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Abstract: Power consumption in the modern world has significantly increased due to the rapid growth of the human population 
and technological advancement. The precise forecasting of rising electricity usage is a requirement for planning strategies, 
boosting profits, cutting down on power waste, and ensuring the energy demand management system runs steadily. Modern 
developments in the area of electricity consumption prediction offer great techniques for capturing chaotic trends in energy 
consumption and even surpassing forecasting models that have been around for a long time. But to increase prediction 
accuracy, some significant drawbacks in the current consumption prediction models must be addressed. In this paper, we present 
a hybrid deep learning design-based Auto-Encoder (AE) network model comprising of Convolutional Neural Network (CNN) 
and Long Short-Term Memory (LSTM) network for multi-step forecasting. The input dataset is de-noised within the framework 
using Fast Fourier Transform (FFT) and outliers are removed using Local Outlier Factor (LOF) algorithm, before learning in 
an unsupervised manner using the auto-encoder network. And, hyperband optimization is applied for tuning the 
hyperparameters.  The outcomes of the numerical experiments demonstrate that the proposed architecture yields excellent 
prediction capabilities and great potential for generalization. 
Keywords: Energy consumption forecasting, Deep Learning, CNN, LSTM, Auto-Encoders, Fast Fourier Transform, Local 
Outlier Factor, Hyperband optimization 
 

