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Abstract: Bearing failures in electric machinery pose significant challenges and have attracted considerable attention in 
diagnostic research. The growing use of variable-speed drives across various motor applications has amplified the effects of 
bearing currents, spurring detailed investigations in both academic and industrial contexts. This paper provides key insights into 
identifying and addressing bearing-related issues in electrical equipment. It offers an in-depth analysis of damage mechanisms 
and diagnostic techniques specific to bearing currents in induction motors. 
Furthermore, the study presents experimental results from controlled laboratory settings designed to replicate bearing current 
faults. As advanced technologies are increasingly integrated into manufacturing processes, the importance of preventive 
maintenance continues to rise. In response, the paper expands its focus to include signal pre-processing techniques to improve 
fault prediction accuracy by enhancing machine signal clarity. 
Recognizing the dynamic nature of industrial standards and the growing demand for predictive maintenance, this study proposes 
a forward-looking approach to early fault detection. By aiming to boost operational efficiency, reduce downtime, and increase 
system reliability, the strategies outlined in this paper make a meaningful contribution to the evolving field of predictive 
maintenance. 
Keywords:  Induction Motor, Faults of Bearing, Technology 
 

I. LITERATURE SURVEY 
In many industries, approximately 90% of machinery relies on induction motors (IM). Research shows that bearing failures account 
for roughly 40% of the faults identified in AC machines across these sectors. Bearings are intricate components made up of two ring 
tracks with rolling elements positioned between them. These elements—which may include balls, cylindrical rollers, tapered rollers, 
needle rollers, or barrel rollers—are housed within a cage that maintains even spacing and minimizes internal impact. 

 
Fig. Percentage-wise Fault of Induction Motor 

 
Bearing signals are inherently non-stationary due to slippage between interacting components, such as rolling elements and 
raceways. Each rotating part of a bearing generates vibration signals, and all components are vulnerable to damage. Bearing defects 
are generally categorized into two types: distributed and localized. 
Distributed defects include issues such as surface roughness, waviness, misaligned races, and incorrectly sized rolling elements. 
These are typically caused by design flaws, manufacturing errors, improper assembly, wear, or corrosion. 
Localized defects, on the other hand, manifest as cracks, pits, or spalling on the rolling surfaces. These arise mainly from material 
fatigue, plastic deformation, or brinelling. 
Both types of defects lead to increased noise and vibration levels, which can ultimately cause machinery to fail. From a condition 
monitoring standpoint, localized faults are of greater concern because spalling in races or rolling elements is the most common 
failure mode in real-world applications. Furthermore, many distributed issues can originate from localized damage. 
Bearing health monitoring usually involves two key stages: 
1) Feature Extraction – This step involves isolating condition-relevant features from signals using appropriate signal processing 

methods. 
2) Fault Diagnosis – Based on the extracted features, this stage involves decision-making to assess the bearing's health. 
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Accurate feature extraction is essential, as poor-quality features may lead to false alarms (detecting a problem when none exists) or 
missed alarms (failing to detect a genuine fault). 
There are multiple diagnostic approaches based on the nature of the signals, including: 
 Acoustic analysis 
 Temperature monitoring 
 Lubricant condition assessment 
 Electrical current analysis 
 Vibration analysis 
 Motor current signature analysis 
 Sound-based diagnostics 
Acoustic Emission (AE) is a prominent technique that detects transient elastic waves generated by the rapid release of energy due to 
structural changes, such as crack formation and propagation. This makes AE particularly useful for early fault detection in bearings. 
Temperature monitoring is another effective method. Excessive heat often indicates bearing stress or failure. Therefore, keeping the 
temperature of bearing housings and lubricants within operational limits is critical. Specialized sensors can also detect metallic 
debris in lubricants, helping pinpoint the location and nature of wear-related issues. 
Motor current analysis offers another layer of diagnostics. Mechanical changes in the machine often affect the electrical signal, 
allowing faults to be detected using proper signal processing techniques. 
Vibration analysis remains the most widely used approach in industry. Bearings emit vibrations due to both structural defects and 
dynamic forces such as Hertzian contact deformation and radial clearances. Accurate diagnostics rely heavily on the interpretation 
of vibration frequency patterns. 
Various techniques have been developed and studied for bearing fault detection, including: 
 Vibration Signal Analysis 
 Thermal Imaging 
 Motor Voltage and Current Signature Analysis 
Advanced signal processing techniques such as: 
 Fourier Transform (FT) 
 Wavelet Transform (WT) 
 Empirical Mode Decomposition (EMD) 

