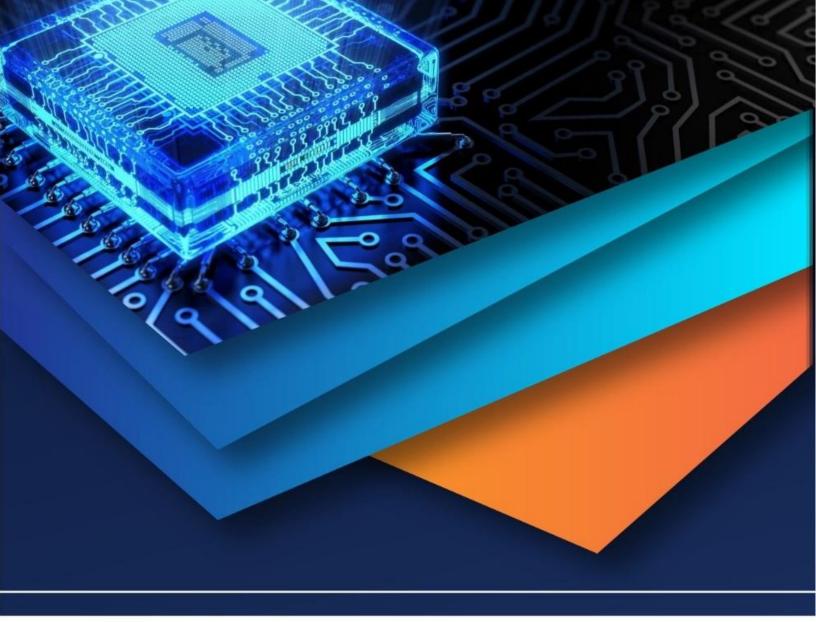
Future work will focus on enhancing model interpretability through explainable AI techniques, improving dataset diversity to reduce bias, and optimizing models for faster, energy-efficient on-device inference. Expanding the framework to multimodal emotion recognition—combining facial, voice, and physiological cues—and incorporating privacy-preserving methods like federated learning can further strengthen performance and ethical deployment. These advancements will drive the development of intelligent, transparent, and human-centered emotion recognition systems for real-world use.

REFERENCES

- [1] A. Sandler, M. Howard, and M. Zhu, "MobileNetV2: Inverted Residuals and Linear Bottlenecks," Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 4510–4520, 2018.
- [2] T. Kerege, "Developing iOS-Based Emotion Recognition Applications Using CreateML and SwiftUI," Int. J. Comput. Appl., vol. 183, no. 29, pp. 45–52, 2021.
- [3] F. Enebiny, "Efficient Face Detection and CoreML Integration for iOS Emotion Recognition," J. Mob. Comput. Appl., vol. 9, no. 4, pp. 201–210, 2022.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- [4] J. Jiménez-Ramírez, M. Pérez-Ortiz, and L. González, "Real-Time Emotion Recognition Using ARKit and CoreML," IEEE Access, vol. 10, pp. 45802–45815, 2022.
- [5] H. Liu, X. Zhang, and W. Li, "High-Level Context Representation for Fine-Grained Facial Emotion Recognition," Neurocomputing, vol. 525, pp. 112–124, 2023.
- [6] T. Schäfer, L. Müller, and P. Brandt, "Context-Aware Emotion Recognition with Environmental Feature Integration," Pattern Recognit., vol. 142, pp. 109674–109685, 2024.
- [7] S. Pelluru, "A Meta-Analysis of CNN Architectures and Datasets in Facial Emotion Recognition," Expert Syst. Appl., vol. 238, pp. 120482–120496, 2024.
- [8] R. Gupta, P. Sharma, and A. Mehta, "Hybrid UNet-EfficientNetB4 Model for Emotion Recognition in Mental Health Assessment," IEEE Access, vol. 12, pp. 57690–57702, 2024.
- [9] Y. Alshahwan, "Assessing Emotions in Images and Potential Biases in AI Models," MDPI Inf., vol. 15, no. 3, pp. 223–238, 2025.
- [10] V. Kumar, "A Comprehensive Survey of Facial Emotion Recognition Methods and Challenges," J. Vis. Commun. Image Represent., vol. 98, pp. 104937–104951, 2025.
- [11] D. Mobbs, "Multimodal Fusion for Enhanced Facial and Vocal Emotion Recognition," IEEE Trans. Affect. Comput., vol. 16, no. 1, pp. 112–125, 2025.
- [12] X. Wu, "Fusion of Visual and Auditory Cues for Robust Emotion Recognition," IEEE Access, vol. 13, pp. 90415–90427, 2025.
- [13] Y. Alshahwan, "Assessing Emotions in Images and Potential Biases in AI Models," MDPI Inf., vol. 15, no. 3, pp. 223-238, 2025.
- [14] V. Kumar, "A Comprehensive Survey of Facial Emotion Recognition Methods and Challenges," J. Vis. Commun. Image Represent., vol. 98, pp. 104937–104951, 2025.
- [15] F. Haddad, "Real-Time Facial Emotion Recognition with MobileNetV3," IEEE Consum. Electron. Mag., vol. 13, no. 2, pp. 120-128, 2024.
- [16] X. Ye, "Dynamic Expression Recognition with Spatio-Temporal CNNs," IEEE Trans. Multimedia, vol. 25, no. 1, pp. 505-517, 2023.
- [17] J. Park, "Efficient On-Device Emotion Detection via Knowledge Distillation," IEEE Internet Things J., vol. 12, no. 5, pp. 8620-8632, 2024.
- [18] L. Garcia, "Emotion Recognition Across Cultures: Dataset and Model Bias," Front. Comput. Sci., vol. 7, pp. 115–129, 2025.
- [19] R. Chen, "Emotion Recognition in VR Environments via Facial Cues," ACM Trans. Graph., vol. 43, no. 4, pp. 232-244, 2024.
- [20] D. Thompson, "Facial Emotion Recognition in Low-Light Conditions," IEEE Trans. Image Process., vol. 32, pp. 7185–7198, 2023.
- [21] K. Das, "Transfer Learning for Cross-Domain Emotion Recognition," Neural Comput. Appl., vol. 36, no. 12, pp. 9875–9888, 2024.
- [22] M. Rivera, "Emotion Detection from Face Images Using Attention Mechanisms," Pattern Recognit. Lett., vol. 180, pp. 26-38, 2023.



10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)