I. INTRODUCTION 
Energy is essential to society's social and economic progress. In recent decades, the increase in electric energy consumption is being 
accelerated by numerous causes, such as strong economic expansion, population growth, the availability of more energy-intensive 
appliances and machinery, globalization, and climate change [1]. Unrestrained energy usage like excessive consumption, inefficient 
architecture, and energy wastage, can also be attributed to these events. The International Energy Agency (IEA) calculates that 
throughout the years 2016 to 2040, global primary energy ingestion would grow at a rate of 1.0% compounded annually [2]. Due to 
the physical properties of electrical energy, it ought to be utilized as soon as it is produced in the electricity power plant [3]. As a 
result, effective energy usage control systems are essential in delivering a consistent energy supply, effective resource consumption, 
and energy preservation while minimizing operating expenses. Exact energy forecasting, meantime, can aid executives in 
conducting market exploration and speeding up commercial growth [4]. Demand management, consumption tracking, and demand-
supply synchronization are the major services supported by smart grids [5]. To forecast the patterns of energy usage, they are also in 
charge of keeping a database which tracks energy demand patterns. For managing resources effectively, system dependability, 
improved planning of forthcoming tactics, planning the construction of grids, and economic investment management, precise 
forecasting of energy usage is a key step. The need for energy has grown so much as global industrialization and manufacturing 
have advanced that it is now a significant national policy issue [6]. In the business world and in academia, predicting energy usage 
is seen as a crucial and difficult job. From an academic perspective, its advancement can be extended to forecasting various time 
series, for instance, the prediction of stock prices [7], weather [8], and solar radiation [9]. Energy consumption forecasting can be 
done in three diverse phases, reliant on the necessary time horizon of projection [10], [11]: 
1) Long-term (years ahead prediction, ideal for planning the installation of generation systems and forecasting capacity). 
2) Medium-term (one-twelve months ahead prediction, good for scheduling and designing reservoirs). 
3) Short-term (day-to-week ahead prediction, good for everyday tasks and purchasing decisions). 
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A time-series model could be decomposed as a vector autoregressive model, a univariate model, a multivariate model, and an auto-
regressive aggregate moving average model [12]. To forecast energy use, conventional statistical and econometric models are 
typically applied. These strategies use the Delphi curve fitting method [13] and dynamic behaviour modelling based on physics 
(white-box methods). In an energy market that is changing at an accelerated rate and necessitates big data analysis of patterns of 
energy usage and pertinent factors using sophisticated mathematical methods, these models may have drawbacks. Unlike 
conventional econometric models, data-driven machine learning practices such as k-nearest neighbours, support vector regression 
[14], artificial neural networks [15], random forests [16], and gradient boosting [17], can efficiently differentiate random 
components and capture the underlying non-linear features. As a result, it has the advantage of having greater forecast accuracy than 
the typical time series models and being applicable to considerably wider applications. Without taking into account the internal 
process, those models construct the data correlation directly from historical statistics. Pano-Azucena et al. forecasted erratic time 
series deprived of related patterns using support vector machines and artificial neural networks [18]. In order to choose the 
hyperparameters and kernel parameters which outline the function to be minimized, least squares support vector machines are 
utilized [19]. Structural learning with forgetting is introduced by Ishikawa et al. which leverages average prediction error or 
knowledge criteria to create an artificial neural network model with improved generalization potential [20]. The treatment of trivial 
matches, complexity invariability, offset and amplitude invariance are all presented as improvements to the k-nearest neighbour 
algorithm [21]. All of the aforementioned methodologies, meanwhile, fall short in their ability to investigate data correlations. 
The way the data is represented generally affects how well machine learning algorithms perform. The quantity of hidden layers in a 
neural network is augmented by deep learning techniques, which then seek to combine a number of non-linear transformations into 
meaningful expressions that can produce more abstract results and, eventually, greater accuracy [22]. In numerous applications, 
different deep learning techniques have been widely investigated. Convolutional neural networks (CNN) outperform traditional 
approaches in image classification, whereas recurrent neural networks (RNN) do exceptionally well in natural language processing 
and tasks for recognizing speech. CNN extracts abstract visual characteristics from the input data, for instance, points, faces, and 
lines, and keeps the associations among pixels for the image to be learned. It also gains knowledge of the weights assigned to each 
layer's feature maps [23]. To properly interpret, represent, and retain the lengthy sequential information, the RNN keeps the facts in 
hidden memory. For time information to persist, it also refreshes over time [24]. A popular enhanced model of an artificial RNN 
called Long Short-Term Memory (LSTM) has the capability of extracting sequential or temporal features of data [25]. LSTM 
presents 3 new gates in each cell, which include the input, output, and forget gates, which are proficient in catching the temporal 
fluctuations in extremely long sequential input. This is in contrast to original RNN models, which frequently experience problems 
with exploding or vanishing gradients while sequential data training. As a result, text, video, and time-series analysis have all 
benefited from their widespread use. For identifying faults in smart factories, Park et al. [26] presented a lightweight and real-time 
solution using the LSTM model of recurrent neural networks. To increase the efficiency of astute transport systems, Ran et al. [27] 
offer an approach grounded on LSTM having an attention mechanism for forecasting travel time. Furthermore, authors in [28] 
designed a neural-encoded mention-hypergraph technique, which can automatically deal with nested as well as overlapping 
structure mentions and recognize nested structure mention entities. 
The experimental findings of numerous investigations have demonstrated that approaches that are hybrid in nature, deliver 
predictions that are more accurate and dependable than those produced by other current state-of-the-art data-driven methodologies. 