are often employed—sometimes in combination—for enhanced feature extraction and diagnosis. 
Given the increasing demand for precision and speed, real-time monitoring of roller bearings has become critical. Vibrations in the 
bearing cage can be captured by monitoring changes in the resonance frequency of an inductive coil coupled with a temperature-
sensitive capacitor. An interrogator coil, placed near the bearing cage, detects these changes by measuring alterations in coupling 
and excitation frequency, which reflect bearing cage vibrations. 
In the study presented, the author investigates bearing cage temperatures at varying RPMs. Vibration frequencies at each speed are 
recorded and compared to theoretical values derived from standard bearing frequency equations. A strong correlation is found 
between the experimental and calculated values, with an average deviation of just 2.8%. This includes key frequencies such as the 
Ball Spin Frequency, Fundamental Train Frequency, and Ball Pass Outer Race Frequency. 

 
Fig. Electric Machine Fault Diagnosis 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 
     

 
4628 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

II. INTRODUCTION 
A. The Significance of the Induction Motor:  
Induction motors are a fundamental component in industrial environments, where they power a diverse range of equipment such as 
pumps, compressors, conveyors, and fans. Their reliability is essential for maintaining operational efficiency and minimizing costly 
disruptions. The widespread use of induction motors across various industries is well justified by their robust construction, low 
maintenance requirements, and high efficiency. These attributes make them especially valuable in applications such as industrial 
automation, household appliances, and commercial systems, where consistent performance under different operating conditions is 
crucial. Their simple and durable design, combined with cost-effectiveness and the ability to operate directly from AC power 
without the need for complex control systems, enhances their appeal across a broad spectrum of uses. Additionally, energy-efficient 
models contribute to environmental sustainability, reinforcing the important role induction motors play in advancing modern 
electrical and mechanical systems. 
 
B. The Difficulty of Fault Diagnosis:  
Conventional fault diagnosis methods often rely on manual inspections and reactive repairs, which can lead to delays and the risk of 
further damage. Prompt detection and evaluation of issues are essential to prevent serious failures and ensure optimal system 
performance. The challenge of diagnosing faults is amplified by the increasing complexity of modern systems, where numerous 
components interact and many faults present in subtle, non-obvious ways. Frequently, the symptoms observed do not clearly indicate 
the underlying causes, necessitating thorough testing and analysis to accurately identify the problem. As technological systems continue 
to advance—particularly in sectors such as electronics, automotive engineering, and industrial automation—the need for sophisticated 
diagnostic tools and highly trained professionals becomes increasingly critical. This evolution underscores the importance of adopting 
advanced diagnostic technologies and developing specialized expertise to maintain reliability and efficiency in complex systems. 
 

III. CAUSES/TYPES OFFAULTS OF BEARING INANINDUCTIONMOTOR 
A. Improper Lubrication and Fretting 
Inadequate lubrication may result in overheating and significant wear on bearings. Insufficient lubrication can also create fretting, 
which occurs when two unlike and dry surfaces rub against each other, leading to corrosion. 

Fig Improper Lubrication and Fretting 
B. Corrosion and Contamination 
Substances like moisture, grit, soil, and chemicals can create numerous issues within bearing assemblies. As an example, they may 
wear down bearing surfaces or compromise the lubricant, both of which can result in early breakdown. 

 
Fig. Corrosion and Contamination 
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C. Misalignment 
Inconsistencies between the shaft and the bearing housing may arise from dirty parts, warped shafts, or misaligned locking nuts and 
shafts. Such issues can lead to significant vibrations and imbalanced load distribution, ultimately resulting in breakdowns. 
 
D. Moisture 
Wet or outdoor conditions may cause dampness to infiltrate your bearings. This establishes the perfect conditions for the formation of 
rust and corrosion, which can result in bearing malfunction. 
 
E. High Temperatures 
It’s important to refer to your motor’s operating guide for lubrication requirements and working temperature. Incorrect lubricant can 
bleed in even mild temperatures, resulting in a variety of lubricant-related problems. High temperatures can also decrease bearing 
hardness, leading to cracks. 

Fig. High Temperature 
 

F. Mistakes in Installation 
Bearing malfunction can result from flawed installation and setup procedures. Typical errors during installation involve imbalance, 
faulty mounting, and misalignment or excessive shaft deviation. 
 
G. Electrical Damage 
When electrical currents flow through the bearing, it can result in electrical wear or arcing. This phenomenon can trigger a range of 
problems, such as the breakdown of lubricants, pitting harm to the rolling components and raceways, along with early bearing failure. 
 

