
 

12 V May 2024

 https://doi.org/10.22214/ijraset.2024.61195



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 12 Issue V May 2024- Available at www.ijraset.com 
     

 
24 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Gemini MultiPDF Chatbot: Multiple Document 
RAG Chatbot using Gemini Large Language 

Model 
 

Mohd Kaif1, Sanskar Sharma2, Asst. Prof. Dr. Sadhana Rana3 
Computer Science and Engineering SRMCEM Lucknow, India 

 
Abstract: The Gemini MultiPDF Chatbot represents a groundbreaking advancement in natural language processing (NLP) by 
integrating Retrieval-Augmented Generation (RAG) techniques with the Gemini Large Language Model. This innovative 
chatbot is designed to handle multiple document retrieval and generation tasks, leveraging the extensive knowledge base of the 
Gemini model. By harnessing RAG methods, the chatbot enhances its ability to acquire, comprehend, and generate responses 
across diverse knowledge sources contained within multiple PDF documents. The integration of Gemini's powerful language 
understanding capabilities with RAG facilitates seamless interaction with users, offering comprehensive and contextually 
relevant responses. This paper presents the design, implementation, and evaluation of the Gemini MultiPDF Chatbot, 
demonstrating its effectiveness in navigating complex information landscapes and delivering high-quality conversational 
experiences. 
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I.      INTRODUCTION 
In recent years, we've seen big leaps in how computers understand human language, thanks to cool advancements like Retrieval-
Augmented Generation (RAG). These methods blend two powerful techniques: one for finding information and another for putting 
that info into words. Now, imagine combining RAG with a super-smart language model like Gemini. That's where the Gemini 
MultiPDF Chatbot comes in. It's like having a conversation with a buddy who's really good at finding and explaining stuff in multiple 
PDF documents. This introduction sets the stage for exploring how this chatbot works, why it's special, and how it can make dealing 
with complex info a whole lot easier for all of us. 
Gemini models are adept at various NLP tasks such as text summarization, sentiment analysis, and language translation. By 
leveraging the strengths of dual-encoder architecture, Gemini models have demonstrated superior performance across a wide range of 
NLP benchmarks, making them a preferred choice for researchers and practitioners seeking state-of-the-art solutions in natural 
language processing. 
 

II.      METHODOLOGY 
A. Gemini Model Introduction 
Gemini, as described by [1], employs a cutting-edge multimodal architecture. Built upon Transformer decoders, it's meticulously 
optimized to deliver efficient and dependable performance, especially when scaled. Utilizing Google's potent TPU hardware, Gemini 
undergoes robust training and execution processes. With an impressive capability to process context lengths of up to 32,000 tokens, 
its reasoning skills are notably enhanced. Attention mechanisms play a pivotal role in intensifying the intricate analysis performed by 
the model. By seamlessly integrating text, graphics, and sounds, Gemini harnesses distinct visual symbols and direct voice analysis. 
Robust reliability features are incorporated to mitigate hardware malfunctions and data distortion during rigorous training sessions. 
Gemini's ability to comprehend and draw inferences from diverse information is significantly expanded, evidenced by its exceptional 
benchmark scores and groundbreaking performance in exams. This model sets formidable benchmarks in multimodal AI research and 
applications.[1] 
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B. Retrieval Augment Generation 

 
Fig. 1. The workflow of Retrieval-Augmented Generation (RAG). 

 

 
Fig. 2. The process of converting PDFs into retrievable contents. 

 
1) Document Parsing & Chunking. It involves extracting paragraphs, tables, and other content blocks, then dividing the extracted 

content into chunks for subsequent retrieval.[2] 
2) Embedding. It transforms text chunks into real-valued vectors and stores them in a database.[3] 
 