Many researchers have been working on integrating CNN and LSTM models to retrieve temporal and spatial characteristics in 
recent years. Authors in [29] used a local CNN-LSTM model with text input to study emotions in the arena of natural language 
processing. Sainath et al. used a CLDNN model, which combines CNN, LSTM, and DNN, to demonstrate a variety of voice search 
tasks in the area of speech processing and demonstrate its robustness against noise [30]. Oh et al. employed an architecture 
integrating LSTM and CNN in the medical field to precisely identify arrhythmias in the ECG [31]. Researchers in [32] created a 
convolutional bi-directional LSTM network via mechanical vigour monitoring technique to foretell tool wear in an industrial setting. 
Additionally, several hybrid approaches that integrate deep neural network models and signal processing methods like the wavelet 
transform and mode decomposition algorithms [33], [34] have drawn a lot of attention for modelling energy consumption. However, 
they have a number of drawbacks, including a high level of computing complexity, reliance on shifting techniques, the handling of 
long-term data dependencies, the selection of the best mode component for noise reduction, and others. 
Model optimization is amongst the trickiest issues in the use of machine learning solutions. Finding the hyperparameters of a 
machine learning model that perform best when evaluated against a validation set is the goal of hyperparameter optimization. 
Contrary to model parameters, the hyperparameters are fixed prior to training. While the weights in a neural network are learned 
model parameters during training, the quantity of trees in a random forest algorithm is regarded as a hyperparameter.  
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The process of optimizing hyperparameters aims to discover a set of values of hyperparameters that together produce the best 
possible model, which lowers a predetermined loss function and, as a result, improves accuracy on given independent data. In the 
past, hyperparameters were adjusted manually through trial and error. It continues to be a prevalent practice, and researchers may 
guess choices of parameters that shall produce ML models with extremely high accuracy. The hunt for optimal, quicker, and further 
automatic ways for hyperparameters optimization is still ongoing. The most rudimentary technique for fine-tuning hyperparameters 
is perhaps grid search [35]. Using this method, models are created for every possible permutation of the provided hyperparameter 
values, each model is then evaluated, and finally, the design that yields the best outcome is chosen. To train and score the model, 
Random Search generates a grid of probable hyperparameter values and picks random permutations [36]. This gives you the ability 
to specifically regulate the number of parameter combinations that are tried. Based on available time or resources, the number of 
search iterations is decided. A prime candidate for optimization is random search or grid search as they don't require any tuning, are 
quite simple to code, and can also be run using parallelism. Their shortcoming is that there is no assurance of getting local minima 
to some accuracy unless the search space is comprehensively sampled.  Bayesian optimization fits in a group of sequential model-
based optimization procedures which permit one to utilize the outcomes of preceding iterations to enhance the sampling process of 
the subsequent experiment [37].  
This bounds the number of times model training is required for validation as exclusively those settings that are likely to produce a 
greater validation score are used for evaluation. It is effective at tuning a small number of hyper-parameters, but as the search 
dimension rises, it becomes less effective until it is on par with random search. Only continuous hyper-parameters can be optimized 
using Bayesian methods; categorical ones cannot. A unique configuration evaluation method was developed via framing 
hyperparameter optimization as a refined-investigation accommodative resource distribution task inscribing the way to disperse 
resources between randomly selected hyperparameter values [38]. This is known as a hyperband setup. It uses a logical early-
stopping resource allocation mechanism that enables it to assess orders of magnitude more arrangements in contrast to black-box 
techniques similar to Bayesian optimization. With few presumptions, hyperband is a general-purpose tool, in contrast to earlier 
configuration assessment approaches and it works for both continuous and categorical hyperparameters. The objective in each 
scenario is to minimize simple regret, which is measured as the distance from the ideal course of action. 
Inspired by the advantages of hybrid deep learning techniques, we propose a hybrid deep learning model of CNN and LSTM Auto-
Encoder network for energy consumption forecasting. The input dataset undergoes a pre-processing step where absent, redundant, or 
outlier values are discarded. The data is de-noised using a fast Fourier transform, outliers are removed using the Local Outlier 
Factor algorithm and the data is also normalized to attain reasonable prediction outcomes. CNNs are used in the encoder part to 
excerpt spatial features and LSTM is used in the decoder part to model these features for final prediction. The model’s 
hyperparameters are tuned using hyberband optimization technique.  
The multi-step predictions are made in an autoregressive manner. Lastly, the time resolution is altered to see if further enhancement 
is possible for the proposed model. The design of the existing architecture was principally driven by two factors. First, the model 
training is possible to be carried out in an unsupervised fashion without the need for ground truth data on the network flow time 
series, statistical characterization, or spatio-temporal distribution. Secondly, the robust learning of hidden non-linear representations 
and subsequent reconstruction capabilities of LSTM auto-encoders make them useful. Auto-encoders are not limited to dense layers, 
and LSTM units enable them to grind in generative style with variable-sized input sequences, in contrast to standard neural learning 
approaches. Various scale-dependent and percentage-error metrics were used in the experiments to equate the proposed model to the 
state-of-the-art architectures. The experimental findings support the claim that the proposed method surpasses the 
contemporary methods for forecasting energy usage. 
The remainder of the article is as follows. The associated research in the area of electric energy consumption prediction is illustrated 
in Section 2. The technique of the proposed systematic hybrid methodology is described in depth in Section 3 along with the 
theoretical underpinning of the fundamental principles used in the current study. The experimental details and results analysis are 
shown in Section 4. Lastly, conclusions and discussion are offered in the final section. 
 