IV. METHODOLOGY 
The proposed approach begins by capturing signals from a current sensor installed in one phase of the induction motor. These signals 
are then processed through Instrumentation Amplifiers and recorded using a Data Acquisition System, which enables efficient handling 
and transmission of the data to a computer for further organization and storage. The method proceeds with the measurement of current 
signals under both normal and fault conditions, followed by their characterization. This characterization involves computing the 
Cumulative Distribution Function (CDF) for each signal. The obtained CDFs are then compared to baseline CDFs corresponding to 
each motor state to determine the maximum deviation between them. Using this deviation, a reference p-value is calculated to evaluate 
whether the signal is likely associated with either the normal or fault condition. This assessment is conducted with a confidence level of 
α = 0.05, allowing for statistically supported fault identification and condition monitoring of the motor. 

Fig. Block Diagram of Induction Motor 
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H. Representation 
The bearing block can represent various types of bearings, such as ball bearings, roller bearings, or journal bearings, each serving 
the purpose of restricting the lateral movement of a shaft while allowing it to rotate along its axial axis within the bearing. In 
addition to supporting rotational motion, these bearings also introduce friction, which contributes to the overall torque within the 
mechanical system. This bearing friction can be modeled within a mechanical rotational framework either by connecting the bearing 
solely to port B or by integrating it with other system components using both ports B and F, depending on the desired configuration 
and level of complexity in the simulation or design. 
 
A load, denoted as F, can be applied to the bearing and may be either constant or variable in nature. When the Radial load 
specification is set to Constant, the system utilizes the value defined in the Load on bearing parameter to represent the applied force. 
Conversely, if the Radial load specification is set to Variable, the block receives a physical signal input through the Load port. This 
input is then processed dynamically, allowing the bearing model to respond to changing load conditions during simulation or 
operation, enabling a more flexible and realistic representation of real-world scenarios. 

ܨ =  (ଶ ்ℎ௥ܨଶ ௜௡௣௨௧ାܨ)
 ଶ ௜௡௣௨௧ ୀ ୐୭ୟୢ ୔୭୰୲ ୭୤ ୔୦୷ୱ୧ୡୟ୪ ୗ୧୥୬ୟ୪ܨ

 ଶ ்ℎ௥ ୀ ୊୭୰ୡୣ ୘୦୰ୣୱ୭୪ୢܨ
 
The block calculates the torque due to friction such that 
 
T=μ⋅F⋅r, 
μ = coefficient of friction. 
Ff = friction force acting on the bearing. 
r = Bearing radius parameter. 
 
The method by which the block computes μ is influenced by the specific kind of bearing you are modeling. 
 

V. MONITORING TECHNIQUES 
A. Infrared Thermography 
Mechanical issues are among the most frequently encountered failures in industrial induction motors, encompassing a broad range 
of problems such as bearing malfunctions, rotor imbalances, shaft misalignments, load-related discrepancies, gearbox faults, and 
transmission system defects. In industrial environments, vibration data analysis is the most commonly used method for diagnosing 
such mechanical problems. However, this technique has several limitations. It requires the installation of specialized vibration 
sensors, which may not be feasible for certain types of motors, including those that are enclosed or submersible. Additionally, 
vibration analysis can struggle to accurately differentiate between mechanical and electrical faults, or to distinguish motor-specific 
issues from those related to the load or transmission system. It may also fail to identify phenomena unrelated to actual faults. 
Infrared thermography has emerged as a powerful alternative for detecting mechanical faults. Widely used for maintaining electrical 
equipment, this method captures infrared radiation emitted by objects, converts it into temperature data, and generates a detailed 
thermal image. One of its key advantages is the ability to provide high-resolution temperature mapping without requiring physical 
contact. This makes it especially useful for large induction motors, where it has proven effective in identifying bearing problems 
and cooling inefficiencies. 
The types of mechanical faults that infrared thermography can detect include shaft misalignments, transmission system issues such 
as defective belts and couplings, and bearing failures that manifest through heat emissions—often due to lubrication problems or 
physical damage. For example, shaft misalignment typically results in localized temperature increases around the coupling area, 
which are easily visible in thermal images. Likewise, faults in transmission systems—like improperly tensioned or misaligned 
belts—can generate excessive heat, leading to uneven wear, shortened belt life, and potential mechanical failure. Over-tensioned 
belts may stretch and weaken, and even well-lubricated bearings can overheat under such conditions. 
Infrared thermography is also effective in detecting a range of bearing defects. These include primary issues like wear, indentations, 
smearing, surface distress, and corrosion, as well as secondary faults such as flaking, cracks, and damage to the bearing cage.  
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By identifying these thermal anomalies, infrared thermography provides a reliable, non-invasive method for early detection and 
prevention of mechanical failures in industrial motors. 
 
