

11 VII July 2023

 https://doi.org/10.22214/ijraset.2023.54886

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1419 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fast Incremental Updating Frequent Pattern
Growth algorithm for Mining

Archana Madhusudhanan1, Asst. Prof. Shameem S2

1, 2Dept. of computer Science Vidya Academy of Science and Technology Thrissur, India

Abstract: When a new incremental database is added to an existing database, certain existing frequent item sets may become
infrequent item sets, and vice versa. This is one of the most difficult tasks in association rule mining. As a result, certain old
association rules may become invalid, while others may become legitimate. It's possible that rules will arise. For incremental
association rule mining, we devised a new, more efficient method. A new Incremental Updating Frequent Pattern growth
algorithm (FIUFP-Growth) was developed using a Fast Incremental Updating Frequent Pattern growth algorithm (FIUFP-
Growth), as well as a compact sub-tree appropriate for incremental mining of frequent patterns Item sets. This approach extracts
previously mined frequent item sets and their support counts from the original database, then uses them to efficiently mine
frequent item sets from the updated database minimizing the amount of original database rescans. Our algorithm was able to
minimize when compared to individual FP-Growth, needless sub-tree creation consumes more resources and time. According to
the results, our algorithm's average execution time for pattern growth mining is 46 percent faster than apriori and eclat
algorithm. This method for mining incremental association rules and our findings could directly aid computer business
intelligence designers and developers methods.
Keywords: OCR, CNN, compound characters, Words, Feature extraction.

I. INTRODUCTION
Association rule mining is a well-known and commonly used data mining technique that has been used to extract patterns or links
between sets of data in huge databases. It's been used in a variety of settings, including medicine, education, and business. In
general, association rule mining entails the following steps: There are two important sub-tasks: first, often generated item sets,
locating frequently occurring item sets that satisfy a minimum level of support threshold, and second, the development of
association rules, both from the frequently derived item sets that satisfy a minimum confidence level A criterion in the form of A B.
The majority of researchers have focuses on increasing the efficiency of regular itemset mining, which typically costs a lot of
resources and time calculate the time.
Many scholars have developed methods for detecting frequent itemset over the last decade. The Apriori algorithm is a common
algorithm for discovering frequent item sets: it creates many candidate item sets and requires multiple database searches, resulting
in significant lost time resources as well as compute time. The FP-Growth algorithm has been utilised to remedy this issue,
however there is no candidate.The production of item sets reduces the amount of database scans.As a result, the FP-Growth method
is more efficient than other algorithms.
A fast incremental updating frequent pattern growth algorithm (FIUFP-Growth), and devised a new approach for incremental
association rule mining incremental conditional pattern tree.
It increased the speed with which frequently updated item sets were updated, by lowering the time it takes to generate conditional
pattern trees or sub-trees.
For frequent itemset mining, the Eclat algorithm uses a vertical data format called item-TID, which means item: set of TIDs, where
item refers to an item name and TID refers to a set of transaction numbers for transactions containing the item.
Existing frequent item sets and association rules may become invalid if new transaction data or an incremental database is added to
the old database, necessitating the generation of new frequent item sets and association rules. To solve such a problem, the first step
is to mine all frequent item sets and construct association rules from the whole updated database, which includes both the
incremental and original databases. This method, however, is inefficient and consumes resources as well as compute time.
To increase the efficiency of incremental frequent itemset mining, we built a new form of sub-tree, incremental conditional pattern
tree (ICP-tree), and developed a novel approach for incremental association rule mining, a fast incremental updating frequent
pattern growth algorithm (FIUFP-Growth).

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1420 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The main idea was to retrieve previously discovered frequent item sets from the original database and use them to mine all frequent
item sets from the updated FPISC-tree: this reduced the number of scans of the conditional pattern bases in the original path that
were unnecessary, and improved the efficiency of updating frequent item sets by reducing the construction of conditional pattern
trees or sub-trees. It also reduced the size of the sub-trees by creating them only from the new path's conditional pattern bases.
The II section consists of literature survey, III section consists of the proposed system and final IV section consists of the results and
section V is about conclusion.

