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Abstract: Bearing failures in electric machinery pose significant challenges and have attracted considerable attention in 

diagnostic research. The growing use of variable-speed drives across various motor applications has amplified the effects of 

bearing currents, spurring detailed investigations in both academic and industrial contexts. This paper provides key insights into 

identifying and addressing bearing-related issues in electrical equipment. It offers an in-depth analysis of damage mechanisms 

and diagnostic techniques specific to bearing currents in induction motors. 

Furthermore, the study presents experimental results from controlled laboratory settings designed to replicate bearing current 

faults. As advanced technologies are increasingly integrated into manufacturing processes, the importance of preventive 

maintenance continues to rise. In response, the paper expands its focus to include signal pre-processing techniques to improve 

fault prediction accuracy by enhancing machine signal clarity. 

Recognizing the dynamic nature of industrial standards and the growing demand for predictive maintenance, this study proposes 

a forward-looking approach to early fault detection. By aiming to boost operational efficiency, reduce downtime, and increase 

system reliability, the strategies outlined in this paper make a meaningful contribution to the evolving field of predictive 

maintenance. 
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I. LITERATURE SURVEY 

In many industries, approximately 90% of machinery relies on induction motors (IM). Research shows that bearing failures account 

for roughly 40% of the faults identified in AC machines across these sectors. Bearings are intricate components made up of two ring 

tracks with rolling elements positioned between them. These elements—which may include balls, cylindrical rollers, tapered rollers, 

needle rollers, or barrel rollers—are housed within a cage that maintains even spacing and minimizes internal impact. 

 
Fig. Percentage-wise Fault of Induction Motor 

 

Bearing signals are inherently non-stationary due to slippage between interacting components, such as rolling elements and 

raceways. Each rotating part of a bearing generates vibration signals, and all components are vulnerable to damage. Bearing defects 

are generally categorized into two types: distributed and localized. 

Distributed defects include issues such as surface roughness, waviness, misaligned races, and incorrectly sized rolling elements. 

These are typically caused by design flaws, manufacturing errors, improper assembly, wear, or corrosion. 

Localized defects, on the other hand, manifest as cracks, pits, or spalling on the rolling surfaces. These arise mainly from material 

fatigue, plastic deformation, or brinelling. 

Both types of defects lead to increased noise and vibration levels, which can ultimately cause machinery to fail. From a condition 

monitoring standpoint, localized faults are of greater concern because spalling in races or rolling elements is the most common 

failure mode in real-world applications. Furthermore, many distributed issues can originate from localized damage. 

Bearing health monitoring usually involves two key stages: 

1) Feature Extraction – This step involves isolating condition-relevant features from signals using appropriate signal processing 

methods. 

2) Fault Diagnosis – Based on the extracted features, this stage involves decision-making to assess the bearing's health. 
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Accurate feature extraction is essential, as poor-quality features may lead to false alarms (detecting a problem when none exists) or 

missed alarms (failing to detect a genuine fault). 

There are multiple diagnostic approaches based on the nature of the signals, including: 

 Acoustic analysis 

 Temperature monitoring 

 Lubricant condition assessment 

 Electrical current analysis 

 Vibration analysis 

 Motor current signature analysis 

 Sound-based diagnostics 

Acoustic Emission (AE) is a prominent technique that detects transient elastic waves generated by the rapid release of energy due to 

structural changes, such as crack formation and propagation. This makes AE particularly useful for early fault detection in bearings. 

Temperature monitoring is another effective method. Excessive heat often indicates bearing stress or failure. Therefore, keeping the 

temperature of bearing housings and lubricants within operational limits is critical. Specialized sensors can also detect metallic 

debris in lubricants, helping pinpoint the location and nature of wear-related issues. 

Motor current analysis offers another layer of diagnostics. Mechanical changes in the machine often affect the electrical signal, 

allowing faults to be detected using proper signal processing techniques. 

Vibration analysis remains the most widely used approach in industry. Bearings emit vibrations due to both structural defects and 

dynamic forces such as Hertzian contact deformation and radial clearances. Accurate diagnostics rely heavily on the interpretation 

of vibration frequency patterns. 

Various techniques have been developed and studied for bearing fault detection, including: 

 Vibration Signal Analysis 

 Thermal Imaging 

 Motor Voltage and Current Signature Analysis 

Advanced signal processing techniques such as: 

 Fourier Transform (FT) 

 Wavelet Transform (WT) 

 Empirical Mode Decomposition (EMD) 

are often employed—sometimes in combination—for enhanced feature extraction and diagnosis. 

