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Abstract: When a new incremental database is added to an existing database, certain existing frequent item sets may become 
infrequent item sets, and vice versa. This is one of the most difficult tasks in association rule mining. As a result, certain old 
association rules may become invalid, while others may become legitimate. It's possible that rules will arise. For incremental 
association rule mining, we devised a new, more efficient method. A new Incremental Updating Frequent Pattern growth 
algorithm (FIUFP-Growth) was developed using a Fast Incremental Updating Frequent Pattern growth algorithm (FIUFP-
Growth), as well as a compact sub-tree appropriate for incremental mining of frequent patterns Item sets. This approach extracts 
previously mined frequent item sets and their support counts from the original database, then uses them to efficiently mine 
frequent item sets from the updated database minimizing the amount of original database rescans. Our algorithm was able to 
minimize when compared to individual FP-Growth, needless sub-tree creation consumes more resources and time. According to 
the results, our algorithm's average execution time for pattern growth mining is 46 percent faster than apriori and eclat 
algorithm. This method for mining incremental association rules and our findings could directly aid computer business 
intelligence designers and developers methods. 
Keywords: OCR, CNN, compound characters, Words, Feature extraction. 
 

I.      INTRODUCTION 
Association rule mining is a well-known and commonly used data mining technique  that has been used to extract patterns or links 
between sets of data in huge databases. It's been used in a variety of settings, including medicine, education, and business. In 
general, association rule mining entails the following steps: There are two important sub-tasks: first, often generated item sets, 
locating frequently occurring item sets that satisfy a minimum level of support threshold, and second, the development of 
association rules, both from the frequently derived item sets that satisfy a minimum confidence level A criterion in the form of A B. 
The majority of researchers have focuses on increasing the efficiency of regular itemset mining, which typically costs a lot of 
resources and time calculate the time. 
Many scholars have developed methods for detecting frequent itemset over the last decade. The Apriori algorithm is a common 
algorithm for discovering frequent item sets: it creates many candidate item sets and requires multiple database searches, resulting 
in significant lost time resources as well as compute time.  The FP-Growth algorithm has been utilised to remedy this issue, 
however there is no candidate.The production of item sets reduces the amount of database scans.As a result, the FP-Growth method 
is more efficient than other algorithms. 
A fast incremental updating frequent pattern growth algorithm (FIUFP-Growth), and devised a new approach for incremental 
association rule mining incremental conditional pattern tree. 
It increased the speed with which frequently updated item sets were updated, by lowering the time it takes to generate conditional 
pattern trees or sub-trees. 
For frequent itemset mining, the Eclat algorithm uses a vertical data format called item-TID, which means item: set of TIDs, where 
item refers to an item name and TID refers to a set of transaction numbers for transactions containing the item. 
Existing frequent item sets and association rules may become invalid if new transaction data or an incremental database is added to 
the old database, necessitating the generation of new frequent item sets and association rules. To solve such a problem, the first step 
is to mine all frequent item sets and construct association rules from the whole updated database, which includes both the 
incremental and original databases. This method, however, is inefficient and consumes resources as well as compute time. 
To increase the efficiency of incremental frequent itemset mining, we built a new form of sub-tree, incremental conditional pattern 
tree (ICP-tree), and developed a novel approach for incremental association rule mining, a fast incremental updating frequent 
pattern growth algorithm (FIUFP-Growth). 
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The main idea was to retrieve previously discovered frequent item sets from the original database and use them to mine all frequent 
item sets from the updated FPISC-tree: this reduced the number of scans of the conditional pattern bases in the original path that 
were unnecessary, and improved the efficiency of updating frequent item sets by reducing the construction of conditional pattern 
trees or sub-trees. It also reduced the size of the sub-trees by creating them only from the new path's conditional pattern bases. 
The II section consists of literature survey, III section consists of the proposed system and final IV section consists of the results and 
section V is about conclusion. 
 

II.      LITERATURE SURVEY 
J. Sun, Y. Xun, J. Zhang, and J. Li [1] proposed a Frequent item sets mining (FIM) as well as other mining techniques has been 
being challenged by large scale and rapidly expanding datasets. To address this issue, we propose a solution for incremental 
frequent item sets mining using a Full Compression Frequent Pattern Tree (FCFP-Tree) and related algorithms called FCFPIM. 
