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Abstract: The study examines the vibration analysis of a damped cantilever beam with nonuniform variation in material 
properties using finite element methods. With power modification of material parameters in the axial direction, the static and 
dynamic response of a prismatic rectangular beam with damping has been examined. For the finite element approach, two 
noded beam elements with two degrees of freedom at each node were evaluated. The power law variation of material properties 
was used throughout the investigation. This research investigated the effects of proportional damping on displacement, velocity, 
and acceleration responses. The proposed beam's mass, stiffness, and damping matrices were calculated using Hamilton's 
concept. In the temporal domain, the Newmark Method has been utilized. 
Keywords: Finite Element Analysis; Hamilton’s principle, Dynamic analysis 

 
I.      INTRODUCTION 

Nowadays, functionally graded (FG) materials are regarded as among the most advanced materials, with mechanical properties that 
gradually vary with respect to a chosen spatial coordinate. In comparison to laminated composites, using FG materials in structural 
systems eliminates stress concentration and enhances the structure's strength and toughness. Most of the literature on FG beams 
deals with beams whose mechanical properties vary through thickness[1][2][3].There are relatively few works on axially FG beams 
whose mechanical properties vary along the axis of the beam where most of them concern the special case of uniform beams. Due to 
varying cross-sectional area, modulus of elasticity and mass density along the beam axis, the governing differential equations of 
axially FG tapered beams for transverse and longitudinal vibrations and buckling are differential equations with variable coefficients 
for which closed-form solutions could be hardly found or even impossible to obtain; hence application of numerical techniques is 
essential. FEM has been used to study the free vibration of an AFG-tapered beam based on Euler-Bernoulli and Timoshenko beam 
theory[4][5].The free vibration analysis of AFG-tapered Euler-Bernoulli beams employing the differential transform element 
method has been studied[6].The free bending vibration of rotating AFG-tapered Euler-Bernoulli beams with different boundary 
conditions using the differential transformation method and differential quadrature element method[7].Further, the free vibration 
analysis of AFG Timoshenko beams using the same method has been studied [8].The free vibration of variable cross-sectional 
axially functionally graded beam has been studied [9].The differential equation with variable coefficients is combined with the 
boundary conditions and transformed into Fredholm integral equation. By solving Fredholm integral equation, the natural 
frequencies of axially functionally graded beams can be obtained. The free vibration analysis of a functionally graded ordinary 
(FGO) twisted Timoshenko beam of cantilever type was investigated. The shape functions were derived from differential equations 
of static equilibrium. The mass and stiffness matrices were obtained from the energy equation. The various material properties along 
the thickness direction are assumed to vary according to a power law. It was observed from the analysis that increasing the pretwist 
angle, the first natural frequency increased whereas the second natural frequency decreased. The simultaneous effects of power law 
index and pretwist angle on first natural frequency were conducted and observed that it was marginal[10].The bending analysis of a 
simply supported FG beam subjected to uniformly distributed load (UDL) was investigated. The material properties of the FG beam 
varied continuously in the thickness direction based on power law. The position of the natural surface of the FG beam was obtained, 
and its influence on the deflection of the beam under UDL was studied[11].The numerical calculations for natural frequencies of FG 
simply supported beams were presented. The first order Timoshenko beam theory and third-order shear deformation theory were 
applied for the analysis of FG beam. The nonlinear forced vibration analysis of a beam made of FG material was presented.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VI Jun 2023- Available at www.ijraset.com 
    