Given the increasing demand for precision and speed, real-time monitoring of roller bearings has become critical. Vibrations in the 

bearing cage can be captured by monitoring changes in the resonance frequency of an inductive coil coupled with a temperature-

sensitive capacitor. An interrogator coil, placed near the bearing cage, detects these changes by measuring alterations in coupling 

and excitation frequency, which reflect bearing cage vibrations. 

In the study presented, the author investigates bearing cage temperatures at varying RPMs. Vibration frequencies at each speed are 

recorded and compared to theoretical values derived from standard bearing frequency equations. A strong correlation is found 

between the experimental and calculated values, with an average deviation of just 2.8%. This includes key frequencies such as the 

Ball Spin Frequency, Fundamental Train Frequency, and Ball Pass Outer Race Frequency. 

 
Fig. Electric Machine Fault Diagnosis 
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II. INTRODUCTION 

A. The Significance of the Induction Motor:  

Induction motors are a fundamental component in industrial environments, where they power a diverse range of equipment such as 

pumps, compressors, conveyors, and fans. Their reliability is essential for maintaining operational efficiency and minimizing costly 

disruptions. The widespread use of induction motors across various industries is well justified by their robust construction, low 

maintenance requirements, and high efficiency. These attributes make them especially valuable in applications such as industrial 

automation, household appliances, and commercial systems, where consistent performance under different operating conditions is 

crucial. Their simple and durable design, combined with cost-effectiveness and the ability to operate directly from AC power 

without the need for complex control systems, enhances their appeal across a broad spectrum of uses. Additionally, energy-efficient 

models contribute to environmental sustainability, reinforcing the important role induction motors play in advancing modern 

electrical and mechanical systems. 

 

B. The Difficulty of Fault Diagnosis:  

Conventional fault diagnosis methods often rely on manual inspections and reactive repairs, which can lead to delays and the risk of 

further damage. Prompt detection and evaluation of issues are essential to prevent serious failures and ensure optimal system 

performance. The challenge of diagnosing faults is amplified by the increasing complexity of modern systems, where numerous 

components interact and many faults present in subtle, non-obvious ways. Frequently, the symptoms observed do not clearly indicate 

the underlying causes, necessitating thorough testing and analysis to accurately identify the problem. As technological systems continue 

to advance—particularly in sectors such as electronics, automotive engineering, and industrial automation—the need for sophisticated 

diagnostic tools and highly trained professionals becomes increasingly critical. This evolution underscores the importance of adopting 

advanced diagnostic technologies and developing specialized expertise to maintain reliability and efficiency in complex systems. 

 

III. CAUSES/TYPES OFFAULTS OF BEARING INANINDUCTIONMOTOR 

A. Improper Lubrication and Fretting 

Inadequate lubrication may result in overheating and significant wear on bearings. Insufficient lubrication can also create fretting, 

which occurs when two unlike and dry surfaces rub against each other, leading to corrosion. 

Fig Improper Lubrication and Fretting 

B. Corrosion and Contamination 

Substances like moisture, grit, soil, and chemicals can create numerous issues within bearing assemblies. As an example, they may 

wear down bearing surfaces or compromise the lubricant, both of which can result in early breakdown. 

 
Fig. Corrosion and Contamination 
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C. Misalignment 

Inconsistencies between the shaft and the bearing housing may arise from dirty parts, warped shafts, or misaligned locking nuts and 

shafts. Such issues can lead to significant vibrations and imbalanced load distribution, ultimately resulting in breakdowns. 

 

D. Moisture 

Wet or outdoor conditions may cause dampness to infiltrate your bearings. This establishes the perfect conditions for the formation of 

rust and corrosion, which can result in bearing malfunction. 

 

E. High Temperatures 

It’s important to refer to your motor’s operating guide for lubrication requirements and working temperature. Incorrect lubricant can 

bleed in even mild temperatures, resulting in a variety of lubricant-related problems. High temperatures can also decrease bearing 

hardness, leading to cracks. 

Fig. High Temperature 

 

F. Mistakes in Installation 

Bearing malfunction can result from flawed installation and setup procedures. Typical errors during installation involve imbalance, 

faulty mounting, and misalignment or excessive shaft deviation. 

 

G. Electrical Damage 

When electrical currents flow through the bearing, it can result in electrical wear or arcing. This phenomenon can trigger a range of 

problems, such as the breakdown of lubricants, pitting harm to the rolling components and raceways, along with early bearing failure. 