Unlike FP-tree, the FCFP-Tree maintains complete information of all the frequent and infrequent items in the original dataset. This 
allows the FCFPIM algorithm not to waste any scan and computational overhead for the previously processed original dataset when 
new dataset are added and support changes. Therefore, much processing time is saved. Importantly, FCFPIM adopts an effective 
tree structure adjustment strategy when the support of some items changes due to the arrival of new data. FCFPIM is conducive to 
speeding up the performance of incremental FIM. Although the tree structure containing the lossless items information is space-
consuming, a compression strategy is used to save space. We conducted experiments to evaluate our solution, and the experimental 
results show the space-consuming is worthwhile to win the gain of execution efficiency, especially when the support threshold is 
low. 
Y. Djenouri, J. C.-W. Lin, K. Norvag, and H. Ramampiaro [2] proposed a Frequent item sets mining (FIM) as well as other mining 
techniques has been being challenged by large scale and rapidly expanding datasets. To address this issue, we propose a solution for 
incremental frequent item sets mining using a Full Compression Frequent Pattern Tree (FCFP-Tree) and related algorithms called 
FCFPIM. Unlike FP-tree, the FCFP-Tree maintains complete information of all the frequent and infrequent items in the original 
dataset. This allows the FCFPIM algorithm not to waste any scan and computational overhead for the previously processed original 
dataset when new dataset are added and support changes. Therefore, much processing time is saved. Importantly, FCFPIM adopts 
an effective tree structure adjustment strategy when the support of some items changes due to the arrival of new data. FCFPIM is 
conducive to speeding up the performance of incremental FIM. Although the tree structure containing the lossless items information 
is space-consuming, a compression strategy is used to save space. We conducted experiments to evaluate our solution, and the 
experimental results show the space-consuming is worthwhile to win the gain of execution efficiency, especially when the support 
threshold is low. 
W. Kreesuradej and W. Thurachon [3] proposed method to In this paper, we propose a new FP-Growth algorithm for incremental 
association rule discovery. We also design a new FPISC-tree based on the FUFP-tree structure. The new FPISC-tree is more 
suitable for the task of incremental association rule discovery than FUFP-tree structure. The basic ideas of the proposed algorithm 
are to retrieve the frequent item sets from the original database and to use their support count in the update of the new support count 
of the incremental database so that the original paths do not need to be reprocessed as well as to strategically use them to discover 
frequent item sets from the FPISC-tree. Experimental results show that the proposed algorithm was able to reduce the number of 
constructed subtrees and the execution time was significantly less than those of the FPGrowth and FUFP-tree. 
A. Ariya and W. Kreesuradej [4] proposed In the real world of data, a new set of data has been being inserted into the existing 
database. Thus, the rule maintenance of association rule discovery in large databases is an important problem. Every time the new 
data set is appended to an original database, the old rule may probably be valid or invalid. This paper proposed the approach to 
calculate the lower minimum support for collecting the expected frequent item sets. The concept idea is applying the normal 
approximation to the binomial theory. This proposed idea can reduce a process of calculating probability value for all item sets that 
are unnecessary. In addition, the confidence interval is also applied to ensure that the collection of expected frequent item sets is 
properly kept. 
Y. Djenouri, A. Belhadi, P. Fournier-Viger, and H. Fujita [5] proposed Association Rule Mining (ARM) is a fundamental data 
mining task that is time-consuming on big datasets. Thus, developing new scalable algorithms for this problem is desirable. 
Recently, Bee Swarm Optimization (BSO)-based meta-heuristics were shown effective to reduce the time required for ARM. 
But these approaches were applied only on small or medium scale databases. To perform ARM on big databases, a promising 
approach is to design parallel algorithms using the massively parallel threads of a GPU processor.  