B. Sound Analysis 
Identifying faults through sound is often an intuitive task for humans, even without technical expertise, as unusual noises can be 
clear indicators of mechanical problems. In industrial environments, machine operators frequently rely on abnormal sound patterns 
to detect equipment malfunctions. This ability is crucial, as a failure in a key component can lead to the shutdown of an entire 
facility. 
In this context, sound analysis of electric motors is a valuable approach for fault detection. Sound, continuously produced during 
motor operation, acts as a key indicator of machine health. As faults develop, noise levels typically increase, making audio 
monitoring an effective diagnostic tool. Analyzing the sound spectrum—particularly harmonic amplitudes at various frequencies—
can help identify issues such as bearing defects. Friction is often the primary source of high-frequency vibrations in bearings, and 
when faults occur, disruptions in the lubrication layer lead to shock pulses. These high-frequency sound signals are especially useful 
because they are largely isolated from noise generated by other components, making it easier to pinpoint the faulty bearing. 
Bearing defects can result from improper installation, misuse, or overloading, and are typically classified into two categories: 
distributed defects (e.g., surface roughness, waviness, and race misalignment) and localized defects. To detect these faults, various 
sound detection instruments such as microphones, sound level meters, and electronic recorders are employed. Two widely used 
techniques for analyzing sound data are the MUSIC (Multiple Signal Classification) method and the Welch method. 
The MUSIC algorithm applies Schmidt’s eigen space analysis to estimate the pseudo spectrum from a signal or its correlation 
matrix. It is highly effective at identifying frequency components in signals composed of multiple sinusoids mixed with white 
Gaussian noise. Meanwhile, the Welch method estimates power spectra by dividing a time-domain signal into overlapping 
segments, computing the periodogram for each, and then averaging the results. This process reduces the influence of noise and 
allows for a clearer frequency analysis. 
In the experiment, sound measurements were initially taken from an induction motor with a healthy rotor, followed by 
measurements using the same motor but with a faulty bearing. The analysis was carried out using MATLAB’s Signal Processing 
Toolbox, along with the Data Acquisition Toolbox to collect sensor data and interface with external devices. Sound data was 
recorded using a laptop’s built-in sound card, with a microphone and speaker serving as input and output devices. 
The goal was to evaluate the motor’s condition by applying WELCH and MUSIC analyses to its acoustic signals. These techniques 
proved effective in identifying faults, supporting the broader premise that sound-based diagnostic methods can be valuable tools for 
detecting both mechanical and electrical problems in motors. Ultimately, the study explored the feasibility of automating fault 
detection through sound analysis, aligning with existing research that supports the practicality of this approach for industrial 
applications. 
 
C. Vibration Analysis 
Surface irregularities and waviness in bearing components are typically a result of the manufacturing process, whereas discrete 
defects are linked to damage on the rolling surfaces caused by factors such as improper assembly, contamination, operational 
stresses, poor installation practices, or inadequate maintenance. Although these defects can be extremely small and difficult to 
detect, they can have a substantial impact—particularly on vibration-sensitive equipment—and can significantly reduce the 
bearing’s operational lifespan. These flaws may appear in various forms, including indentations, longitudinal and transverse 
scratches, pitting, or the presence of foreign particles in the lubricant. 
To detect such defects, bearing manufacturers often conduct basic vibration tests on finished products. However, the effectiveness 
of these tests is often limited by the bearing’s size and type. For example, a typical vibration assessment used in quality control is 
shown in the accompanying figure. 
In contrast to a bearing in good condition, localized damage—such as that occurring on the outer race—produces a distinct, 
impulsive vibration pattern. This pattern is characterized by a high peak-to-RMS (Root Mean Square) ratio, clearly indicating the 
presence of damage. 
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Fig. Good bearing signals 

 

 
Fig. Fault bearing signals 

 
In situations where numerous faults are present, distinct peaks are less pronounced; however, the RMS vibration measurement is 
significantly elevated compared to that typically found in a properly functioning bearing. 
Parameter 
 