 
4441 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

The modelling of the beam was carried out using Euler-Bernoulli beam theory and von Karman geometric nonlinearity. The effects 
of material properties on the nonlinear dynamic behavior of FG beam were discussed. The frequency response equation of the 
system was presented, and the effects of different parameters on the response of the system were investigated[12].The free vibration 
analysis of a functionally graded ordinary (FGO) twisted Timoshenko beam of cantilever type was investigated. The shape functions 
were derived from differential equations of static equilibrium. The mass and stiffness matrices were obtained from the energy 
equation. The various material properties along the thickness direction are assumed to vary according to a power law. It was 
observed from the analysis that increasing the pretwist angle, the first natural frequency increased whereas the second natural 
frequency decreased. The simultaneous effects of power law index and pretwist angle on first natural frequency were conducted and 
observed that it was marginal. The bending analysis of a simply supported FG beam subjected to uniformly distributed load (UDL) 
was investigated. The material properties of the FG beam varied continuously in the thickness direction based on power law. The 
position of the natural surface of the FG beam was obtained, and its influence on the deflection of the beam under UDL was studied. 
The bending analysis of a simply supported FG beam subjected to uniformly distributed load (UDL) was investigated. The material 
properties of the FG beam varied continuously in the thickness direction based on power law. The position of the natural surface of 
the FG beam was obtained, and its influence on the deflection of the beam under UDL was studied[13].The free vibration analysis 
of a simply supported FG beam with piezoelectric layers subjected to axial compressive loads was studied. The various effects of 
volume fractions, the effects of applied voltage and axial compressive loads on the vibration frequency were presented. It was 
concluded from the analysis that the piezoelectric actuators induce tensile piezoelectric force produced by applying negative 
voltages that significantly affect the free vibration of the FG beam. The vibration frequency increases when the applied voltage is 
negative[14].The differential transformation method (DTM) was applied for investigating the free vibration analysis of FG beams 
with arbitrary boundary conditions, including various types of elastically end constraints. By using DTM, the natural frequencies 
and mode shapes were presented. For free vibration of the beam, Al2O3/Al was considered for the study. It was seen that there was 
considerable variation of frequencies and mode shapes when the stiffness of spring becomes more[15].A new approach has been 
initiated based on Chebyshev polynomial theory to investigate the free vibration of AFG Euler-Bernoulli and Timoshenko beams 
with nonuniform cross sections[16].Even though several research works has been commenced on axial functionally graded beam 
still there is some gap in the vibration analysis of beams with variation of material properties in axial direction through finite 
element method. The present paper is an initiation towards the analysis of static and dynamic response of such beam with proposed 
power law variation of material properties in axial direction. The material properties are an essential aspect in design consideration 
of any beam, which need an attention for study. The behaviour of such beam has been analysed in Matlab environment. 
 

II.      MATHEMATICAL MODELLING OF THE PROPOSED  BEAM 
The theory of beam and mathematical formulations involve the modeling of beam with finite element analysis (FEA) from vibrating 
of such beam. The detail of the above formulation is presented in the following subsections. A cantilever beam is shown Figure 1 
for dynamic analysis when subjected to an impulse force. 

  
Figure 1. Proposed Cantilever beam with rectangular cross section (a) front view of the beam (b) side view of the 

beam 
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The length of the proposed beam is considered to be L .The width and thickness of the beam is b and w. An impulse load of F is 
applied at the free end of the cantilever beam. Euler-Bernoulli formulation has been incorporated in the static and dynamic 
formulation of the beam. All mathematical formulation has been coded in Matlab environment. The beam is modelled as FG, i.e., 
non-homogeneity of material properties (such as density, Young’s modulus, and Poisson’s ratio) in the axial direction. The 
following mathematical expression has been proposed to determine such FG properties of the beam in the axial direction which is 
continuously decreasing towards the tip of the cantilever beam[17] 
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Where, J(x) denotes the material property such as density, Young’s modulus, poison’s ratio and shear modulus respectively, which 
is position dependent. The terms p and n are the positive integer parameter (to avoid the material properties to be zero at the tip of 
cantilever beam) and the power gradient index. 
 

A. Displacement Field 
The beam element with two degrees of freedom at each node is shown in. In finite element (FE) modeling, each nodal point 
assumed to experience two degrees of freedom i.e. transverse displacement (v) and rotation (θ) which are supposed to act due to the 
shear force and bending moment. 

 
Figure 2. Nodal degrees of freedom of a beam element 

The displacement field of the beam in x, y and z-direction can be written as 

),(),,,(
0),,,(

),(),,,(

txwtzyxw
tzyxv

x
wztxztzyxu














 

 (2) 

Where u, v, w are the time-dependent axial, lateral and transverse displacements along x, y, z-axes respectively which is shown in 
Figure 2. The terms w(x, t) is the transverse displacement of any point in the midplane (z=0). The term θ is the rotation of the 
midplane about y-axis whereas t denotes the time. The axial displacement at any point in the midplane (z=0) is neglected as its 
effect is negligible compared to transverse displacement. Moreover, as output power is greatly influenced by bending strain hence 
membrane strain is neglected for the above expressions. 
 