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While some GPU-based ARM algorithms have been developed, they only benefit from GPU parallelism during the evaluation step 
of solutions obtained by the BSO-metaheuristics. This paper improves this approach by parallelizing the other steps of the BSO 
process (diversification and intensification). Based on these novel ideas, three novel algorithms are presented, i) DRGPU 
(Determination of Regions on GPU), ii) SAGPU (Search Area on GPU, and, iii) ALLGPU (All steps on GPU). These solutions are 
analyzed and empirically compared on benchmark datasets. Experimental results show that ALL GPU outperforms the three other 
approaches in terms of speed up. Moreover, results confirm that ALLGPU outperforms the state-of-the-art GPU-based ARM 
approaches on big ARM databases such as the Webdocs dataset. Furthermore, ALL GPU is extended to mine big frequent graphs 
and results demonstrate its superiority over the state-of-the-art D-Mine algorithm for frequent graph mining on the large Pokec 
social network dataset. 
 

III.      PROPOSED SYSTEM 
They presented an effective way for discovering important associations between goods in retail transactions using association rule 
mining. Apriori algorithm, a well-accepted and easy approach for identifying frequent item sets and association rules, was proposed 
a year later. This method developed and tested potential itemets on a level-by-level basis to see if they were frequent or infrequent. 
The production of many candidate item sets, which required multiple database scans, a lot of storage space, and a lot of compute 
time, was a restriction to this notion. 
developed a novel strategy for efficiently mining frequent item sets from an updated FPISC-tree, our Fast Incremental Updating 
Frequent Pattern Growth Algorithm (FIUFP Growth). This solution introduces a new incremental conditional pattern tree (ICP tree) 
to store and represent frequent item sets, as well as their support counts, in updated and incremental databases, allowing for more 
efficient processing of incremental frequent item sets when new transactions are introduced. FIUFP-Growth not only enhances the 
FP-tree structure but also the mining process of frequent item sets from the updated FP-tree while solving an incremental 
association mining problem. 
Algorithm 
Step 1: FIUFP-Growth algorithm starts to mine frequent item sets associated with item ‘e’.  
Step 2: Item ‘e’ is not a new frequent item or newFrequentItem, then go to Step 3-11.  
Step 3: The algorithm generates a conditional pattern base for the incremental database (condNewPath) and the original database 
(condOrgPath). Three paths ending with node ‘e’ are found in condNewPath including [‘b’,‘a’,‘c’,‘d’]:3, ‘b’,‘c’,‘d’]:1, and 
[‘a’,‘d’]:1, and two paths in the condOrgPath including [‘b’,‘a’,‘d’]:2, and [‘b’,‘a’]:. 
Step 4: The algorithm counts each item only from the condNewPath and then put them into either the frequentList or infrequentList 
by comparing the support count for each item with the support threshold of the incremental database which is 2; hence, the 
frequentList is now{’a’:4,’b’:4,‘d’:5,’c’:4} and the infrequentList is{}.  
Step 5: The algorithm starts to categorize the frequentList and infrequentList, that is{’a’:4,’b’:4,‘d’:5,’c’:4} and{}, into four cases. 
Step 6: For case#1, the algorithm generates patterns by concatenating each item in the freqeuntList with the root-item ‘e’. In this 
case, item ‘a’:4 is processed first, then a pattern (‘ae’) is generated, followed by pattern (‘be’), ‘ce’), and ‘de’). 
Step 7: Pattern ‘ae’):4, and ‘be’):4 are available in the set of frequent item sets in the original database as shown in Table 4, sogo to 
sub-step 7-1. Unlike patterns (‘ae’) and ‘be’), both (‘de’):5 and ‘ce’):4 are not available in the set of frequent item sets in the 
original database.  
Hence, do sub-step 7-2, i.e., put them into a set of rescan_original for mining frequent item sets in the step 9 (case#3).  
sub-step 7-1: The updated support count for pattern (‘ae’) is thus 3+ = 7, and the count for pattern ‘be’) is 3 + 4 = 7. The counts of 
both patterns are also greater than the updated support threshold, hence they become frequent patterns. The algorithm collects 
(‘ae’):7, and (‘be’):7 into the newFIS.  
sub-step 7-2: rescan_original = {(‘d’):5, (‘c’):}.  
Step 8: For case#2, the algorithm considers each item in the frequentList set, but there are no items in frequentList, hence there are 
no items that satisfy the condition for this case. 
