

12 V May 2024

 https://doi.org/10.22214/ijraset.2024.61195

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

24 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Gemini MultiPDF Chatbot: Multiple Document
RAG Chatbot using Gemini Large Language

Model

Mohd Kaif1, Sanskar Sharma2, Asst. Prof. Dr. Sadhana Rana3
Computer Science and Engineering SRMCEM Lucknow, India

Abstract: The Gemini MultiPDF Chatbot represents a groundbreaking advancement in natural language processing (NLP) by
integrating Retrieval-Augmented Generation (RAG) techniques with the Gemini Large Language Model. This innovative
chatbot is designed to handle multiple document retrieval and generation tasks, leveraging the extensive knowledge base of the
Gemini model. By harnessing RAG methods, the chatbot enhances its ability to acquire, comprehend, and generate responses
across diverse knowledge sources contained within multiple PDF documents. The integration of Gemini's powerful language
understanding capabilities with RAG facilitates seamless interaction with users, offering comprehensive and contextually
relevant responses. This paper presents the design, implementation, and evaluation of the Gemini MultiPDF Chatbot,
demonstrating its effectiveness in navigating complex information landscapes and delivering high-quality conversational
experiences.
Keywords: Retrieval Augment Generation, FAISS Index, LangChain, Large Language Models (LLMs).

I. INTRODUCTION
In recent years, we've seen big leaps in how computers understand human language, thanks to cool advancements like Retrieval-
Augmented Generation (RAG). These methods blend two powerful techniques: one for finding information and another for putting
that info into words. Now, imagine combining RAG with a super-smart language model like Gemini. That's where the Gemini
MultiPDF Chatbot comes in. It's like having a conversation with a buddy who's really good at finding and explaining stuff in multiple
PDF documents. This introduction sets the stage for exploring how this chatbot works, why it's special, and how it can make dealing
with complex info a whole lot easier for all of us.
Gemini models are adept at various NLP tasks such as text summarization, sentiment analysis, and language translation. By
leveraging the strengths of dual-encoder architecture, Gemini models have demonstrated superior performance across a wide range of
NLP benchmarks, making them a preferred choice for researchers and practitioners seeking state-of-the-art solutions in natural
language processing.

II. METHODOLOGY
A. Gemini Model Introduction
Gemini, as described by [1], employs a cutting-edge multimodal architecture. Built upon Transformer decoders, it's meticulously
optimized to deliver efficient and dependable performance, especially when scaled. Utilizing Google's potent TPU hardware, Gemini
undergoes robust training and execution processes. With an impressive capability to process context lengths of up to 32,000 tokens,
its reasoning skills are notably enhanced. Attention mechanisms play a pivotal role in intensifying the intricate analysis performed by
the model. By seamlessly integrating text, graphics, and sounds, Gemini harnesses distinct visual symbols and direct voice analysis.
Robust reliability features are incorporated to mitigate hardware malfunctions and data distortion during rigorous training sessions.
Gemini's ability to comprehend and draw inferences from diverse information is significantly expanded, evidenced by its exceptional
benchmark scores and groundbreaking performance in exams. This model sets formidable benchmarks in multimodal AI research and
applications.[1]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

25 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

B. Retrieval Augment Generation

Fig. 1. The workflow of Retrieval-Augmented Generation (RAG).

Fig. 2. The process of converting PDFs into retrievable contents.

1) Document Parsing & Chunking. It involves extracting paragraphs, tables, and other content blocks, then dividing the extracted

content into chunks for subsequent retrieval.[2]
2) Embedding. It transforms text chunks into real-valued vectors and stores them in a database.[3]

C. Using Langchain to implement Faiss index.
In the realm of artificial intelligence, particularly when dealing with vast amounts of data, efficient retrieval of similar items
becomes paramount. This is where Faiss indexing steps in, offering a powerful toolkit for lightning-fast similarity search.
Developed by Facebook AI, Faiss stands for Facebook AI Similarity Search.
At its core, Faiss deals with data represented as vectors – numerical arrays that capture the essence of an object. Imagine a
collection of images, each encoded as a vector reflecting its color distribution, textures, and shapes. Given a new image (another
vector), Faiss helps us find images most similar to it – perhaps those depicting the same object from different angles.
We have used langchain a python library to implement faiss indexing to make vector store for Gemini Model to get the context.
Here is the code snippets for doing the same –
read all pdf files and return text
def get_pdf_text(pdf_docs):
 text = ""
 for pdf in pdf_docs:
 pdf_reader = PdfReader(pdf)
 for page in pdf_reader.pages:
 text += page.extract_text()
 return text
split text into chunks
def get_text_chunks(text):
 splitter = RecursiveCharacterTextSplitter(