C. Using Langchain to implement Faiss index. 
In the realm of artificial intelligence, particularly when dealing with vast amounts of data, efficient retrieval of similar items 
becomes paramount. This is where Faiss indexing steps in, offering a powerful toolkit for lightning-fast similarity search. 
Developed by Facebook AI, Faiss stands for Facebook AI Similarity Search. 
At its core, Faiss deals with data represented as vectors – numerical arrays that capture the essence of an object.  Imagine a 
collection of images, each encoded as a vector reflecting its color distribution, textures, and shapes. Given a new image (another 
vector), Faiss helps us find images most similar to it – perhaps those depicting the same object from different angles. 
We have used langchain a python library to implement faiss indexing to make vector store for Gemini Model to get the context.  
Here is the code snippets for doing the same – 
# read all pdf files and return text 
def get_pdf_text(pdf_docs): 
    text = "" 
    for pdf in pdf_docs: 
        pdf_reader = PdfReader(pdf) 
        for page in pdf_reader.pages: 
            text += page.extract_text() 
    return text 
# split text into chunks 
def get_text_chunks(text): 
    splitter = RecursiveCharacterTextSplitter( 
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        chunk_size=10000, chunk_overlap=1000) 
    chunks = splitter.split_text(text) 
    return chunks 
# creating vector store 
def get_vector_store(chunks): 
    embeddings = GoogleGenerativeAIEmbeddings( 
model="models/embedding-001")   
    vector_store = FAISS.from_texts(chunks, embedding=embeddings) 
    vector_store.save_local("faiss_index") 
 
D. Streamlit for creating user interface 
Streamlit is a Python framework designed specifically to help data scientists and machine learning engineers quickly develop and 
share interactive web apps.  Unlike traditional web development, Streamlit requires minimal coding knowledge beyond Python 
itself.  This allows data professionals to focus on the core functionality of their applications, such as data visualization, model 
deployment, or creating user input interfaces, without getting bogged down in complex front-end development like HTML, CSS, 
and Javascript. Streamlit streamlines the process by converting Python code into beautiful and functional web apps in minutes, 
making it a valuable tool for rapidly prototyping and deploying data-driven applications. 
 
Usage in our codebase – 
import streamlit as st 
st.set_page_config( 
        page_title="Gemini PDF Chatbot", 
        page_icon="�" 
    ) 
    # Sidebar for uploading PDF files 
    with st.sidebar: 
        st.title("Menu:") 
        pdf_docs = st.file_uploader( 
            "Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True) 
        if st.button("Submit & Process"): 
            with st.spinner("Processing..."): 
                raw_text = get_pdf_text(pdf_docs) 
                text_chunks = get_text_chunks(raw_text) 
                get_vector_store(text_chunks) 
                st.success("Done") 
    # Main content area for displaying chat messages 
    st.title("Chat with PDF files using Gemini�") 
    st.write("Welcome to the chat!") 
    st.sidebar.button('Clear Chat History', on_click=clear_chat_history) 
    # Chat input 
    # Placeholder for chat messages 
    if "messages" not in st.session_state.keys(): 
        st.session_state.messages = [ 
            {"role": "assistant", "content": "upload some pdfs and ask me a question"}] 
    for message in st.session_state.messages: 
        with st.chat_message(message["role"]): 
            st.write(message["content"]) 
    if prompt := st.chat_input(): 
        st.session_state.messages.append({"role": "user", "content": prompt}) 
        with st.chat_message("user"): 
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            st.write(prompt) 
    # Display chat messages and bot response 
    if st.session_state.messages[-1]["role"] != "assistant": 
        with st.chat_message("assistant"): 
            with st.spinner("Thinking..."): 
                response = user_input(prompt) 
                placeholder = st.empty() 
                full_response = '' 
                for item in response['output_text']: 
                    full_response += item 
                    placeholder.markdown(full_response) 
                placeholder.markdown(full_response) 
        if response is not None: 
            message = {"role": "assistant", "content": full_response} 
            st.session_state.messages.append(message) 
 

III.      RESULTS 
The results of our research highlight the significant impact of integrating a PDF parser with Gemini in enhancing the accuracy and 
relevance of responses generated by Large Language Models (LLMs) through Retrieval-Augmented Generation (RAG). 
 
A. Improved Response Accuracy  
Our Project demonstrate a notable improvement in the accuracy of responses generated by Gemini when assisted by a proficient PDF 
parser. By effectively extracting and integrating structured information from documents into prompts, the PDF parser enhances the 
contextual understanding of the model, leading to more accurate and informative responses also it save cost and effort of the user. 