II. LITERATURE REVIEW 
Models for predicting energy consumption involve forecasting future timestamp consumption from a set of historical consumption 
observations. Accurate estimation is necessary for making a variety of investment decisions, increasing revenue, enhancing the 
operational stability of the power grid systems, and lowering distribution inefficiency [39]. Since the 1940s, a wide range of 
strategies has been effectively used to predict electricity usage. These strategies can be grouped basically into four main types which 
are as follows: 
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A. Traditional Methods 
Deciphering a series of equations to represent the performance of the energy grid system is the foundation of conventional 
consumption forecast models [13], [40]. These techniques are sometimes known as "white-box approaches" because the core logic 
is very transparent. For assessing energy usage and preservation strategies centered on system-environment connections and 
physical behaviour, several engineering tools [41], [42] have been created. The heavy reliance on input parameters and subject-
matter expertise is a major problem, albeit these empirical techniques are simple to design and practice. 
 
B. Statistical or Regression Models 
Traditional methods require prior knowledge, but statistical methods do not. They are focused on making projections about future 
consumption using the collection of influencing factors. For time series prediction, a variety of statistical techniques have been used, 
including linear as well as multi-linear regression, auto-regressive (AR), auto-regressive moving average (ARMA), and auto-
regressive integrated moving average (ARIMA) models.  
The ARIMA model based on multiplicative seasonality and the prediction method employed by the central power authority of India 
were compared by Rallapalli et al. [43] in their study. The experimental findings demonstrated the multiplicative seasonal ARIMA 
model's increased accuracy. The inverse error-in-variables-based least-square linear regression methodology to predict electrical 
load was given by the authors in [44].  
Amber et al. used genetic programming and multivariate linear regression to predict daily electricity use [45]. Five significant 
independent factors were combined using genetic programming to make predictions. Most of these techniques relied on general 
linear regression. Simple model construction and the removal of extraneous variables improve the predictability of performance. 
However, multi-collinearity issues might result from the correlation between independent variables utilized for prediction. Another 
drawback of utilizing linear regression is that it can be challenging to find explanatory factors. Chen et al. [46] created a method 
based on multi-linear regression to assess how behaviour variables affect patterns of energy usage. Oliveira et al. [47] created 
effective techniques to enhance univariate forecasting for medium to long-term electric energy usage by combining decomposition 
and Bootstrap aggregating (Bagging).  
Wu et al. [48] suggested using the Adaptive Rate of Change (ARC) technique to calculate the highest electricity usage over a small 
period which could identify the patterns of peak usage for industrial as well as commercial clients. Using a random forest regression 
technique, Bogomolov et al. tried to forecast the energy use for the coming week by employing human dynamics analysis [49]. 
Additionally, Fumo et al. [50] evaluated the significance of several linear and quadratic regression models, as well as affecting 
factors, in the job of energy usage forecasting. The investigational outcomes of these strategies showed the importance of socio-
economic and behavioural factors on the variability in energy usage. Statistical models produce more accurate and encouraging 
forecast outcomes than physical models do, but the non-linear complications and volatility of the time series data are beyond their 
handling capacity. 
 
C. AI-Based Models 
For predicting electricity consumption, AI-based techniques like SVR, decision trees, and ANN have become widely used during 
the past few years. When dealing with the non-linearity of the time series data, these strategies have been proven to be quite 
effective. The uses of AI-based techniques in the arena of energy usage forecasting are discussed in this section. SVM, ANN, and 
ARIMA were some of the usage prediction approaches that were compared and analyzed by Fu et al. [51]. Later, Hamzacebi et al. 
[52] published a method for predicting Turkey's monthly electricity consumption while taking seasonal trend impacts into account. 
Different deep learning-based models have been created and put into use in the classification and prediction of time series 
throughout the last few years.  
Deep belief networks with back-prorogation were used by Dedinec et al. [53] for hourly load forecasting. Then, to estimate 
electrical energy usage, Krishnan et al. [54] developed an innovative approach based on neural network optimization. The Neural 
Network Based Particle Swarm Optimization, also known as NNPSO, and the Neural Network Based Genetic Algorithm, also 
known as NNGA, were used by the authors to optimize the weight of the neural network and boost performance. A unique 
methodology based on deep learning for day-ahead energy usage prediction was introduced by Tong et al. [5], which incorporated 
SVR with a stacked auto-encoder (for extracting features). To improve the simplification capacity of a prediction model based on 
deep neural networks, Chen et al. [55] suggested a multi-step method using Monte Carlo dropout. Recurrent Neural Network (RNN) 
models are identified as the supreme viable deep learning model for capturing non-linear patterns in energy load profiles.  
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Recurrent network models have been fruitfully applied to forecast energy consumption in numerous research studies [56], [57]. A 
neural network based on recurrent inception convolution was proposed by Kim et al. [58] to forecast the consumption of electrical 
energy with an interval of 30 minutes.  
To aid in regulating the forecast time and the latent state vector values derived from the surrounding time steps, they coupled RNN 
with one dimensional convolution inception unit. A variation of the LSTM architecture, known as the multi-input and multi-output 
LSTM model, was put out by Bedi et al. [59] to forecast the demand for power during a particular period of the day. However, when 
complex variable correlations or data volumes grow, the current machine learning techniques suffer from significant overfitting. 
Long-term consumption is difficult to forecast when overfitting takes place. 
 