݂
௕௣௙௢ ୀ ቂ

೙್ ೑
మ ቀଵି೏ವୡ୭ୱఏቁቃ

_____________________(1) 

݂
௕௣௙௜ ୀ ቂ

೙್ ೑
మ ቀଵା೏ವୡ୭ୱ ఏቁቃ

_____________________(2) 

݂
௥௙ ୀ ቈವ೑೏ ቆଵି൬೏

మ

ವమ
௖௢௦మఏ൰ቇ቉

____________________(3) 

݂௖௙ ୀ ቂ೑మቀଵି
೏
ವ ୡ୭ୱఏቁቃ

________________________(4) 

 
Example 
Given Data: 
n = no of balls = 6 
d = ball diameter = 08mm 
D = Pitch diameter = 40mm 
θ = Contact angle = cos θ = 1 
fr = Shaft Speed = 1800 RPM = 30 Hz 
 
In equation (1) 

݂௕௣௙௢ ୀ ቂల×యబ
మ ቀଵି ఴ

రబୡ୭ୱ ଵቁቃ
 

௕݂௣௙௢  ୀ଻ଶ ு௭______Ball Outer Race Pass Frequency  
 
In equation (2) 

݂௕௣௙௜  ୀ ቂల×యబ
మ ቀଵା ఴ

రబୡ୭ୱ ଵቁቃ
 

௕݂௣௙௜ ୀଵ଴଼ ு௭_______Ball Inner Race Frequency 
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In equation (3) 
݂
௥௙ ୀ ቈరబఴ ቆଵି൬

ఴమ

రబమ
௖௢௦మଵ൰ቇ቉

 

௥݂௙ ୀ ସ.଼ ு௭__________Ball Spin Frequency 
 
In equation (4) 

݂௖௙ ୀ ቂయబమ ቀଵି
ల
రబ ୡ୭ୱ ଵቁቃ

 

௖݂௙ ୀ ଵଶ.଺ ு௭_____Fundamental Train Frequency 
 
D. MCSA and Stator Current 
Electrical machines are nearly universal in modern industrial environments, with induction motors being among the most commonly 
used drive systems. Their simple and robust design, however, makes the motor bearings particularly prone to damage. Studies show 
that approximately 40% of motor failures are caused by bearing issues. Detecting these faults involves capturing a clear signal and 
analyzing it to identify the source of the problem. When defects occur on the inner or outer race of a bearing, each time a rolling 
element passes over the damaged area, it generates a disturbance. These disturbances appear as a nearly periodic series of impulses, 
which vary depending on the bearing's geometry and the specific location of the defect. They can also trigger resonances within the 
bearing and the broader machine structure. 
These impulses change in amplitude as the faulted area moves through the load zone and can be detected using appropriate sensors. 
The characteristics of these impulses depend on several factors, including the fault’s location (inner race, outer race, or cage), the 
bearing dimensions, and the shaft speed (fr). From these signals, key bearing fault frequencies can be determined, such as the Ball 
Pass Frequency of the Outer Race (BPFO), Ball Pass Frequency of the Inner Race (BPFI), Fundamental Train Frequency (FTF), 
which relates to the rotation of the bearing cage, and the Ball Spin Frequency (BSF). 
Motor Current Signature Analysis (MCSA) is a widely adopted method for diagnosing faults in induction motors because it can 
detect both electrical and mechanical issues. MCSA involves spectral analysis of the stator current, typically measured from one of 
the three supply phases. When a bearing fault is present, it causes irregularities in the motor's inductance due to uneven rotation, 
generating modulations in the stator current. These modulations appear at characteristic bearing frequencies (fC) such as BPFO and 
BPFI and are reflected in the frequency spectrum as sidebands, defined by the equation: 
fE = fs ± k·fC, 
where fE is the frequency component related to the fault, fs is the supply frequency, and k is an integer harmonic number (1, 2, 3, 
…). 
It’s important to consider that rotor inertia and stator winding inductance introduce an electromechanical filtering effect, which 
primarily allows low-frequency components to pass through to the stator current. An alternative approach to fault analysis is to 
simulate how a localized bearing defect influences stator current through changes in the air gap, known as air gap eccentricity. The 
resulting current spectrum is affected not only by fault-induced modulations but also by harmonic components typical of standard 
magnetic activity in induction motors. 
One of the main challenges in implementing MCSA is accurately identifying and isolating the fault-related frequencies from the 
surrounding noise and other closely spaced spectral components, which often overlap. However, with high-resolution frequency and 
amplitude analysis and the use of advanced signal processing techniques, mechanical faults in induction motors can be effectively 
identified. 