II. LITERATURE SURVEY
J. Sun, Y. Xun, J. Zhang, and J. Li [1] proposed a Frequent item sets mining (FIM) as well as other mining techniques has been
being challenged by large scale and rapidly expanding datasets. To address this issue, we propose a solution for incremental
frequent item sets mining using a Full Compression Frequent Pattern Tree (FCFP-Tree) and related algorithms called FCFPIM.
Unlike FP-tree, the FCFP-Tree maintains complete information of all the frequent and infrequent items in the original dataset. This
allows the FCFPIM algorithm not to waste any scan and computational overhead for the previously processed original dataset when
new dataset are added and support changes. Therefore, much processing time is saved. Importantly, FCFPIM adopts an effective
tree structure adjustment strategy when the support of some items changes due to the arrival of new data. FCFPIM is conducive to
speeding up the performance of incremental FIM. Although the tree structure containing the lossless items information is space-
consuming, a compression strategy is used to save space. We conducted experiments to evaluate our solution, and the experimental
results show the space-consuming is worthwhile to win the gain of execution efficiency, especially when the support threshold is
low.
Y. Djenouri, J. C.-W. Lin, K. Norvag, and H. Ramampiaro [2] proposed a Frequent item sets mining (FIM) as well as other mining
techniques has been being challenged by large scale and rapidly expanding datasets. To address this issue, we propose a solution for
incremental frequent item sets mining using a Full Compression Frequent Pattern Tree (FCFP-Tree) and related algorithms called
FCFPIM. Unlike FP-tree, the FCFP-Tree maintains complete information of all the frequent and infrequent items in the original
dataset. This allows the FCFPIM algorithm not to waste any scan and computational overhead for the previously processed original
dataset when new dataset are added and support changes. Therefore, much processing time is saved. Importantly, FCFPIM adopts
an effective tree structure adjustment strategy when the support of some items changes due to the arrival of new data. FCFPIM is
conducive to speeding up the performance of incremental FIM. Although the tree structure containing the lossless items information
is space-consuming, a compression strategy is used to save space. We conducted experiments to evaluate our solution, and the
experimental results show the space-consuming is worthwhile to win the gain of execution efficiency, especially when the support
threshold is low.
W. Kreesuradej and W. Thurachon [3] proposed method to In this paper, we propose a new FP-Growth algorithm for incremental
association rule discovery. We also design a new FPISC-tree based on the FUFP-tree structure. The new FPISC-tree is more
suitable for the task of incremental association rule discovery than FUFP-tree structure. The basic ideas of the proposed algorithm
are to retrieve the frequent item sets from the original database and to use their support count in the update of the new support count
of the incremental database so that the original paths do not need to be reprocessed as well as to strategically use them to discover
frequent item sets from the FPISC-tree. Experimental results show that the proposed algorithm was able to reduce the number of
constructed subtrees and the execution time was significantly less than those of the FPGrowth and FUFP-tree.
A. Ariya and W. Kreesuradej [4] proposed In the real world of data, a new set of data has been being inserted into the existing
database. Thus, the rule maintenance of association rule discovery in large databases is an important problem. Every time the new
data set is appended to an original database, the old rule may probably be valid or invalid. This paper proposed the approach to
calculate the lower minimum support for collecting the expected frequent item sets. The concept idea is applying the normal
approximation to the binomial theory. This proposed idea can reduce a process of calculating probability value for all item sets that
are unnecessary. In addition, the confidence interval is also applied to ensure that the collection of expected frequent item sets is
properly kept.
Y. Djenouri, A. Belhadi, P. Fournier-Viger, and H. Fujita [5] proposed Association Rule Mining (ARM) is a fundamental data
mining task that is time-consuming on big datasets. Thus, developing new scalable algorithms for this problem is desirable.
Recently, Bee Swarm Optimization (BSO)-based meta-heuristics were shown effective to reduce the time required for ARM.
But these approaches were applied only on small or medium scale databases. To perform ARM on big databases, a promising
approach is to design parallel algorithms using the massively parallel threads of a GPU processor.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1421 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

While some GPU-based ARM algorithms have been developed, they only benefit from GPU parallelism during the evaluation step
of solutions obtained by the BSO-metaheuristics. This paper improves this approach by parallelizing the other steps of the BSO
process (diversification and intensification). Based on these novel ideas, three novel algorithms are presented, i) DRGPU
(Determination of Regions on GPU), ii) SAGPU (Search Area on GPU, and, iii) ALLGPU (All steps on GPU). These solutions are
analyzed and empirically compared on benchmark datasets. Experimental results show that ALL GPU outperforms the three other
approaches in terms of speed up. Moreover, results confirm that ALLGPU outperforms the state-of-the-art GPU-based ARM
approaches on big ARM databases such as the Webdocs dataset. Furthermore, ALL GPU is extended to mine big frequent graphs
and results demonstrate its superiority over the state-of-the-art D-Mine algorithm for frequent graph mining on the large Pokec
social network dataset.