 
Fig. 3.  Cost comparison of Base Gemini model vs Gemini with RAG 

 
B. Enhanced Relevance of Data 
The integration of a PDF parser with Gemini enriches the quality and relevance of the data fed into the model. This process ensures 
that the model is provided with pertinent information from documents, thereby enabling it to produce responses that are contextually 
appropriate and coherent.[3] 
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C. Screenshot of the actual project 

 
Fig. 4. Homepage of https://gmultichat.streamlit.app/  

 
Fig. 5. Total users till date who used the application 

 
IV.      DISCUSSION 

Although pre-trained language models (LLMs) have great promise, their actual strength rests in their ability to be finely tuned.[4]  
 
A. Domain-specific Fine-tuning 
Fine-tuning LLMs to specific domains unlocks their ability to understand and excel in specialized tasks. Here are some prominent 
techniques: 
1) Curriculum Learning: Curriculum Learning is a strategy that aims to effectively create domain-specific abilities in a model by 

progressively raising the complexity of the training data[5]. 
2) Knowledge Distillation: Information distillation involves transferring information from a pre-trained model that is specialised to 

a certain domain to the LLM. This process may speed up learning and help overcome the problem of limited data availability. 
3) Data Augmentation: The process of creating artificial data that is relevant to a certain domain enhances the training dataset, 

resulting in a more resilient and adaptable model. 
4) These methods have clearly enhanced the efficiency of completing tasks in several fields, including medical diagnostics and 

financial forecasting. Nevertheless, a crucial obstacle is determining the ideal equilibrium between safeguarding the LLM's 
overall knowledge and obtaining specialised skill in a certain field. 

 
B. Dynamic Fine-tuning 
LLMs must possess the ability to constantly adjust to new facts and growing demands because to the dynamic nature of information. 
Dynamic fine-tuning methods tackle this difficulty by: 
1) Online Learning: Updating the model with new data points in small increments helps it stay up-to-date and improve its 

knowledge base in real-time. 
2) Meta-learning: Giving the LLM the capability to learn how to learn from a small number of examples enables it to quickly adapt 

to new tasks and domains. 
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3) Federated Learning: The process of training a model on numerous devices with different data distributions, allowing the model 
to acquire specific local knowledge while ensuring privacy. 

Dynamic fine-tuning has great potential for situations that include continuous data streams and quickly changing knowledge needs. 
For example, it has shown efficacy in the real-time analysis of emotions expressed in social media data and in tailoring language 
translation to individual preferences[6]. 

TABLE I.  COMPARISION OF VARIOUS TECHNIQUES FOR INCREASING KNOWLEDGE BASE OF LLM 
Technique Description Advantages Disadvantages 

Pre-training 

Training an 
LLM on a 

large corpus 
of 

unlabelled 
text data 

Enables the 
LLM to 
acquire 

diverse and 
general 

knowledge 
from 

various 
domains 

Requires a lot 
of 

computational 
resources and 

time; may 
introduce 
biases or 

errors from 
the data 

Fine-tuning 

Adapting an 
LLM to a 

specific task 
or domain 

by 
providing 
labelled 

data 

Improves 
the LLM’s 

performance 
and 

knowledge 
retention for 

the target 
task or 
domain 

May cause 
catastrophic 
forgetting of 

previous 
knowledge; 

requires task-
specific data 

and 
supervision 

Retrieval-
augmented 
generation 

Enhancing 
an LLM’s 
generation 

with 
external 

data sources 

Allows the 
LLM to 

access and 
utilize 

relevant 
information 
beyond its 

context size 

Depends on 
the quality 

and 
availability of 
the external 
data sources; 

may introduce 
noise or 

inconsistency 

Self-
improvement 

Using an 
LLM to 
generate 

and 
evaluate its 

own 
solutions 
for a task 

Enables the 
LLM to 

learn from 
its own 

reasoning 
and 

feedback; 
reduces the 

need for 
human 

supervision 

May be prone 
to errors or 

biases; 
requires 

careful design 
of the self-

improvement 
mechanism 

 
V.      CONCLUSION 

Imagine giving Gemini, our powerful language model, a helping hand. By using a skilled PDF parser, we can unlock even more 
precise and relevant responses. This works like a perfect partnership: the parser extracts key information from documents, feeding 
Gemini with high-quality data. The better the data, the sharper and more accurate Gemini's responses become. 
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Our next step? We're diving deep into different parsing methods based on deep learning. This lets us explore the fascinating link 
between the quality of document parsing and how well Gemini performs Retrieval-Augmented Generation (RAG). Early signs 
suggest some open-source parsing tools might not quite meet the high bar needed for top-notch RAG results within Gemini. 
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