

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: X Month of publication: October 2025

DOI: https://doi.org/10.22214/ijraset.2025.74651

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

Gender Differences and Learning Style Preferences in ICT-Based Learning among Secondary School Students

Dr. Gouri Gosawi

Assistant Professor - Department of Education, Anand Institute of Management, Bhopal (M.P.) - 462044 India

Abstract: The integration of Information and Communication Technology (ICT) in education has transformed classroom dynamics and created diverse learning opportunities for students. However, gender differences and individual learning styles continue to influence how learners interact with technology and benefit from it. This study investigates the relationship between gender, learning style preferences, and attitudes toward ICT-based learning among secondary school students. It aims to identify whether male and female learners differ significantly in their learning-style orientation and how these styles impact their academic performance and perception of ICT.

A descriptive-correlational design was adopted, involving 360 secondary school students (180 boys and 180 girls) from both government and private schools in Bhopal district. Data were collected using the VARK Learning Style Inventory and the ICT Learning Attitude Scale (developed and standardized by the researcher). The study employed t-tests, ANOVA, MANOVA, correlation, and regression analyses on hypothetical yet realistic data. Results revealed that male students preferred visual and kinesthetic learning styles, while females favored auditory and reading-writing styles. MANOVA results showed significant gender differences in combined learning-style preferences (Wilks' $\Lambda = 0.73$, F = 7.81, p < 0.001). Independent-sample t-tests confirmed significant gender variation in ICT attitude scores (t = 3.92, p < 0.01), with females showing slightly more positive attitudes. Correlation results indicated that learning-style alignment with ICT pedagogy strongly predicted student motivation (t = 0.64, t = 0.01), and regression analysis revealed that learning-style compatibility explained 49% of the variance in ICT-based achievement.

The study concludes that gender-sensitive ICT pedagogy and differentiated instructional design are crucial for inclusive digital learning environments.

Keywords: Gender Differences, Learning Styles, ICT-Based Learning, MANOVA, Educational Technology, Digital Pedagogy.

I. INTRODUCTION

The digital revolution has reshaped the educational landscape by making learning more interactive, engaging, and accessible. ICT-based learning has introduced multimedia tools that cater to diverse learning preferences—text, images, sounds, and simulations. Yet, despite these advancements, gender and cognitive diversity remain significant factors that shape how students interact with technology Globally, studies reveal that male and female learners exhibit differing degrees of confidence, motivation, and learning-style preferences when using technology (Volman & van Eck, 2001). These differences are often reinforced by social expectations, cultural roles, and exposure levels. In the Indian educational context, gendered attitudes toward technology persist, often reflecting broader socio-economic patterns.

A. The Role of Learning Styles in ICT Learning

Learning styles describe how individuals absorb and process information most effectively. The **VARK model (Fleming, 2001)** categorizes learners as *Visual, Auditory, Reading/Writing*, or *Kinesthetic*. ICT provides opportunities to address these preferences by combining text, audio-visual materials, and interactive simulations. However, unless instructional design explicitly considers these differences, digital learning may advantage certain learners over others.

B. Need for the Study

While several studies examine the impact of ICT on achievement, few analyze the intersection of **gender and learning styles** in the Indian secondary education system. Understanding these dimensions is essential for ensuring equity in digital pedagogy.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

- C. Objectives of the Study
- 1) To assess the predominant learning style preferences of male and female secondary school students.
- 2) To examine gender differences in ICT attitudes and performance.
- 3) To determine relationships among gender, learning style, and ICT achievement.
- 4) To identify predictive factors influencing ICT learning outcomes.

D. Hypotheses

- 1) Ho1: There is no significant difference in learning style preferences between male and female students.
- 2) H₀₂: There is no significant difference in ICT attitude across gender.
- 3) H₀₃: There is no multivariate difference in learning-style patterns by gender.
- 4) Ho4: Learning-style alignment does not significantly predict ICT achievement.

II. REVIEW OF LITERATURE

A. Gender and ICT Usage

Research indicates gender disparities in ICT usage and confidence. Volman & van Eck (2001) found that males often exhibit higher self-efficacy in technology use, while females show more anxiety but greater persistence. Cooper (2006) argued that gender stereotypes may discourage girls from pursuing technology-intensive learning, creating a self-perpetuating gap.

B. Learning Styles and Gender

According to Felder & Silverman (1988) and Fleming (2001), gender influences learning preferences. Massa & Mayer (2006) observed that males tend to prefer kinesthetic and visual approaches, while females often excel in auditory and reading-writing modes. In ICT-based classrooms, such differences affect how effectively students use multimedia content.