Step 9: For case#3, the algorithm considers each item in the rescanOriginal set, that is, {(‘d’):5, (‘c’):}.Item‘’ is considered first. In 
order to update the support count of patterns‘de’, its original support count must be obtained by rescanning and counting item in the 
condOrgPath ([‘b’,‘a’,‘d’]:2, and [‘b’,‘a’]:1.).  
The support count of item ‘d’ turns out to be 2. Hence, the updated support count for item ‘d’ is 2 + 5 = 7, which is also greater than 
the updated support threshold. 
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Step 10: The algorithm generates pattern (de).  
sub-step 10-1: Appends (‘de’):5 to the newFIS. Item d is inserted into fList{‘a’:4, ‘b’:4, ‘d’:}. On the other hand, the updated 
support count for item ‘c’, 0 + 4 = 4, which is less than 5; hence, the algorithm ignores this item.  
Step 11: Then, the set of new 2-item-long frequent item sets associated with item ‘e’ is {(‘ae’): 7, (‘be’): 7,(‘de’): 7}, and the sorted 
fList with frequent items and their support count in the incremental database is{‘d’:5, ‘a’:4, ‘b’:4}. The number of all items in fList 
is greater than 1; hence, the process for mining 3-item-long frequent pattern associated with item ‘e’ is performed. 
Step 12: The algorithm constructs an incremental conditional pattern tree, or ICP-tree from only the incremental database, or 
conditional pattern based from the incremental database (condNewPath): [‘b’,‘a’,‘c’,‘d’]:3, [‘b’,‘c’,‘d’]:1, and [‘a’,‘d’]:1, by 
utilizing the frequent items in the sorted fList:{‘d’:5, ‘a’:4, ‘b’:} as shown in Fig. 8 (a) to 8 (c).  
Step 13: Next, the algorithm continues to discover frequent item sets starting from item ‘b 0 from the bottom of the sub_headertable: 
{‘b’:4, ‘a’:4, ‘d’:5} by recursively calling the incremental pattern growth algorithm in step 3-12 until the number of all items in fList 
is less than or equal to.  
Step 14: Finally, when the iteration process of mining frequent pattern ending with item ‘e’ is completed, all frequent item sets 
associated with item ‘e’ are as follows: (‘e’):8, (‘ae’):7, (‘be’):7, (‘de’):7, (‘ab’):6, (‘db’):6, (‘dabe’):5, and (‘da’):6. The example, 
presented above, is an example of only (k = 2) item frequent item sets mining, associated with item ‘e’ 
 
A. Apriori algorithm 
The apriori algorithm is a method of extracting frequent product sets and relevant association rules. In most cases, the apriori 
technique is used on a database with a large number of transactions. Customers, for example, can purchase products at a Big Bazar. 
The Apriori algorithm makes it easier for shoppers to acquire their products and improves the store's sales success. 
 
B. Eclat algorithm 
Equivalence class clustering and bottom up lattice transversal algorithm are abbreviated as Eclat Algorithm. It's a method for 
locating frequently occurring item sets in a transaction or database. It is one of the most effective approaches for learning 
Association Rules. In a database, the Eclat algorithm is used to build frequent item sets. 
For finding common item sets, the Eclat algorithm uses a depth first search, whereas the Apriori algorithm uses a breadth first 
search. It represents data in a vertical pattern, as opposed to the horizontal pattern used by the Apriori method. The Eclat method is 
faster than the Apriori algorithm because of its vertical layout. As a result, the Eclat algorithm is a faster and more scalable variant 
of the Association Rule Learning method. 

 
Fig 1: System Architecture 
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IV.      RESULTS 
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V.      CONCLUSION 
With our fast incremental updating frequent pattern growth algorithm (FIUFP), we increased the efficiency of incremental frequent 
pattern mining and built a new incremental frequent pattern mining technique . ICP-tree is a conditional pattern tree that can be used 
for incremental learning. mining of often occurring item sets The main concept was to make use of often occurring item sets, which 
have previously been extracted from the original to support the rapid updates to the database and associated support counts mining 
of itemset. 
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