 

IV. METHODOLOGY 

The proposed approach begins by capturing signals from a current sensor installed in one phase of the induction motor. These signals 

are then processed through Instrumentation Amplifiers and recorded using a Data Acquisition System, which enables efficient handling 

and transmission of the data to a computer for further organization and storage. The method proceeds with the measurement of current 

signals under both normal and fault conditions, followed by their characterization. This characterization involves computing the 

Cumulative Distribution Function (CDF) for each signal. The obtained CDFs are then compared to baseline CDFs corresponding to 

each motor state to determine the maximum deviation between them. Using this deviation, a reference p-value is calculated to evaluate 

whether the signal is likely associated with either the normal or fault condition. This assessment is conducted with a confidence level of 

α = 0.05, allowing for statistically supported fault identification and condition monitoring of the motor. 

Fig. Block Diagram of Induction Motor 
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H. Representation 

The bearing block can represent various types of bearings, such as ball bearings, roller bearings, or journal bearings, each serving 

the purpose of restricting the lateral movement of a shaft while allowing it to rotate along its axial axis within the bearing. In 

addition to supporting rotational motion, these bearings also introduce friction, which contributes to the overall torque within the 

mechanical system. This bearing friction can be modeled within a mechanical rotational framework either by connecting the bearing 

solely to port B or by integrating it with other system components using both ports B and F, depending on the desired configuration 

and level of complexity in the simulation or design. 

 

A load, denoted as F, can be applied to the bearing and may be either constant or variable in nature. When the Radial load 

specification is set to Constant, the system utilizes the value defined in the Load on bearing parameter to represent the applied force. 

Conversely, if the Radial load specification is set to Variable, the block receives a physical signal input through the Load port. This 

input is then processed dynamically, allowing the bearing model to respond to changing load conditions during simulation or 

operation, enabling a more flexible and realistic representation of real-world scenarios. ܨ = ் ଶܨଶ ௨௧ାܨ) ℎ) ் ଶܨ ଶ ௨௧ ୀ ୭ୟୢ ୭୰୲ ୭ ୦୷ୱ୧ୡୟ୪ ୗ୧୬ୟ୪ܨ  ℎ ୀ ୭୰ୡୣ ୦୰ୣୱ୭୪ୢ 

 

The block calculates the torque due to friction such that 

 

T=μ⋅F⋅r, 

μ = coefficient of friction. 

Ff = friction force acting on the bearing. 

r = Bearing radius parameter. 

 

The method by which the block computes μ is influenced by the specific kind of bearing you are modeling. 
 

V. MONITORING TECHNIQUES 

A. Infrared Thermography 

Mechanical issues are among the most frequently encountered failures in industrial induction motors, encompassing a broad range 

of problems such as bearing malfunctions, rotor imbalances, shaft misalignments, load-related discrepancies, gearbox faults, and 

transmission system defects. In industrial environments, vibration data analysis is the most commonly used method for diagnosing 

such mechanical problems. However, this technique has several limitations. It requires the installation of specialized vibration 

sensors, which may not be feasible for certain types of motors, including those that are enclosed or submersible. Additionally, 

vibration analysis can struggle to accurately differentiate between mechanical and electrical faults, or to distinguish motor-specific 

issues from those related to the load or transmission system. It may also fail to identify phenomena unrelated to actual faults. 

Infrared thermography has emerged as a powerful alternative for detecting mechanical faults. Widely used for maintaining electrical 

equipment, this method captures infrared radiation emitted by objects, converts it into temperature data, and generates a detailed 

thermal image. One of its key advantages is the ability to provide high-resolution temperature mapping without requiring physical 

contact. This makes it especially useful for large induction motors, where it has proven effective in identifying bearing problems 

and cooling inefficiencies. 

The types of mechanical faults that infrared thermography can detect include shaft misalignments, transmission system issues such 

as defective belts and couplings, and bearing failures that manifest through heat emissions—often due to lubrication problems or 

physical damage. For example, shaft misalignment typically results in localized temperature increases around the coupling area, 

which are easily visible in thermal images. Likewise, faults in transmission systems—like improperly tensioned or misaligned 

belts—can generate excessive heat, leading to uneven wear, shortened belt life, and potential mechanical failure. Over-tensioned 

belts may stretch and weaken, and even well-lubricated bearings can overheat under such conditions. 