VI. RESULTS 
Comparison Between Infrared Thermography, Sound Analysis, Vibration Analysis, MCSA, and Stator Current. 

Technique Primary Focus Typical Use Cases Contact/Non-
contact 

Real-time 
Monitoring 

Fault Detection 
Types 

Infrared 
Thermography 

Surface temperature 
Electrical hot spots, 

mechanical 
overheating 

Non-contact Yes 
Overheating, 

insulation 
degradation 

Sound Analysis Acoustic 
emissions/sound 

Bearing faults, 
cavitation, steam/gas 

Non-contact 
(usually) 

Yes Leaks, 
mechanical 
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patterns leaks defects 

Vibration Analysis 
Mechanical 
movement 
(vibration) 

Unbalance, 
misalignment, 

bearing/wear issues 

Contact (with 
sensors) Yes 

Mechanical 
faults, resonance 

issues 

MCSA 
Electrical current 

signal patterns 

Rotor faults (broken 
bars), eccentricity, 

load issues 

Non-contact (at 
motor leads) 

Yes 
Rotor bar faults, 

eccentricity 

Stator Current 
Analysis 

Current signature in 
stator windings 

Similar to MCSA but 
focused on the stator 

side 

Non-contact (at 
stator terminals) 

Yes Stator winding 
faults, harmonics 

Table. Overview Table 
 

Criteria 
Infrared 

Thermography Sound Analysis Vibration Analysis MCSA 
Stator Current 

Analysis 

Measurement 
Principle 

Captures IR 
radiation (heat) 

Analyses 
frequency/patterns of 

emitted sounds 

Measures 
vibrations using 
accelerometers 

Analyses motor 
current for fault-
related patterns 

Similar to MCSA, 
with a focus on the 

stator waveform 

Type of Faults 
Detected 

Overheating, 
insulation, and 

mechanical wear 

Valve leaks, bearing 
cracks, and steam 

leaks 

Shaft 
misalignment, 

bearing defects, 
looseness 

Broken rotor 
bars, air-gap 
eccentricity 

Winding faults, 
inter-turn shorts, 
harmonic issues 

Tools Used IR camera/scanner 
Ultrasonic sensors, 

microphones 
Accelerometers, 
vibration meters 

Current sensors, 
data acquisition 

devices 

Current 
transformers, 

oscilloscopes, and 
FFT analysers 

Advantages 
Fast scan, non-

intrusive, good for 
electrical faults 

Detects invisible 
issues (leaks, cracks) 

Highly accurate for 
rotating equipment 

No need for 
physical access 
to moving parts 

Good for stator-
related fault 

detection 

Limitations 
Surface only, 

influenced by the 
environment 

Susceptible to 
background noise 

Requires 
installation of 

sensors 

Can be affected 
by load 

variations 

Complex 
interpretation, 

sensitive to noise 

Skill Required 
Medium 

(interpreting 
images) 

High (sound pattern 
interpretation) 

High (signal 
processing and 

analysis) 

High (requires 
signal processing 

knowledge) 

High (requires 
electrical expertise) 

Table. Detailed Comparison 
 

VII. DISCUSSION 
A three-phase, 3 kW induction motor was utilized in this research. Two fault scenarios were examined. 
In Scenario 1, static eccentricity, fractured rotor bars, and outer-race bearing issues were applied at the same time. In Scenario 2, 
static eccentricity, fractured rotor bars, and inner-race bearing problems were put into action. During each experimental 
condition, both stator current and vibration data were captured. 
 
Static eccentricity, broken rotor bars and outer-race bearing faults 
Current Signals Analysis (Case 1)  
The rates of specific harmonic elements linked to static eccentricity ݂ecnº can be determined through 
 (1) ___________________________ ݎ݂. ݇ ±ݏ݂ = ݂݊ܿ݁
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where, 
 fundamental component - ݏ݂
݇ - 1, 2, 3 and  
 .rotor (shaft) frequency - ݎ݂
The rates of specific harmonic elements associated with damaged rotor bars (݂ܾܾݎ) are detailed below. 
 (2)______________________ݏ݂ · (ݏ2݇ ± 1) = ܾ ݎܾ݂
Where 
  the slip - ݏ
Within the envelope spectrum, the distinct harmonic element associated with damaged rotor bars is determined by using ݂ܾݎܾ݂ − ݏ 
The rates of distinctive harmonic elements related to bearing defects in the stator current signals are determined by utilizing 
݂bear = | ݂ݏ ± ݇ · BPFO|_____________________ (3) 
where ݇ = 2, 3, 4 and  
BPFO - Ball Pass Frequency Outer (Outer-Race Failing Frequency). 
The occurrence rate of distinct harmonic elements associated with the outer-race bearing defect is determined by employing 
BPFO = ே್

ଶ
.݂. 1− ஻೏

௉೏
. cos߮_______________ (4) 

where  
ܾܰ - quantity of balls 
 diameter of the balls - ݀ܤ
ܲ݀ - pitch diameter  
߮ - angle of contact for the balls 
The details of the bearing (6206.C3) employed in the tests are presented in Table 7.2a. 