D. Hybrid Models 
For increased prediction accuracy, hybrid consumption prediction models intelligently blend traditional approaches with AI-based 
solutions. To estimate the power demand, Hong et al. [60] combined SVR with evolutionary methods (genetic algorithms). For 
better prediction, authors in [61] combined an enhanced SVR with K-nearest neighbour. Additionally, it has been demonstrated in 
recent years that combining mode decomposition approaches with AI-based methodologies enhances the effectiveness of power 
load forecasting models. Next, Moon et al. [62] recommended a hybrid model for predicting total daily electric energy use over a 
week.  
They used the decision tree technique to classify data on electric energy use based on pattern similarity. To choose prototypes with a 
superior forecasting performance in time series with a comparable structure, they next employed Random Forest and Multilayer 
Perceptron.  
They demonstrated that their hybrid design outperformed former machine learning methods in terms of prediction accuracy. To 
anticipate day-ahead power load, some studies have integrated wavelet transform [33], [34] with AI-based techniques such as ANN, 
ANFIS, and SVM. Electricity demand forecasting has also been widely modified using empirical mode decomposition (EMD). In 
contrast to other wavelet-based and single forecast models, the addition of EMD with deep neural network approaches has 
demonstrated enhanced performance [63], [64].  
The shortcomings of conventional and AI-based prediction models are overcome by hybrid consumption estimation models, and 
they have the prospective to improve the efficiency of current forecast models [65], [66]. Nonetheless, there are numerous related 
problems that must be solved, including high computational complexity, choosing the best lag value, selecting the best mode 
component for reducing noise, and more.  
Meanwhile, for the predictive model to be used in real-world applications, findings that examine and elucidate the forecast 
outcomes are crucial. To explain the outcomes of forecasting, we offer a model in this work that envisions a state by outlining the 
state centered on the date information and existing usage pattern. Our model, like all other forecasting models, uses the current 
energy consumption as an input to forecast future energy use. 

 
III. METHODOLOGY AND RELATED CONCEPTS 

A. Fast Fourier Transform (FFT) 
According to the Fourier transform's official definition, it is a technique that enables the breakdown of functions grounded on space 
or time into functions grounded on frequency. It can be applied to smooth signals and interpolate functions. For instance, a two-
dimensional Fourier transform can be used in handling pixelated images to quickly eradicate high spatial frequency edges of pixels. 
It is an effective technique for separating many patterns of seasonality from a sole time series variable. For instance, for hourly 
temperature data, the presence of day/night variations and summer/winter variations can be detected by the Fourier transform and it 
will articulate the presence of those two frequencies (seasonalities) in the dataset. Discrete Fourier Transform (DFT) is the type of 
Fourier transform that is required for handling time series data. The reason for naming it as discrete is that the input data is recorded 
at discrete intervals similar to a non-continuous function like time series data. The Fast Fourier Transform is the quicker variation of 
DFT. It produces the same outcome as the discrete Fourier, but it has undergone algorithmic optimization. We often need to probe 
the underlying mechanism that engenders a specific time series. In order to do that, we might want to examine the signal after 
removing the noise from the data. We can accomplish this goal with the help of the Fourier transformation. We can remove the 
frequencies that contaminate the data by converting our time series from the time domain to the frequency domain. Then, the 
inverse Fourier transform can be used to obtain a filtered version of our time series. In Fig. 1, it can be noticed how the FFT filters 
the noise for various levels of threshold for the coefficients. We remove more frequencies as the threshold value increases. 
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Fig. 1 Fourier transforms applied to data for different coefficient threshold values 

 
B. Local Outlier Factor (LOF) 
A data point which deviates significantly from the majority of the data points is an outlier. When handled carelessly, outliers can 
have a significant impact on our results, which makes them generally undesirable. If our data contains sufficiently large outliers, the 
Pearson correlation calculation, for instance, may yield a drastically different conclusion. To enhance data quality and provide a 
cleaner dataset that can be used for further processing, outliers should be removed or corrected. Since you cannot utilize future data 
to filter previous outliers, outlier analysis and filtering in time series require a more sophisticated method than in regular data. The 
LOF algorithm calculates the local density deviance of a particular data point with regard to its neighbours. It is an unsupervised 
technique for anomaly identification. The specimens that have a considerably lower density in contrast to their neighbours are 
regarded as outliers. The number of neighbours taken into account by the algorithm is typically set lower than the maximum amount 
of close-by samples that could possibly be local outliers and higher than the minimum amount of samples that a cluster should 
encompass for other samples to be regarded as local outliers corresponding to this cluster. 