Infrared thermography is also effective in detecting a range of bearing defects. These include primary issues like wear, indentations, 

smearing, surface distress, and corrosion, as well as secondary faults such as flaking, cracks, and damage to the bearing cage.  
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By identifying these thermal anomalies, infrared thermography provides a reliable, non-invasive method for early detection and 

prevention of mechanical failures in industrial motors. 

 

B. Sound Analysis 

Identifying faults through sound is often an intuitive task for humans, even without technical expertise, as unusual noises can be 

clear indicators of mechanical problems. In industrial environments, machine operators frequently rely on abnormal sound patterns 

to detect equipment malfunctions. This ability is crucial, as a failure in a key component can lead to the shutdown of an entire 

facility. 

In this context, sound analysis of electric motors is a valuable approach for fault detection. Sound, continuously produced during 

motor operation, acts as a key indicator of machine health. As faults develop, noise levels typically increase, making audio 

monitoring an effective diagnostic tool. Analyzing the sound spectrum—particularly harmonic amplitudes at various frequencies—

can help identify issues such as bearing defects. Friction is often the primary source of high-frequency vibrations in bearings, and 

when faults occur, disruptions in the lubrication layer lead to shock pulses. These high-frequency sound signals are especially useful 

because they are largely isolated from noise generated by other components, making it easier to pinpoint the faulty bearing. 

Bearing defects can result from improper installation, misuse, or overloading, and are typically classified into two categories: 

distributed defects (e.g., surface roughness, waviness, and race misalignment) and localized defects. To detect these faults, various 

sound detection instruments such as microphones, sound level meters, and electronic recorders are employed. Two widely used 

techniques for analyzing sound data are the MUSIC (Multiple Signal Classification) method and the Welch method. 

The MUSIC algorithm applies Schmidt’s eigen space analysis to estimate the pseudo spectrum from a signal or its correlation 

matrix. It is highly effective at identifying frequency components in signals composed of multiple sinusoids mixed with white 

Gaussian noise. Meanwhile, the Welch method estimates power spectra by dividing a time-domain signal into overlapping 

segments, computing the periodogram for each, and then averaging the results. This process reduces the influence of noise and 

allows for a clearer frequency analysis. 

In the experiment, sound measurements were initially taken from an induction motor with a healthy rotor, followed by 

measurements using the same motor but with a faulty bearing. The analysis was carried out using MATLAB’s Signal Processing 

Toolbox, along with the Data Acquisition Toolbox to collect sensor data and interface with external devices. Sound data was 

recorded using a laptop’s built-in sound card, with a microphone and speaker serving as input and output devices. 

The goal was to evaluate the motor’s condition by applying WELCH and MUSIC analyses to its acoustic signals. These techniques 

proved effective in identifying faults, supporting the broader premise that sound-based diagnostic methods can be valuable tools for 

detecting both mechanical and electrical problems in motors. Ultimately, the study explored the feasibility of automating fault 

detection through sound analysis, aligning with existing research that supports the practicality of this approach for industrial 

applications. 

 

C. Vibration Analysis 

Surface irregularities and waviness in bearing components are typically a result of the manufacturing process, whereas discrete 

defects are linked to damage on the rolling surfaces caused by factors such as improper assembly, contamination, operational 

stresses, poor installation practices, or inadequate maintenance. Although these defects can be extremely small and difficult to 

detect, they can have a substantial impact—particularly on vibration-sensitive equipment—and can significantly reduce the 

bearing’s operational lifespan. These flaws may appear in various forms, including indentations, longitudinal and transverse 

scratches, pitting, or the presence of foreign particles in the lubricant. 

To detect such defects, bearing manufacturers often conduct basic vibration tests on finished products. However, the effectiveness 

of these tests is often limited by the bearing’s size and type. For example, a typical vibration assessment used in quality control is 

shown in the accompanying figure. 

In contrast to a bearing in good condition, localized damage—such as that occurring on the outer race—produces a distinct, 

impulsive vibration pattern. This pattern is characterized by a high peak-to-RMS (Root Mean Square) ratio, clearly indicating the 

presence of damage. 
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Fig. Good bearing signals 

 

 
Fig. Fault bearing signals 

 

In situations where numerous faults are present, distinct peaks are less pronounced; however, the RMS vibration measurement is 

significantly elevated compared to that typically found in a properly functioning bearing. 