III. PROPOSED SYSTEM
They presented an effective way for discovering important associations between goods in retail transactions using association rule
mining. Apriori algorithm, a well-accepted and easy approach for identifying frequent item sets and association rules, was proposed
a year later. This method developed and tested potential itemets on a level-by-level basis to see if they were frequent or infrequent.
The production of many candidate item sets, which required multiple database scans, a lot of storage space, and a lot of compute
time, was a restriction to this notion.
developed a novel strategy for efficiently mining frequent item sets from an updated FPISC-tree, our Fast Incremental Updating
Frequent Pattern Growth Algorithm (FIUFP Growth). This solution introduces a new incremental conditional pattern tree (ICP tree)
to store and represent frequent item sets, as well as their support counts, in updated and incremental databases, allowing for more
efficient processing of incremental frequent item sets when new transactions are introduced. FIUFP-Growth not only enhances the
FP-tree structure but also the mining process of frequent item sets from the updated FP-tree while solving an incremental
association mining problem.
Algorithm
Step 1: FIUFP-Growth algorithm starts to mine frequent item sets associated with item ‘e’.
Step 2: Item ‘e’ is not a new frequent item or newFrequentItem, then go to Step 3-11.
Step 3: The algorithm generates a conditional pattern base for the incremental database (condNewPath) and the original database
(condOrgPath). Three paths ending with node ‘e’ are found in condNewPath including [‘b’,‘a’,‘c’,‘d’]:3, ‘b’,‘c’,‘d’]:1, and
[‘a’,‘d’]:1, and two paths in the condOrgPath including [‘b’,‘a’,‘d’]:2, and [‘b’,‘a’]:.
Step 4: The algorithm counts each item only from the condNewPath and then put them into either the frequentList or infrequentList
by comparing the support count for each item with the support threshold of the incremental database which is 2; hence, the
frequentList is now{’a’:4,’b’:4,‘d’:5,’c’:4} and the infrequentList is{}.
Step 5: The algorithm starts to categorize the frequentList and infrequentList, that is{’a’:4,’b’:4,‘d’:5,’c’:4} and{}, into four cases.
Step 6: For case#1, the algorithm generates patterns by concatenating each item in the freqeuntList with the root-item ‘e’. In this
case, item ‘a’:4 is processed first, then a pattern (‘ae’) is generated, followed by pattern (‘be’), ‘ce’), and ‘de’).
Step 7: Pattern ‘ae’):4, and ‘be’):4 are available in the set of frequent item sets in the original database as shown in Table 4, sogo to
sub-step 7-1. Unlike patterns (‘ae’) and ‘be’), both (‘de’):5 and ‘ce’):4 are not available in the set of frequent item sets in the
original database.
Hence, do sub-step 7-2, i.e., put them into a set of rescan_original for mining frequent item sets in the step 9 (case#3).
sub-step 7-1: The updated support count for pattern (‘ae’) is thus 3+ = 7, and the count for pattern ‘be’) is 3 + 4 = 7. The counts of
both patterns are also greater than the updated support threshold, hence they become frequent patterns. The algorithm collects
(‘ae’):7, and (‘be’):7 into the newFIS.
sub-step 7-2: rescan_original = {(‘d’):5, (‘c’):}.
Step 8: For case#2, the algorithm considers each item in the frequentList set, but there are no items in frequentList, hence there are
no items that satisfy the condition for this case.
Step 9: For case#3, the algorithm considers each item in the rescanOriginal set, that is, {(‘d’):5, (‘c’):}.Item‘’ is considered first. In
order to update the support count of patterns‘de’, its original support count must be obtained by rescanning and counting item in the
condOrgPath ([‘b’,‘a’,‘d’]:2, and [‘b’,‘a’]:1.).
The support count of item ‘d’ turns out to be 2. Hence, the updated support count for item ‘d’ is 2 + 5 = 7, which is also greater than
the updated support threshold.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1422 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Step 10: The algorithm generates pattern (de).
sub-step 10-1: Appends (‘de’):5 to the newFIS. Item d is inserted into fList{‘a’:4, ‘b’:4, ‘d’:}. On the other hand, the updated
support count for item ‘c’, 0 + 4 = 4, which is less than 5; hence, the algorithm ignores this item.
Step 11: Then, the set of new 2-item-long frequent item sets associated with item ‘e’ is {(‘ae’): 7, (‘be’): 7,(‘de’): 7}, and the sorted
fList with frequent items and their support count in the incremental database is{‘d’:5, ‘a’:4, ‘b’:4}. The number of all items in fList
is greater than 1; hence, the process for mining 3-item-long frequent pattern associated with item ‘e’ is performed.
Step 12: The algorithm constructs an incremental conditional pattern tree, or ICP-tree from only the incremental database, or
conditional pattern based from the incremental database (condNewPath): [‘b’,‘a’,‘c’,‘d’]:3, [‘b’,‘c’,‘d’]:1, and [‘a’,‘d’]:1, by
utilizing the frequent items in the sorted fList:{‘d’:5, ‘a’:4, ‘b’:} as shown in Fig. 8 (a) to 8 (c).
Step 13: Next, the algorithm continues to discover frequent item sets starting from item ‘b 0 from the bottom of the sub_headertable:
{‘b’:4, ‘a’:4, ‘d’:5} by recursively calling the incremental pattern growth algorithm in step 3-12 until the number of all items in fList
is less than or equal to.
Step 14: Finally, when the iteration process of mining frequent pattern ending with item ‘e’ is completed, all frequent item sets
associated with item ‘e’ are as follows: (‘e’):8, (‘ae’):7, (‘be’):7, (‘de’):7, (‘ab’):6, (‘db’):6, (‘dabe’):5, and (‘da’):6. The example,
presented above, is an example of only (k = 2) item frequent item sets mining, associated with item ‘e’