 
Fig. 2 Detection of outliers using LOF algorithm 

 
C. Convolutional Neural Network (CNN) 
Convolutional neural networks (CNNs) are a type of artificial neural network (ANN) utilized commonly in the arena of deep 
learning to construe visual data. They are even called Shift or Space Invariant Artificial Neural Networks (SIANN) due to the 
shared-weight convolution filter or kernels that slide alongside input features and provide feature maps also known as translation-
equivariant responses. Most CNNs do not translate invariantly because of the downsampling operation they perform on the input 
which is in contrast to popular belief.  
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CNNs are regularised variants of multilayer perceptrons. Typically, multilayer perceptrons are referred to as fully connected 
networks, implying that each neuron in one layer is linked to every neuron in the following layer. Also, these networks are 
susceptible to overfitting data because of their full connectedness. Regularization or overfitting avoidance methods commonly 
involve penalizing training parameters like weight decay or cutting connectivity, for instance, dropout or skipped connections. By 
exploiting the hierarchical configuration in the data and amassing patterns of growing complexity using simpler and smaller patterns 
imprinted in their filters, convolutional neural networks adopt a novel approach for regularization. CNNs are hence present at the 
bottom end of the complexity and connectivity scale. Image processing is where convolutional neural networks got their start. They 
are not restricted to merely managing images, though. They have wide applications in the arena of time series, natural language 
processing, recommendation systems, and brain-computer interfaces. Compared to other techniques, CNNs for time series 
classification has a number of significant advantages. They can extract incredibly insightful and deep features that are time-
independent and highly resistant to noise. 

 
Fig. 3 1-D Convolution for Time Series 

 

 
Fig. 4 Multi-Scale Convolutional Neural Network Architecture 

 
D. Long Short-Term Memory Network (LSTM) 
The output from some nodes can impact subsequent input to the same nodes in a family of ANNs known as recurrent neural 
networks (RNN), where relations amongst nodes can form a loop. It can exhibit temporal dynamic behaviour as a consequence. 
RNNs are a derivative of feed-forward neural networks and they can process input sequences of dissimilar lengths by utilizing their 
internal memory (state). However, they can only manage short-term data dependencies due to the vanishing gradient issue. With the 
creation of an RNN variation called the Long Short-Term Memory Network model, the dilemma was solved.  
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Memory cells and gates—input, output, and forget—make up the architecture of LSTM. Information that is no longer necessary or 
extraneous gets removed by the forget gate. 

 
Fig. 5 The repeating module in an LSTM contains four interrelating layers. 

 
All RNNs have a recurring neural network module and a condensed chain-like structure. LSTM also has a comparable design, but 
the internal iterating module differs. In contrast to a single-level depth neural network, LSTM has four different sorts of 
interconnected units. We can see that the three gates have a unique network structure in Fig. 5. At each checkpoint, the LSTM's 
gates play a critical function in allowing information to be selectively influenced. This is accomplished by turning on the activation 
function, such as sigmoid, in a fully connected neural network with a configuration that yields a value between 1 and 0. When the 
sigmoid output is 1 and information is transited, the gate opens; when it is 0 and no information is passed through, the gate closes. 

 
E. Auto-Encoder Network 
Auto-encoders are a particular type of neural network where the input and output are similar. They reduce the input's dimension 
before using this representation to recreate the output. The latent-space representation, also known as the code, is an accurate 
"summary" or "compression" of the input. An auto-encoder network consists of 3 parts namely encoder, code, and decoder. The 
input is compacted by the encoder, which generates a code. The decoder then reconstructs the input solely using the code. An 
encoding technique, a decoding method, and a loss function to compare the output with the goal are essential to construct an auto-
encoder. The primary function of auto-encoders is dimensionality reduction (or compression). Auto-encoders can only effectively 
compress data that is identical to that on which they have been trained. They differ from a typical data compression technique like 
gzip because they learn features relevant to the provided training data. The auto-encoder will produce an approximate but degraded 
representation of the input rather than an exact match. Since auto-encoders don't necessitate explicit labels for training, they are 
considered an unsupervised learning method. However, since they generate their labels from the data they are trained on, they can 
be regarded as self-supervised. 

 
Fig. 6 Architecture of auto-encoder network 
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F. Hyperband Optimization 
For optimizing hyperparameters, there is a complex algorithm called hyperband that is also relatively recent. It uses random 
sampling and tries to gain an advantage by making the greatest use of the time spent optimizing. The problem of 
optimizing hyperparameters was described by the method's developers as an infinite-armed bandit, non-stochastic, and pure-
exploration problem. By choosing a resource (for example features, data samples, or iterations), one can use Hyperband to distribute 
it to randomly selected configurations. After training the model with each configuration, one stops training configurations that 
perform poorly and devotes more resources to configurations that perform well. Successive halving is used in Hyperband. 
Allocating a budget to a collection of hyperparameter configurations is how successive halving operates. This is done consistently, 
and after this budget is used up, performance-based criteria are used to discard half of the configurations. The top 50% are kept and 
given new funding for training, and the bottom 50% are then removed. The procedure is repeated until just one configuration 
remains. 