B. Shape Function 
The displacement field could be interpolated in terms of degrees of freedom of nodes and shape functions based on the concept of 
FEM as 
    wNr   (3) 

Here qw and Nw signify the nodal degrees of freedom and the bending shape functions respectively. The accuracy of the result is 
governed by how well the shape function is selected. 

 
x

w
x

wwhere
w

w






























 2
2

1
1

2

2

1

1

 and  




  (4) 

Since there are four nodal values, we select polynomial with four constants. Thus 
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   4321 NNNNNw   (5) 
By applying the boundary conditions the shape functions can be determined as  
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C. Governing Equation 
The proposed cantilever beam with variation in material properties is subjected to load F at the free end. Using Hamilton’s 
principle, the dynamic equations of motion is represented as[18] 
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Where EK is the kinetic energy, EP is the total electromechanical enthalpy and W is the total work done by the external 
mechanical force respectively. The terms t1 and t2 represent the initial and final time. The expressions for the above terms can be 
written as 
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From the equation the elemental mass matrix for the beam and the piezoelectric patch can be expressed as 
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Similarly, the elemental stiffness matrices of the beam can be articulated as 
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Where [Nθ] = ∂[Nw.]/ ∂x .The dynamic equation of the proposed beam is obtained by using the above equation The length of entire 
beam is divided into number of  finite elements. The mass and stiffness matrices are assembled together using the finite element 
technique and the global matrices are obtained. The equation of motion of the discretized structure is represented by 
       eee frKrM   (13) 

The stiffness matrices, mass matrices are evaluated by numerical integration using two points Gauss quadrature. Apart from this, the 
system should have some supplementary structural damping which needs to be accounted for. This is done by using proportional 
damping methods. The damping ratio is predicted from the computed fundamental frequency as 

   eee KMC      (14) 
Where α and β are found out from 
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Where ζi is the damping ratio of the proposed beam. The global set of equation can be found by assembling the elemental mass, 
stiffness and damping matrices. The final equation of motion of the beam can be found by assembling the elemental matrices as 
follows.  
          eQrKrCrM    (16) 

Where the terms [M]is the global mass matrices of beam,[K]is the global stiffness matrices for beam and [C] is the global 
proportional damping matrix respectively.  
 

III.      RESULT AND DISCUSSION 
Based on the mathematical formulations of finite element method, MATLAB code has been developed for analysis of the proposed 
beam for output responses. The developed MATLAB code is validated and various results are presented in the following sub 
sections. As per the analysis the variation of Young’s modulus and density of the beam has been taken as proposed power law 
variation. In static analysis the frequency and mode shapes of the beam have been analyzed. For free vibration analysis an initial 
displacement has been given to the beam at the free end. The first four natural frequencies have been calculated. The convergence 
result has been presented in the table .From the table it has been found that for 16numbers of elements the first four natural 
frequencies are converged properly. The present code is validated by considering a cantilever beam of rectangular cross section. The 
dimensions of the beam are (500×68×3.9) mm. The convergence result has been obtained for first four natural frequencies with 
different number of elements. 

Table 1 Convergence result of first four natural frequencies of the proposed beam with p=2 and n=2. 
No of elements 

frequency 4 8 12 16 20 21 

ω1 82.98 82.16 82.01 81.96 81.93 81.93 

ω2 519.87 514.89 513.96 513.64 513.49 513.49 

ω3 1452.22 1441.99 1439.18 1438.23 1437.80 1437.80 

ω4 2730.98 2827.31 2820.70 2818.53 2817.59 2817.59 
 
From the Table it has been found that the convergence will take place at 20 numbers of elements. Hence for further calculation same 
amount of beam element numbers are taken into consideration. 
 
A. Variation Of Material Properties 
The variations of material properties such as density (ρ), Young’s modulus (E), Shear modulus (G) and Poison’s ratio (υ) have been 
presented in Figure 3 and Figure 4 by using the proposed power law formula. The various material properties such as density (ρ) as 
7850g/m3Young’s modulus (E) as 210GPa,Shear modulus (G) as 140GPaandPoison’s ratio (υ) as 0.3 are taken as initial properties 
for the analysis. 