Bearing number Nb(Qty) Bd(mm) Pd(mm) φ (◦) 

6206 9 9.525 46 0 

Table. Data sheet of the 6206 bearing 
 
The rate at which distinctive harmonic elements of the outer race bearing defect is determined in 
 
BPFO = ଽ

ଶ
. ௥݂ . 1 − ଽ.ହଶହ

ସ଺
. cos 0 =3.57. f ____________________ (5) 

The table displays the relevant harmonic features associated with the current spectra of faults in outer-race bearings. 

Load level (%) 
Ball pass frequency 
of outer-race (Hz) 

2nd current spectra 
harmonic (Hz) 

3rd current spectra 
harmonic (Hz) 

4th current spectra 
harmonic (Hz) 

25 177.2 304 482 659 

50 175 300 475 650 

75 172.9 296 469 642 

100 170.6 291 462 632 

Table.Present spectra of distinctive harmonic elements related to outer-race bearing issues. 
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The findings from the suggested technique implemented on the existing signals for Case 1 are displayed in Table and illustrated 
in Fig. 

Load level         
(%) 

f r Broken rotor bars 
harmonic 

frequency (Hz) 

1st harmonic 
component of static 

eccentricity (Hz) 

Outer-race bearing 
fault 2nd harmonic 

component (Hz) (Hz) 

25 49.5 0.954 99.5 304 
50 48.9 2.193 98.95 300 
75 48.3 3.386 98.56 296 
100 47.7 4.721 97.22 291 

Table. The occurrence rates of distinct harmonic elements in the current evaluation  
 

a)                                                                      b) 

 
b)                                                                             d) 

 
Fig. Characteristic harmonic components of current signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load level of the 

induction motor. 
In all diagrams, In indicates the magnitudes of normalized stator current signals. When employing the FFT technique, the distinct 
harmonic elements emerge in pairs as sidebands alongside the primary component. In contrast, the suggested approach identifies 
these distinct harmonic elements without needing to consider the primary component, particularly when various faults occur 
simultaneously. The subtle characteristic harmonic elements associated with damaged rotor bars shift within the 0–10 Hz range in 
the envelope spectrum. Thus, the suggested technique presents an effective method for addressing the challenges posed by 
overshadowing in prominent harmonic elements, as illustrated in Figure 7.2. Furthermore, the characteristic harmonic elements 
resulting from static eccentricity and outer-race bearing defects are effectively identified using the proposed method. 

a )                                                                                                           b) 

 
Fig. Analysis of the stator current signal at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope 

analysis. 
A. Vibration Signals Analysis 
The static eccentricity fault of the induction motor is detected by comparing the amplitudes of ݂݇ݎ characteristic harmonic 
components [33]. If the amplitude of 2 ݂ݎ is greater than or equal to 1.5 ݂ݎ, the static eccentricity fault is present. 
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Traditional approaches determine the frequencies of specific harmonic elements related to fractured rotor bars (݂ܾܾݎ) as illustrated 
in (6). In contrast, Hilbert envelope examination emphasizes the 2݇ݏ݂ݏ harmonic elements. 
 
 (6) ____________________ݏ݂ݏ2݇ ± ݎ݂ = ܾݎܾ݂
 
The rate of the distinct harmonic elements related to the outer-race bearing defect is determined as shown in (7) 
 
BPFO = ଽ

ଶ
. ௥݂ . 1 − ଽ.ହଶହ

ସ଺
. cos 0 =3.57. f ____________________ (7) 

The outcomes of the suggested technique used on the vibration data for Scenario 1 are shown in Table 7 and Figure 7. 
Loadlevel(%) fr 

(Hz) 
Amplitude 
(2fr)Amplitude(fr) 

Ballpassharmonicfrequen
cy of theouter-race(Hz) 

Broken rotor 
barsharmonicfrequency(H

z) 
25 49.5 1.98 177.2 0.954 
50 48.9 1.54 175.0 2.098 
75 48.3 1.52 172.9 3.580 
100 47.7 1.71 170.6 4.864 

Table. The rates of distinct harmonic elements observed in vibration assessment 
 

a)                                                    b ) 

 
b)                                              d ) 

 
Fig. 7.2.1.2.a. Characteristic harmonic components of vibration signal under a) 25% load, b) 50% load, c) 75% load, d) 100% load 

level of the induction motor. 
 