 
Fig. 7 Comparing performance of random search and hyperband 

 
G. Proposed method 
In our proposed framework, the input dataset undergoes a pre-processing step where the data is cleaned using a fast Fourier 
transform and local outlier factor algorithm. A function that converts a series of prior observations into an output observation will be 
learned by the model. As a result, the series of observations need to be turned into numerous examples that the LSTM can study. 
The data sequence can be separated into several input/output patterns termed samples, for instance, where four timesteps are used as 
input and two timesteps are used as output for the multi-step forecasting that is being learned. So, a mapping is created between 
multi-step input and multi-step output sequences and fed to the hybrid auto-encoder network consisting of CNN acting as the 
encoder part and LSTM as the decoder. The network consists of convolutional layers, dropout layers, a repeat vector, LSTM layers, 
and time-distributed dense layers. CNN will be able to abstract spatial features and feed them to LSTM which can acquire temporal 
reliance from one sequence to another and model these features for final prediction. Subject to the features of the learning data, 
changing hyperparameters might have an impact on learning speed and performance. Hence, they are tuned using the hyperband 
optimization method. Multi-step predictions are made in an auto-regressive manner. Lastly, the time resolution is altered to witness 
if any further enhancement is possible for the proposed model. Various scale-dependent and percentage-error metrics were used in 
the experiments to compare the proposed model to the contemporary models. The experimental findings support the claim that the 
proposed method surpasses the state-of-the-art methods for forecasting energy usage. 

 
Fig. 8 The proposed architecture for forecasting energy consumption 
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IV.  EXPERIMENTS AND RESULTS 
A. Dataset 
In the US, PJM Interconnection LLC (PJM) is a regional transmission organization (RTO). It is a component of the Eastern 
Interconnection grid and runs a transmission system for electricity that supplies all or portions of West Virginia, Virginia, 
Tennessee, Kentucky, Pennsylvania, North Carolina, New Jersey, Ohio, Michigan, Maryland, Indiana, Illinois, Delaware, and the 
District of Columbia. The data is available on PJM’s website as well as on Kaggle [67]. The dataset contains hourly energy 
consumption data from October 2004 to July 2018 and the values are in megawatts (MW). Fig. 9 shows the time series plot of the 
dataset at an hourly granularity level.  

 
Fig. 9 Time series plot of hourly energy consumption data 

 
B. Model Training 
The dataset was fragmented into train and test sets for training and validation respectively. As a part of the pre-processing step, the 
input dataset underwent fast Fourier transformation to filter out the noise present. Then, the outliers were removed using the local 
outlier factor algorithm, in which the optimal value for the number of neighbours was chosen after iterating over a range of values. 
Fig. 10(a) and Fig. 10(b) show the results of the mentioned operations. 

 
(a) De-noising the input dataset       (b) Removal of outliers from the data 

Fig. 10 Pre-processing operations 
 

The proposed system architecture was implemented using the Tensorflow Keras library. Differently scaled variables might not 
contribute equivalently to the model learning as well as model fitting functions and could end up creating a bias in the results. Thus, 
to deal with this impending problem we have used Min-Max scaling, which is a feature-wise normalization process, before model 
fitting.  
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The following model hyperparameters were tuned using the hyperband optimization algorithm: 
1) Learning rate for the Adam optimizer 
2) Percentage of dropouts after each hidden layer 
3) Amount of units in each hidden layer 
4) Amount of hidden layers 
A learning curve is a graphical representation that displays how well a model learns with experience or time. For algorithms that 
gain knowledge incrementally from a training dataset, learning curves are an often utilized diagnostic instrument in the field of 
machine learning. After every update in training, the model can be tested on the training as well as a hold-out validation dataset, and 
graphs of the calculated performance can be made to showcase the learning curves. The learning curve for our proposed model is 
shown in Fig. 11, which demonstrates that the model fits the data well. A validation and training loss that diminution to a point of 
stability with a small difference amongst the two final loss values implies a good fit. 

 
Fig. 11 Training and test loss values for each epoch 

 
C. Results 
Experimentations were performed to compare usual performance metrics for energy consumption time series forecasting which 
include scale-dependent metrics like MAE, MSE & RMSE, and percentage error metrics like MAPE & SMAPE. 
The first metric, Mean Absolute Error (MAE), ignores the directions of the prediction errors and considers only their average size. 
The mean of the absolute deviations between actual and forecast values for each instance in the validation set is what determines the 
value. This measurement assigns equal weight to all individual variances. The equation that determines MAE is as follows, where 푦 
and y represent the predicted and actual values respectively: 

 
MAE = ퟏ

풏
∗ ∑ |풚풊 − 풚풊|풏

풊 ퟏ                                                                   (1) 
Meanwhile, the mean of the squares of the errors is determined by Mean Square Error (MSE).  It is, in other words, the mean 
squared difference between the predicted and actual values. It is calculated using the equation:     

                
                            MSE = ∗ ∑ (푦 − 푦 )                                                           (2) 