 
Figure 3 Variation of Density, Young’s Modulus, Poison’s ratio and Shear modulus with p=2  
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Figure 4 Variation of Density, Young’s Modulus, Poison’s ratio and Shear modulus with n=2 

 
The material property variation with axial direction i.e. along the length of the beam is presented in Figure 3 and Figure 4.In Figure 
3 the variation of material properties such as density (ρ), Young’s modulus (E), Shear modulus (G) and Poison’s ratio (υ) are 
presented with keeping p=6 and n=2,4,6,8,10. From the figure it has been observed that for a given value of p, if n increases all the 
values of material properties decreases towards the free end of the cantilever beam. Further, with increase in n the material 
properties decreases. Similarly Figure 4 shows the variation of material properties such as density (ρ), Young’s modulus (E), Shear 
modulus (G) and Poison’s ratio (υ) are presented with keeping n=6 and p=2,4,6,8,10. From the figure it has been observed that for a 
given value of n, if p increases all the values of material properties increases towards the free end of the cantilever beam. Further, 
with increase in p the material properties increases. 

 
Figure 5. 1st, 2nd 3rd& 4th mode shapes of the proposed cantilever beam with p=6 and n=6. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VI Jun 2023- Available at www.ijraset.com 
    

 
4446 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

The first four mode shapes for the proposed beam has been presented in Figure 5. From the figure it has been observed that the 
orientation of the beam is equivalent to the beam with homogeneous prismatic condition. The variation of first four natural 
frequencies of the proposed beam for different integer constant (p) and power index (n) are represented in the following table.  

 
Table 2 First four natural frequencies of the proposed cantilever beam 

p=2 
Frequency n=2 n=4 n=6 n=8 n=10 
ω1 81.93 81.97 81.99 82.017 82.02 
ω2 513.49 513.70 513.87 513.99 514.06 
ω3 1437.80 1438.40 1438.87 1439.20 1439.40 
ω4 2817.59 2818.76 2819.67 2820.32 2820.72 

p=4 
Frequency n=2 n=4 n=6 n=8 n=10 
ω1 81.92 81.94 81.96 81.98 81.99 
ω2 513.39 513.53 513.66 513.77 513.87 
ω3 1437.52 1437.93 1438.29 1438.60 1438.86 
ω4 2817.05 2817.84 2818.54 2819.15 2819.66 

p=6 
Frequency n=2 n=4 n=6 n=8 n=10 
ω1 81.91 81.93 81.94 81.96 81.97 
ω2 513.34 513.45 513.55 513.65 513.73 
ω3 1437.40 1437.70 1437.98 1438.24 1438.47 
ω4 2816.81 2817.40 2817.94 2818.44 2818.89 

p=8 
Frequency n=2 n=4 n=6 n=8 n=10 
ω1 81.91 81.92 81.93 81.94 81.96 
ω2 513.32 513.41 513.49 513.56 513.64 
ω3 1437.33 1437.57 1437.80 1438.01 1438.21 
ω4 2816.67 2817.14 2817.58 2818.00 2818.39 

p=10 
Frequency n=2 n=4 n=6 n=8 n=10 
ω1 81.90 81.91 81.93 81.94 81.95 
ω2 513.30 513.37 513.44 513.51 513.57 
ω3 1437.28 1437.48 1437.67 1437.86 1438.03 
ω4 2816.58 2816.97 2817.34 2817.70 2818.04 

 
Table 1 represents the first four natural frequencies of the proposed beam for different values of p and n. It has been observed that 
for a given value of p; with increase in n the natural frequencies increase. But with increasing value of p, thenatural frequency 
decreases for a given value of n.  

 
 

Figure 6 Frequency domain response of the proposed cantilever beam with (a) p=2and n=2, 4, 6, 8.(b) n=2and p=2,4,6,8 
for impulse load free end is 2N 
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The frequency domain analysis of the proposed beam for p=2 and four different values of n such as 2, 4, 6 and 8has been carried 
out. The dynamic responses have been carried out with an impulse load of 2 N. The obtained response is shown in Figure 6 
Frequency domain response of the proposed cantilever beam with (a) p=2and n=2, 4, 6, 8.Figure 6(a). From the figure it has been 
observed that the peak response of the proposed beam increases as the power gradient index increases. It has been observed further 
that there is 68% increase of amplitude as the value increases from 2 to 8. This is due to the fact that with increase in power gradient 
index the amount of damping decreases. Further, it has been perceived that the resonant frequency of the proposed beam decreases 
as the value of n increases. This is due to the fact that as the value of n changes, there is a variation in material properties which 
affects both the stiffness and mass matrices of the beam. Similarly, the frequency domain analysis has been carried out for n=2 and 
four different values of p such as 2, 4, 6 and 8. The response of such beam is shown in Figure 6(b).From the figure it has been 
observed that with increase in the value of p there is an increase in amplitude of the proposed beam for a given value of n. It has 
been noticed that there is an increase in 80% of amplitude when the value of p changes from 2 to 8. This is due to the fact that the 
amount of damping decreases when the value of p increases. Further, the increase in amplitude is more for the beam when compared 
with the previous case. Moreover, the resonant frequency is also decreases asthe value of p increases. The value of damping is more 
with increase in k as compared to increase in n. 