Parameter 

 ݂ ୀ ቂ್ మ ቀଵିವୡ୭ୱఏቁቃ_____________________(1) ݂ ୀ ቂ್ మ ቀଵାವୡ୭ୱ ఏቁቃ_____________________(2) ݂ ୀ ቈವ ቆଵି൬మವమ௦మఏ൰ቇ____________________(3) ݂ ୀ ቂమቀଵିವ ୡ୭ୱఏቁቃ________________________(4) 

 

Example 

Given Data: 

n = no of balls = 6 

d = ball diameter = 08mm 

D = Pitch diameter = 40mm 

θ = Contact angle = cos θ = 1 

fr = Shaft Speed = 1800 RPM = 30 Hz 

 

In equation (1) ݂ ୀ ቂల×యబమ ቀଵି ఴరబୡ୭ୱ ଵቁቃ ݂ ୀଶ ு௭______Ball Outer Race Pass Frequency  

 

In equation (2) ݂  ୀ ቂల×యబమ ቀଵା ఴరబୡ୭ୱ ଵቁቃ ݂ ୀଵ଼ ு௭_______Ball Inner Race Frequency 
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In equation (3) ݂ ୀ ቈరబఴ ቆଵି൬ ఴమరబమ௦మଵ൰ቇ ݂ ୀ ସ.଼  ு௭__________Ball Spin Frequency 

 

In equation (4) ݂ ୀ ቂయబమ ቀଵି లరబ ୡ୭ୱ ଵቁቃ ݂ ୀ ଵଶ. ு௭_____Fundamental Train Frequency 

 

D. MCSA and Stator Current 

Electrical machines are nearly universal in modern industrial environments, with induction motors being among the most commonly 

used drive systems. Their simple and robust design, however, makes the motor bearings particularly prone to damage. Studies show 

that approximately 40% of motor failures are caused by bearing issues. Detecting these faults involves capturing a clear signal and 

analyzing it to identify the source of the problem. When defects occur on the inner or outer race of a bearing, each time a rolling 

element passes over the damaged area, it generates a disturbance. These disturbances appear as a nearly periodic series of impulses, 

which vary depending on the bearing's geometry and the specific location of the defect. They can also trigger resonances within the 

bearing and the broader machine structure. 

These impulses change in amplitude as the faulted area moves through the load zone and can be detected using appropriate sensors. 

The characteristics of these impulses depend on several factors, including the fault’s location (inner race, outer race, or cage), the 

bearing dimensions, and the shaft speed (fr). From these signals, key bearing fault frequencies can be determined, such as the Ball 

Pass Frequency of the Outer Race (BPFO), Ball Pass Frequency of the Inner Race (BPFI), Fundamental Train Frequency (FTF), 

which relates to the rotation of the bearing cage, and the Ball Spin Frequency (BSF). 

Motor Current Signature Analysis (MCSA) is a widely adopted method for diagnosing faults in induction motors because it can 

detect both electrical and mechanical issues. MCSA involves spectral analysis of the stator current, typically measured from one of 

the three supply phases. When a bearing fault is present, it causes irregularities in the motor's inductance due to uneven rotation, 

generating modulations in the stator current. These modulations appear at characteristic bearing frequencies (fC) such as BPFO and 

BPFI and are reflected in the frequency spectrum as sidebands, defined by the equation: 

fE = fs ± k·fC, 

where fE is the frequency component related to the fault, fs is the supply frequency, and k is an integer harmonic number (1, 2, 3, 

…). 

It’s important to consider that rotor inertia and stator winding inductance introduce an electromechanical filtering effect, which 

primarily allows low-frequency components to pass through to the stator current. An alternative approach to fault analysis is to 

simulate how a localized bearing defect influences stator current through changes in the air gap, known as air gap eccentricity. The 

resulting current spectrum is affected not only by fault-induced modulations but also by harmonic components typical of standard 

magnetic activity in induction motors. 

One of the main challenges in implementing MCSA is accurately identifying and isolating the fault-related frequencies from the 

surrounding noise and other closely spaced spectral components, which often overlap. However, with high-resolution frequency and 

amplitude analysis and the use of advanced signal processing techniques, mechanical faults in induction motors can be effectively 

identified. 

VI. RESULTS 

Comparison Between Infrared Thermography, Sound Analysis, Vibration Analysis, MCSA, and Stator Current. 