Additionally, Root Mean Square Error (RMSE) estimates the standard deviation of prediction errors. To understand, let's assume 
residuals as a measure of how distant the data points are from the regression line. As a result, RMSE is a measurement of how 
dispersed these residuals are. The following formula is used to calculate this measure, which is frequently used in regression 
analysis, and forecasting to validate models:  

 

RMSE = ∗ ∑ (푦 − 푦 )                                                                   (3) 
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A forecasting technique like time series prediction has a metric called Mean Absolute Percentage Error (MAPE) that measures how 
accurate predictions are made. Due to the asymmetry of MAPE, negative errors (occurring when forecasts exceed actuals) are 
penalized more severely than positive errors. The following equation gives the accuracy expressed as a percentage for this metric: 
 

MAPE = ∗ ∑ | ∗ 100|                                                                (4) 

The last metric used is Symmetric Mean Absolute Percentage Error (SMAPE). It is intended to eliminate the MAPE's inherent 
asymmetry, which is the limitlessness of forecasts that are higher than actuals. It is given by the following equation: 

 
SMAPE = ∗ ∑ | |

(| | | |)/
                                                                  (5) 

 
To exhibit the efficacy of the proposed model, this section compares the performance metrics calculated by Equations (1)-(5) for 
CNN, LSTM, LSTM Auto Encoder, and the proposed model using hourly and daily datasets obtained from the input dataset. Table 
1 presents the outcomes of experimental approaches for the hourly dataset. The proposed model touches the best values of MAE, 
MSE, RMSE, MAPE and SMAPE at 657.04, 805291.68, 897.38, 4.09, and 4.16 respectively while the second approach, LSTM 
auto-encoder, obtains 781.25, 970800.79, 985.29, 5.41, and 5.21 respectively. Meanwhile, LSTM and CNN achieve satisfactory 
results for this dataset. Fig. 12 shows the prediction results of various models for the hourly dataset. 

 
TABLE 1 

Performance metrics for different models for hourly dataset 
MODEL MAE MSE RMSE MAPE SMAPE 

CNN 1183.58 2207137.81 1485.64 7.66 7.79 
LSTM 1087.558 1776732.77 1332.94 7.39 7.14 

LSTM-AE 781.258 970800.79 985.29 5.41 5.21 
PROPOSED 657.04 805291.68 897.38 4.09 4.16 

 

 
Fig. 12 Comparing the predictive results for different models for hourly dataset 

 
Next, the performance outcomes for the daily dataset are presented in Table 2. The trends are quite similar to the hourly dataset. Our 
proposed model has the lowest error values. Fig. 13 shows the contrast of predictive results of different models for the daily dataset. 
When comparing our approach's predictive performance to that of others, there is a significant difference in the outcomes for both 
datasets. As a result, the proposed model performs better than the alternative approaches. 
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TABLE 2 
Performance metrics for different models for daily dataset 

MODEL MAE MSE RMSE MAPE SMAPE 
CNN 28064.03 1024407233 32006.36 7.5 7.43 

LSTM 25352.17 791058332 28125.76 6.98 6.8 
LSTM-AE 23156.18 814493991.3 28539.34 6.13 6.24 

PROPOSED 13033.69 336139137.1 18334.09 3.53 3.46 
 

 
Fig. 13 Comparing the predictive results for different models for daily dataset 

 
V. CONCLUSION 

The task of energy forecasting has assumed a vital role in our daily lives because of its significant economic advantages. There are 
numerous ways to predict energy use. Traditional approaches, however, don't work effectively since they miss the periodicity that is 
concealed in the data on energy consumption. We propose a hybrid CNN-LSTM Auto-Encoder model with hyperband optimization 
for efficient and robust forecasting of energy usage. The hybrid auto-encoder network lessens the dimensionality of the complicated 
input data and extracts important features from the input by creating the compressed version of the information provided as input to 
it, with little information loss. By identifying factors that have an impact on power consumption, our algorithm can predict electrical 
energy consumption fast and reliably. It is contrasted with different machine learning practices to prove the utility and dominance of 
the suggested model. When equated to the current competitive benchmarks, our model estimates complicated electric energy 
consumption with the best accuracy for both hourly and daily unit resolutions, which also indicates that the model doesn’t rely on 
time resolution. Finally, we have established that removing outliers, lowering the noise, and normalizing the dataset have a 
substantial impact on the prediction process. To tackle the issue of finding the optimal hyperparameters for the model, we have 
applied the hyperband optimization algorithm to find the suitable model parameters. For time series of a certain kind, other 
techniques might be helpful, but only the auto-encoder approach is extensive and robust enough to be used for all categories of time 
series data. 
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