  
Figure 7 Frequency domain response of the proposed cantilever beam with (a) p=2and n=2, 4, 6, 8.(b) n=2and p=2,4,6,8 

for impulse load free end is 6N 
 
The frequency domain analysis of the proposed beam for p=2 and four different values of n such as 2, 4, 6 and 8 has been carried 
out. The dynamic responses have been carried out with an impulse load of 6 N. The obtained response is shown in Figure 6 
Frequency domain response of the proposed cantilever beam with (a) p=2and n=2, 4, 6, 8.Figure 7(a). From the figure it has been 
observed that the peak response of the proposed beam increases as the power gradient index (n) increases. It has been observed 
further that there is 76% increase of amplitude as the value increases from 2 to 8. This is due to the fact that with increase in power 
gradient index the amount of damping decreases. Further, it has been perceived that the resonant frequency of the proposed beam 
decreases as the value of n increases. This is due to the fact that as the value of n changes, there is a variation in material properties 
which affects both the stiffness and mass matrices of the beam. Similarly, the frequency domain analysis has been carried out for 
n=2 and four different values of p such as 2, 4, 6 and 8. The response of such beam is shown in Figure 7(b).From the figure it has 
been observed that with increase in the value of p there is an increase in amplitude of the proposed beam for a given value of n. It 
has been noticed that there is an increase in 76% of amplitude when the value of p changes from 2 to 8. This is due to the fact that 
the amount of damping decreases when the value of p increases. Further, the increase in amplitude is more for the beam when 
compared with the previous case. Moreover, the resonant frequency is also decreases as the value of p increases. The value of 
damping is more with increase in k as compared to increase in n. Further from Figure 6 and Figure 7 it has been found that as the 
impulse force increases from 2N to 6 N the resonant frequency amplitude increases to 83% for both p=2; n=8 and n=2; p=8 case. 
This is due to the fact that as the impulse force increases the damping factor of the beam decreases which results in increase in 
amplitude. 
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The time domain analysis has been carried out using Newmark method in Matlab environment with 2N impulse load at the free end 
of the proposed cantilever beam.  
The time domain responses such as displacement, velocity and acceleration have been carried out for 3 sec. The amount of 
proportional damping has been taken into account in the analysis. The responses have been shown in Figure 8 (a-c). From the figure 
it has been observed that the peak response of the beam is 3.8mm. The tip displacement response goes on decreasing with increasing 
in time. This is due to the structural damping for which the response diminishes with increase in time.  

   
(a) (b) (c) 

Figure 8 (a)Time domain displacement response at the free end with p=2 and n=6 (b) Time domain velocity response at the free 
end p=2 and n=6  (c) Time domain acceleration response at the free end p=2 and n=6. 

 
The velocity response of the proposed beam has been shown in Figure 8 (b).From the figure it has been observed that the peak 
velocity response of the proposed beam for p=2 and n=6 is 0.28mm/sec. Due the presence of structural damping the velocity 
response diminishes after certain time. Similarly, the acceleration response of the proposed beam has been shown in Figure 8(c). 
From the figure it has been observed that, the peak response of acceleration is 31.28 mm/sec2. The acceleration response diminishes 
with increase in time due to the structural damping present in the proposed beam. 

 
IV.      CONCLUSION 

The present paper uses the finite element approach to analyse the static and dynamic vibrations of a cantilever prismatic beam with 
nonuniform variation of material properties in the axial direction. For the analysis, a hypothesized power variation of material 
attributes was used. In order to solve the governing equation, two noded beam elements with two degrees of freedom at each node 
are examined. The Euler-Bernoulli beam theory was investigated for solving the beam's governing equation. It has been discovered 
that material qualities play an important role in beam vibration analysis. It has been noticed that as the power gradient index grows, 
the amplitude of vibration increases while the fundamental frequency falls. It has once again been determined that structural 
dampening has a role. 
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