Technique Primary Focus Typical Use Cases 
Contact/Non-

contact 

Real-time 

Monitoring 

Fault Detection 

Types 

Infrared 

Thermography 
Surface temperature 

Electrical hot spots, 

mechanical 

overheating 

Non-contact Yes 

Overheating, 

insulation 

degradation 

Sound Analysis 
Acoustic 

emissions/sound 

Bearing faults, 

cavitation, steam/gas 

Non-contact 

(usually) 
Yes 

Leaks, 

mechanical 
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patterns leaks defects 

Vibration Analysis 

Mechanical 

movement 

(vibration) 

Unbalance, 

misalignment, 

bearing/wear issues 

Contact (with 

sensors) 
Yes 

Mechanical 

faults, resonance 

issues 

MCSA 
Electrical current 

signal patterns 

Rotor faults (broken 

bars), eccentricity, 

load issues 

Non-contact (at 

motor leads) 
Yes 

Rotor bar faults, 

eccentricity 

Stator Current 

Analysis 

Current signature in 

stator windings 

Similar to MCSA but 

focused on the stator 

side 

Non-contact (at 

stator terminals) 
Yes 

Stator winding 

faults, harmonics 

Table. Overview Table 

 

Criteria 
Infrared 

Thermography 
Sound Analysis Vibration Analysis MCSA 

Stator Current 

Analysis 

Measurement 

Principle 

Captures IR 

radiation (heat) 

Analyses 

frequency/patterns of 

emitted sounds 

Measures 

vibrations using 

accelerometers 

Analyses motor 

current for fault-

related patterns 

Similar to MCSA, 

with a focus on the 

stator waveform 

Type of Faults 

Detected 

Overheating, 

insulation, and 

mechanical wear 

Valve leaks, bearing 

cracks, and steam 

leaks 

Shaft 

misalignment, 

bearing defects, 

looseness 

Broken rotor 

bars, air-gap 

eccentricity 

Winding faults, 

inter-turn shorts, 

harmonic issues 

Tools Used IR camera/scanner 
Ultrasonic sensors, 

microphones 

Accelerometers, 

vibration meters 

Current sensors, 

data acquisition 

devices 

Current 

transformers, 

oscilloscopes, and 

FFT analysers 

Advantages 

Fast scan, non-

intrusive, good for 

electrical faults 

Detects invisible 

issues (leaks, cracks) 

Highly accurate for 

rotating equipment 

No need for 

physical access 

to moving parts 

Good for stator-

related fault 

detection 

Limitations 

Surface only, 

influenced by the 

environment 

Susceptible to 

background noise 

Requires 

installation of 

sensors 

Can be affected 

by load 

variations 

Complex 

interpretation, 

sensitive to noise 

Skill Required 

Medium 

(interpreting 

images) 

High (sound pattern 

interpretation) 

High (signal 

processing and 

analysis) 

High (requires 

signal processing 

knowledge) 

High (requires 

electrical expertise) 

Table. Detailed Comparison 

 

VII. DISCUSSION 

A three-phase, 3 kW induction motor was utilized in this research. Two fault scenarios were examined. 

In Scenario 1, static eccentricity, fractured rotor bars, and outer-race bearing issues were applied at the same time. In Scenario 2, 

static eccentricity, fractured rotor bars, and inner-race bearing problems were put into action. During each experimental 

condition, both stator current and vibration data were captured. 

 

Static eccentricity, broken rotor bars and outer-race bearing faults 

Current Signals Analysis (Case 1)  

The rates of specific harmonic elements linked to static eccentricity ݂ecnº can be determined through ݂݁ܿ݊ = ݂ݏ±  ݇  (1) ___________________________ ݎ݂. 
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where, ݂ݏ - fundamental component ݇ - 1, 2, 3 and  ݂ݎ - rotor (shaft) frequency. 

The rates of specific harmonic elements associated with damaged rotor bars (݂ܾܾݎ) are detailed below. ݂ܾ(2)______________________ݏ݂ · (ݏ2݇ ± 1) = ܾ ݎ 

Where ݏ - the slip  

Within the envelope spectrum, the distinct harmonic element associated with damaged rotor bars is determined by using ݂ܾݎܾ݂ − ݏ 

The rates of distinctive harmonic elements related to bearing defects in the stator current signals are determined by utilizing ݂bear = | ݂ݏ ± ݇ · BPFO|_____________________ (3) 

where ݇ = 2, 3, 4 and  

BPFO - Ball Pass Frequency Outer (Outer-Race Failing Frequency). 

The occurrence rate of distinct harmonic elements associated with the outer-race bearing defect is determined by employing 

BPFO =
ேଶ್ .݂.1 −  .cos߮_______________ (4) 

where  ܾܰ - quantity of balls ݀ܤ - diameter of the balls ܲ݀ - pitch diameter  ߮ - angle of contact for the balls 

The details of the bearing (6206.C3) employed in the tests are presented in Table 7.2a. 