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

26 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 chunk_size=10000, chunk_overlap=1000)
 chunks = splitter.split_text(text)
 return chunks
creating vector store
def get_vector_store(chunks):
 embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001")
 vector_store = FAISS.from_texts(chunks, embedding=embeddings)
 vector_store.save_local("faiss_index")

D. Streamlit for creating user interface
Streamlit is a Python framework designed specifically to help data scientists and machine learning engineers quickly develop and
share interactive web apps. Unlike traditional web development, Streamlit requires minimal coding knowledge beyond Python
itself. This allows data professionals to focus on the core functionality of their applications, such as data visualization, model
deployment, or creating user input interfaces, without getting bogged down in complex front-end development like HTML, CSS,
and Javascript. Streamlit streamlines the process by converting Python code into beautiful and functional web apps in minutes,
making it a valuable tool for rapidly prototyping and deploying data-driven applications.

Usage in our codebase –
import streamlit as st
st.set_page_config(
 page_title="Gemini PDF Chatbot",
 page_icon="�"
)
 # Sidebar for uploading PDF files
 with st.sidebar:
 st.title("Menu:")
 pdf_docs = st.file_uploader(
 "Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
 if st.button("Submit & Process"):
 with st.spinner("Processing..."):
 raw_text = get_pdf_text(pdf_docs)
 text_chunks = get_text_chunks(raw_text)
 get_vector_store(text_chunks)
 st.success("Done")
 # Main content area for displaying chat messages
 st.title("Chat with PDF files using Gemini�")
 st.write("Welcome to the chat!")
 st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
 # Chat input
 # Placeholder for chat messages
 if "messages" not in st.session_state.keys():
 st.session_state.messages = [
 {"role": "assistant", "content": "upload some pdfs and ask me a question"}]
 for message in st.session_state.messages:
 with st.chat_message(message["role"]):
 st.write(message["content"])
 if prompt := st.chat_input():
 st.session_state.messages.append({"role": "user", "content": prompt})
 with st.chat_message("user"):

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

27 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

 st.write(prompt)
 # Display chat messages and bot response
 if st.session_state.messages[-1]["role"] != "assistant":
 with st.chat_message("assistant"):
 with st.spinner("Thinking..."):
 response = user_input(prompt)
 placeholder = st.empty()
 full_response = ''
 for item in response['output_text']:
 full_response += item
 placeholder.markdown(full_response)
 placeholder.markdown(full_response)
 if response is not None:
 message = {"role": "assistant", "content": full_response}
 st.session_state.messages.append(message)

III. RESULTS
The results of our research highlight the significant impact of integrating a PDF parser with Gemini in enhancing the accuracy and
relevance of responses generated by Large Language Models (LLMs) through Retrieval-Augmented Generation (RAG).

A. Improved Response Accuracy
Our Project demonstrate a notable improvement in the accuracy of responses generated by Gemini when assisted by a proficient PDF
parser. By effectively extracting and integrating structured information from documents into prompts, the PDF parser enhances the
contextual understanding of the model, leading to more accurate and informative responses also it save cost and effort of the user.

Fig. 3. Cost comparison of Base Gemini model vs Gemini with RAG

B. Enhanced Relevance of Data
The integration of a PDF parser with Gemini enriches the quality and relevance of the data fed into the model. This process ensures
that the model is provided with pertinent information from documents, thereby enabling it to produce responses that are contextually
appropriate and coherent.[3]

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

28 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

C. Screenshot of the actual project

Fig. 4. Homepage of https://gmultichat.streamlit.app/

Fig. 5. Total users till date who used the application

IV. DISCUSSION

Although pre-trained language models (LLMs) have great promise, their actual strength rests in their ability to be finely tuned.[4]

A. Domain-specific Fine-tuning
Fine-tuning LLMs to specific domains unlocks their ability to understand and excel in specialized tasks. Here are some prominent
techniques:
1) Curriculum Learning: Curriculum Learning is a strategy that aims to effectively create domain-specific abilities in a model by

progressively raising the complexity of the training data[5].
2) Knowledge Distillation: Information distillation involves transferring information from a pre-trained model that is specialised to

a certain domain to the LLM. This process may speed up learning and help overcome the problem of limited data availability.
3) Data Augmentation: The process of creating artificial data that is relevant to a certain domain enhances the training dataset,

resulting in a more resilient and adaptable model.
4) These methods have clearly enhanced the efficiency of completing tasks in several fields, including medical diagnostics and

financial forecasting. Nevertheless, a crucial obstacle is determining the ideal equilibrium between safeguarding the LLM's
overall knowledge and obtaining specialised skill in a certain field.