A. Apriori algorithm
The apriori algorithm is a method of extracting frequent product sets and relevant association rules. In most cases, the apriori
technique is used on a database with a large number of transactions. Customers, for example, can purchase products at a Big Bazar.
The Apriori algorithm makes it easier for shoppers to acquire their products and improves the store's sales success.

B. Eclat algorithm
Equivalence class clustering and bottom up lattice transversal algorithm are abbreviated as Eclat Algorithm. It's a method for
locating frequently occurring item sets in a transaction or database. It is one of the most effective approaches for learning
Association Rules. In a database, the Eclat algorithm is used to build frequent item sets.
For finding common item sets, the Eclat algorithm uses a depth first search, whereas the Apriori algorithm uses a breadth first
search. It represents data in a vertical pattern, as opposed to the horizontal pattern used by the Apriori method. The Eclat method is
faster than the Apriori algorithm because of its vertical layout. As a result, the Eclat algorithm is a faster and more scalable variant
of the Association Rule Learning method.

Fig 1: System Architecture

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1423 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

IV. RESULTS

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1424 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue VII Jul 2023- Available at www.ijraset.com

1425 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

V. CONCLUSION
With our fast incremental updating frequent pattern growth algorithm (FIUFP), we increased the efficiency of incremental frequent
pattern mining and built a new incremental frequent pattern mining technique . ICP-tree is a conditional pattern tree that can be used
for incremental learning. mining of often occurring item sets The main concept was to make use of often occurring item sets, which
have previously been extracted from the original to support the rapid updates to the database and associated support counts mining
of itemset.

REFERENCES
[1] J. Sun, Y. Xun, J. Zhang, and J. Li, ‘‘Incremental frequent item sets mining with FCFP tree,’’ IEEE Access, vol. 7, pp. 136511–136524, 2019.
[2] Y. Djenouri, J. C.-W. Lin, K. Norvag, and H. Ramampiaro, ‘‘Highly efficient pattern mining based on transaction decomposition,’’ in Proc. IEEE 35th Int.

Conf. Data Eng. (ICDE), Macao, China, Apr. 2019, pp. 1646–1649.
[3] W. Kreesuradej and W. Thurachon, ‘‘Discovery of incremental association rules based on a new FP-growth algorithm,’’ in Proc. IEEE 4th Int. Conf. Comput.

Commun. Syst. (ICCCS), Singapore, Feb. 2019, pp. 184–188.
[4] A. Ariya and W. Kreesuradej, ‘‘An enhanced incremental association rule discovery with a lower minimum support,’’ Artif. Life Robot., vol. 21, no. 4, pp.

466–477, Dec. 2016.
[5] Y. Djenouri, A. Belhadi, P. Fournier-Viger, and H. Fujita, ‘‘Mining diversified association rules in big datasets: A cluster/GPU/genetic approach,’’ Inf. Sci.,

vol. 459, pp. 117–134, Aug. 2018.