Bearing number Nb(Qty) Bd(mm) Pd(mm) φ (◦) 

6206 9 9.525 46 0 

Table. Data sheet of the 6206 bearing 

 

The rate at which distinctive harmonic elements of the outer race bearing defect is determined in 

 

BPFO =
ଽଶ . ݂.1 − ଽ.ହଶହସ .cos 0 =3.57. f ____________________ (5) 

The table displays the relevant harmonic features associated with the current spectra of faults in outer-race bearings. 

Load level (%) 
Ball pass frequency 

of outer-race (Hz) 

2nd current spectra 

harmonic (Hz) 

3rd current spectra 

harmonic (Hz) 

4th current spectra 

harmonic (Hz) 

25 177.2 304 482 659 

50 175 300 475 650 

75 172.9 296 469 642 

100 170.6 291 462 632 

Table.Present spectra of distinctive harmonic elements related to outer-race bearing issues. 
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The findings from the suggested technique implemented on the existing signals for Case 1 are displayed in Table and illustrated 

in Fig. 

Load level         

(%) 

f r Broken rotor bars 

harmonic 

frequency (Hz) 

1st harmonic 

component of static 

eccentricity (Hz) 

Outer-race bearing 

fault 2nd harmonic 

component (Hz) (Hz) 

25 49.5 0.954 99.5 304 

50 48.9 2.193 98.95 300 

75 48.3 3.386 98.56 296 

100 47.7 4.721 97.22 291 

Table. The occurrence rates of distinct harmonic elements in the current evaluation  

 

a)                                                                      b) 

 

b)                                                                             d) 

 
Fig. Characteristic harmonic components of current signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load level of the 

induction motor. 

In all diagrams, In indicates the magnitudes of normalized stator current signals. When employing the FFT technique, the distinct 

harmonic elements emerge in pairs as sidebands alongside the primary component. In contrast, the suggested approach identifies 

these distinct harmonic elements without needing to consider the primary component, particularly when various faults occur 

simultaneously. The subtle characteristic harmonic elements associated with damaged rotor bars shift within the 0–10 Hz range in 

the envelope spectrum. Thus, the suggested technique presents an effective method for addressing the challenges posed by 

overshadowing in prominent harmonic elements, as illustrated in Figure 7.2. Furthermore, the characteristic harmonic elements 

resulting from static eccentricity and outer-race bearing defects are effectively identified using the proposed method. 

a )                                                                                                           b) 

 
Fig. Analysis of the stator current signal at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope 

analysis. 

A. Vibration Signals Analysis 

The static eccentricity fault of the induction motor is detected by comparing the amplitudes of ݂݇ݎ characteristic harmonic 

components [33]. If the amplitude of 2 ݂ݎ is greater than or equal to 1.5 ݂ݎ, the static eccentricity fault is present. 
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Traditional approaches determine the frequencies of specific harmonic elements related to fractured rotor bars (݂ܾܾݎ) as illustrated 

in (6). In contrast, Hilbert envelope examination emphasizes the 2݇ݏ݂ݏ harmonic elements. 

 (6) ____________________ݏ݂ݏ2݇ ± ݎ݂ = ܾݎܾ݂ 

 

The rate of the distinct harmonic elements related to the outer-race bearing defect is determined as shown in (7) 

 

BPFO =
ଽଶ . ݂.1 − ଽ.ହଶହସ .cos 0 =3.57. f ____________________ (7) 

The outcomes of the suggested technique used on the vibration data for Scenario 1 are shown in Table 7 and Figure 7. 

Loadlevel(%) fr 

(Hz) 

Amplitude 

(2fr)Amplitude(fr) 

Ballpassharmonicfrequen

cy of theouter-race(Hz) 

Broken rotor 

barsharmonicfrequency(H

z) 

25 49.5 1.98 177.2 0.954 

50 48.9 1.54 175.0 2.098 

75 48.3 1.52 172.9 3.580 

100 47.7 1.71 170.6 4.864 

Table. The rates of distinct harmonic elements observed in vibration assessment 

 

a)                                                    b ) 

 
b)                                              d ) 

 
Fig. 7.2.1.2.a. Characteristic harmonic components of vibration signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load 

level of the induction motor. 