The figure illustrates that the suggested approach can identify distinct harmonic elements in vibration signals stemming from 
simultaneous faults under full load conditions just as efficiently as the FFT technique. The distinctive harmonic elements linked to 
static eccentricity and outer-race bearing defects are identified effectively, particularly at higher amplitudes when assessed against 
the FFT outcomes. Given that the harmonic elements associated with damaged rotor bars are moved into the 0 – 10 Hz frequency 
range, the proposed technique provides a viable resolution for challenges related to overshadowing within predominant harmonic 
elements, as shown in Fig. 
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a)                                                                                                                  b) 

 
Fig. 7.2.1.2.b. Analysis of vibration signal at 100% load level of the induction motor using a) FFT method and b) Hilbert envelope 

analysis. 
 

VIII. FUTURE SCOPE 
Despite extensive research efforts in fault detection, the early identification and severity assessment of faults in induction machines 
(IMs) continues to present significant challenges. Most existing studies have focused on detecting faults during the machine’s 
steady-state operation. As a result, investigating IM performance under varying operational conditions has become a natural and 
necessary next step. With the increasing use of inverters in industrial applications, there is also a growing need to develop advanced 
methods that can detect early-stage faults in inverter-driven IMs, particularly during transient operating states. 
Although several techniques have been suggested to distinguish between load-induced oscillations and bearing race–ball (BRB) 
fault signals, the reliability of these methods in early fault detection under such external disturbances has yet to be fully validated. 
Both electrical signals (such as current) and mechanical signals (such as vibration) have been used in diagnostics, but the 
effectiveness of incorporating additional monitoring inputs remains an open area for further research. 
To ensure dependable and accurate fault detection, it is crucial to account for a variety of real-world factors, including the presence 
of multiple simultaneous faults, typical wear and tear, and measurement inaccuracies commonly encountered in industrial 
environments. Recent trends highlight a growing interest in knowledge-based (KB) approaches, which—when integrated with 
advanced signal processing—offer promising new possibilities. These hybrid methods could significantly improve the accuracy and 
reliability of diagnostic systems. 
There is also an urgent need for the development of new metrics to evaluate fault severity and extract meaningful diagnostic 
features, which would enhance fault classification and help estimate the remaining useful life of key components. Future 
methodologies must be capable of filtering out external noise while accurately quantifying the distinctive features of faults. 
Moreover, new approaches should consolidate the strengths of current detection techniques by offering reliable, low-complexity, 
portable, and online-capable solutions that can detect both individual and combined faults across a wide range of operating 
conditions. 
 

IX. CONCLUTION 
Fault detection in induction motors remains a major challenge for researchers and engineers, particularly in the area of motor current 
signature analysis, which continues to be a focal point of ongoing investigation. Most existing studies have concentrated on 
induction motors operating under constant speed conditions. In response to the growing complexity of modern motor systems, 
efforts are increasingly directed toward developing artificial intelligence-based diagnostic tools that leverage fuzzy logic, neural 
networks, and genetic algorithms. Additionally, the use of digital signal processors (DSPs) has shown promise in enhancing 
monitoring and diagnostic capabilities. However, there is still a significant gap when it comes to effectively diagnosing faults in 
induction motors driven by variable speed systems. 
Recent research has primarily been based on experimental data obtained from laboratory tests using small-scale induction motors. 
While these studies offer valuable insights, applying the same diagnostic techniques to large industrial motors operating under real-
world conditions introduces additional complexities. Nevertheless, advancements in fault detection are steadily progressing, and in 
the near future, diagnostic accuracy is expected to improve significantly—potentially paving the way for fault-tolerant drive 
systems. 
This review highlights the latest developments in early fault detection for induction motors, categorizing them into two key 
operational modes: steady-state and transient-state. The majority of current research focuses on steady-state analysis, where fault 
severity assessment techniques demonstrate a high level of precision.  
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However, challenges such as diagnostic errors and limitations in accuracy still persist. The study also examines various algorithms 
that utilize different types of monitoring signals, each offering unique characteristics that contribute to fault identification. 
Based on the literature, heuristic methods—often combined with advanced signal processing techniques—emerge as the most 
widely used strategies for detecting early-stage faults. These approaches are valued for their adaptability but are often limited by 
high computational requirements and the need to process large datasets. Despite significant research in this area, only a small 
fraction of studies address transient conditions, and even fewer explore fault detection in inverter-fed induction motors during such 
states. In terms of fault types, much of the existing work centers on the detection of partially broken rotor bars, indicating a need for 
broader investigation into other fault categories. 
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