B. Dynamic Fine-tuning
LLMs must possess the ability to constantly adjust to new facts and growing demands because to the dynamic nature of information.
Dynamic fine-tuning methods tackle this difficulty by:
1) Online Learning: Updating the model with new data points in small increments helps it stay up-to-date and improve its

knowledge base in real-time.
2) Meta-learning: Giving the LLM the capability to learn how to learn from a small number of examples enables it to quickly adapt

to new tasks and domains.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

29 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

3) Federated Learning: The process of training a model on numerous devices with different data distributions, allowing the model
to acquire specific local knowledge while ensuring privacy.

Dynamic fine-tuning has great potential for situations that include continuous data streams and quickly changing knowledge needs.
For example, it has shown efficacy in the real-time analysis of emotions expressed in social media data and in tailoring language
translation to individual preferences[6].

TABLE I. COMPARISION OF VARIOUS TECHNIQUES FOR INCREASING KNOWLEDGE BASE OF LLM
Technique Description Advantages Disadvantages

Pre-training

Training an
LLM on a

large corpus
of

unlabelled
text data

Enables the
LLM to
acquire

diverse and
general

knowledge
from

various
domains

Requires a lot
of

computational
resources and

time; may
introduce
biases or

errors from
the data

Fine-tuning

Adapting an
LLM to a

specific task
or domain

by
providing
labelled

data

Improves
the LLM’s

performance
and

knowledge
retention for

the target
task or
domain

May cause
catastrophic
forgetting of

previous
knowledge;

requires task-
specific data

and
supervision

Retrieval-
augmented
generation

Enhancing
an LLM’s
generation

with
external

data sources

Allows the
LLM to

access and
utilize

relevant
information
beyond its

context size

Depends on
the quality

and
availability of
the external
data sources;

may introduce
noise or

inconsistency

Self-
improvement

Using an
LLM to
generate

and
evaluate its

own
solutions
for a task

Enables the
LLM to

learn from
its own

reasoning
and

feedback;
reduces the

need for
human

supervision

May be prone
to errors or

biases;
requires

careful design
of the self-

improvement
mechanism

V. CONCLUSION

Imagine giving Gemini, our powerful language model, a helping hand. By using a skilled PDF parser, we can unlock even more
precise and relevant responses. This works like a perfect partnership: the parser extracts key information from documents, feeding
Gemini with high-quality data. The better the data, the sharper and more accurate Gemini's responses become.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 12 Issue V May 2024- Available at www.ijraset.com

30 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Our next step? We're diving deep into different parsing methods based on deep learning. This lets us explore the fascinating link
between the quality of document parsing and how well Gemini performs Retrieval-Augmented Generation (RAG). Early signs
suggest some open-source parsing tools might not quite meet the high bar needed for top-notch RAG results within Gemini.

REFERENCES

[1] G. Gemini Team, “ Gemini: A Family of Highly Capable Multimodal Models, 2024.”.
[2] S. Siriwardhana, R. Weerasekera, E. Wen, T. Kaluarachchi, R. † Rajib, and S. Nanayakkara, “Improving the Domain Adaptation of Retrieval Augmented

Generation (RAG) Models for Open Domain Question Answering”, doi: 10.1162/tacl.
[3] W. Yu, “Retrieval-augmented Generation across Heterogeneous Knowledge.”
[4] K. Rangan and Y. Yin, “A Fine-tuning Enhanced RAG System with Quantized Influence Measure as AI Judge,” Feb. 2024, [Online] Available:

http://arxiv.org/abs/2402.17081
[5] J. Liuska, “Bachelor’s Thesis- ENHANCING LARGE LANGUAGE MODELS FOR DATA ANALYTICS THROUGH DOMAIN SPECIFIC CONTEXT

CREATION,” 2024
[6] [Y. Chang et al., “A Survey on Evaluation of Large Language Models,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.03109