 

The figure illustrates that the suggested approach can identify distinct harmonic elements in vibration signals stemming from 

simultaneous faults under full load conditions just as efficiently as the FFT technique. The distinctive harmonic elements linked to 

static eccentricity and outer-race bearing defects are identified effectively, particularly at higher amplitudes when assessed against 

the FFT outcomes. Given that the harmonic elements associated with damaged rotor bars are moved into the 0 – 10 Hz frequency 

range, the proposed technique provides a viable resolution for challenges related to overshadowing within predominant harmonic 

elements, as shown in Fig. 
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a)                                                                                                                  b) 

 
Fig. 7.2.1.2.b. Analysis of vibration signal at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope 

analysis. 

 

VIII. FUTURE SCOPE 

Despite extensive research efforts in fault detection, the early identification and severity assessment of faults in induction machines 

(IMs) continues to present significant challenges. Most existing studies have focused on detecting faults during the machine’s 

steady-state operation. As a result, investigating IM performance under varying operational conditions has become a natural and 

necessary next step. With the increasing use of inverters in industrial applications, there is also a growing need to develop advanced 

methods that can detect early-stage faults in inverter-driven IMs, particularly during transient operating states. 

Although several techniques have been suggested to distinguish between load-induced oscillations and bearing race–ball (BRB) 

fault signals, the reliability of these methods in early fault detection under such external disturbances has yet to be fully validated. 

Both electrical signals (such as current) and mechanical signals (such as vibration) have been used in diagnostics, but the 

effectiveness of incorporating additional monitoring inputs remains an open area for further research. 

To ensure dependable and accurate fault detection, it is crucial to account for a variety of real-world factors, including the presence 

of multiple simultaneous faults, typical wear and tear, and measurement inaccuracies commonly encountered in industrial 

environments. Recent trends highlight a growing interest in knowledge-based (KB) approaches, which—when integrated with 

advanced signal processing—offer promising new possibilities. These hybrid methods could significantly improve the accuracy and 

reliability of diagnostic systems. 

There is also an urgent need for the development of new metrics to evaluate fault severity and extract meaningful diagnostic 

features, which would enhance fault classification and help estimate the remaining useful life of key components. Future 

methodologies must be capable of filtering out external noise while accurately quantifying the distinctive features of faults. 

Moreover, new approaches should consolidate the strengths of current detection techniques by offering reliable, low-complexity, 

portable, and online-capable solutions that can detect both individual and combined faults across a wide range of operating 

conditions. 

 

IX. CONCLUTION 

Fault detection in induction motors remains a major challenge for researchers and engineers, particularly in the area of motor current 

signature analysis, which continues to be a focal point of ongoing investigation. Most existing studies have concentrated on 

induction motors operating under constant speed conditions. In response to the growing complexity of modern motor systems, 

efforts are increasingly directed toward developing artificial intelligence-based diagnostic tools that leverage fuzzy logic, neural 

networks, and genetic algorithms. Additionally, the use of digital signal processors (DSPs) has shown promise in enhancing 

monitoring and diagnostic capabilities. However, there is still a significant gap when it comes to effectively diagnosing faults in 

induction motors driven by variable speed systems. 

Recent research has primarily been based on experimental data obtained from laboratory tests using small-scale induction motors. 

While these studies offer valuable insights, applying the same diagnostic techniques to large industrial motors operating under real-

world conditions introduces additional complexities. Nevertheless, advancements in fault detection are steadily progressing, and in 

the near future, diagnostic accuracy is expected to improve significantly—potentially paving the way for fault-tolerant drive 

systems. 

This review highlights the latest developments in early fault detection for induction motors, categorizing them into two key 

operational modes: steady-state and transient-state. The majority of current research focuses on steady-state analysis, where fault 

severity assessment techniques demonstrate a high level of precision.  
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However, challenges such as diagnostic errors and limitations in accuracy still persist. The study also examines various algorithms 

that utilize different types of monitoring signals, each offering unique characteristics that contribute to fault identification. 

Based on the literature, heuristic methods—often combined with advanced signal processing techniques—emerge as the most 

widely used strategies for detecting early-stage faults. These approaches are valued for their adaptability but are often limited by 

high computational requirements and the need to process large datasets. Despite significant research in this area, only a small 

fraction of studies address transient conditions, and even fewer explore fault detection in inverter-fed induction motors during such 

states. In terms of fault types, much of the existing work centers on the detection of partially broken rotor bars, indicating a need for 

broader investigation into other fault categories. 
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