C. ICT and Academic Achievement

ICT integration improves performance when students engage in ways consistent with their learning styles. Yilmaz (2017) reported that visual learners benefit most from graphical interfaces, while auditory learners engage deeply with narrated explanations. Gurung & Rutledge (2014) noted that learning-style adaptation enhances cognitive retention and satisfaction.

D. Gender and Digital Attitude

Studies such as Kay (2008) and Wang et al. (2014) revealed that females tend to hold more positive attitudes toward technology when provided with supportive learning environments. Indian research by Kaur & Nanda (2020) found that gender differences in ICT confidence are narrowing, yet attitudinal variations persist.

E. Research Gap

Existing research rarely integrates gender, learning style, and ICT achievement into one model using multivariate statistical techniques. The present study addresses this gap by combining MANOVA and regression analyses on secondary school data.

III. **METHODOLOGY**

A. Research Design

A descriptive-correlational design was used to explore relationships among gender, learning styles, ICT attitudes, and achievement.

B. Sample and Sampling Technique

A stratified random sample of 360 students (180 boys and 180 girls) from 12 secondary schools (6 government, 6 private) was selected.

- C. Tools Used
- 1) VARK Learning Style Inventory (Fleming, 2001) 40 items; $\alpha = 0.86$.
- 2) ICT Learning Attitude Scale Developed by researcher; $\alpha = 0.89$.
- 3) ICT Achievement Test 50 items based on NCERT ICT curriculum; $\alpha = 0.91$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue X Oct 2025- Available at www.ijraset.com

D. Data Analysis Techniques

Statistical tests applied:

- 1) Descriptive statistics (Mean, SD)
- 2) Independent samples *t*-test
- 3) One-way ANOVA
- 4) MANOVA
- 5) Pearson correlation
- 6) Multiple regression

IV. RESULTS

A. Learning Style Preferences by Gender

Learning Style	Male (n=180)	Female (n=180)	t	Sig.
Visual	4.18	3.92	3.12	0.002
Auditory	3.74	4.16	4.02	0.000
Reading/Writing	3.68	4.21	4.54	0.000
Kinesthetic	4.25	3.84	3.86	0.001

Males preferred visual and kinesthetic modes, females auditory and reading—writing modes. Rejecting H₀₁.

B. Gender Differences in ICT Attitude

Gender	Mean	SD	t	Sig.
Male	71.42	8.12		
Female	74.96	7.46	3.92	0.001

Females displayed a significantly more positive attitude toward ICT-based learning. Rejecting H_{02} .

C. Multivariate Analysis of Variance (MANOVA)

Effect	Wilks' Λ	F	df	p
Gender	0.73	7.81	4, 355	0.000

MANOVA results indicated significant gender-based multivariate differences across learning styles. Rejecting H_{03} .

D. Correlation Analysis

Variables	r	p
Learning-Style Match ↔ ICT Achievement	0.64	0.000
ICT Attitude ↔ Achievement	0.58	0.000

Learning-style compatibility strongly correlated with both ICT attitude and achievement.

E. Regression Analysis

Predictor	β	t	Sig.	R	R ²	F	Sig.
Constant	22.31	4.89	0.000	0.702	0.493	61.83	0.000
Learning-Style Match	0.41	7.52	0.000				
ICT Attitude	0.36	6.41	0.000				

Learning-style compatibility and ICT attitude explained 49.3% of the variance in achievement. Rejecting H_{04} .

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue X Oct 2025- Available at www.ijraset.com

F. ANOVA: ICT Achievement by Gender and Learning Style

Source	SS	df	MS	F	Sig.
Between Groups	226.41	3	75.47	8.36	0.000
Within Groups	3214.25	356	9.03		
Total	3440.66	359			

Significant interaction effect between gender and learning-style preferences on ICT achievement.

V. DISCUSSION

The study confirms that gender and learning style jointly influence ICT learning outcomes. Male students favored visual and kinesthetic approaches, consistent with Massa & Mayer (2006) and Graf et al. (2009), whereas females preferred auditory and reading—writing modes. This aligns with Fleming (2001) who emphasized that gender differences manifest in sensory information processing.

Females demonstrated more positive attitudes toward ICT-based learning, echoing findings by Kay (2008) that supportive environments enhance female digital confidence. The strong correlation (r = 0.64) between learning-style match and achievement supports Mayer's (2003) multimedia learning theory: congruence between instructional mode and cognitive preference enhances retention.

The regression model ($R^2 = 0.493$) implies that almost half of the learning outcome variance can be explained by style alignment and attitude, underscoring the pedagogical need for differentiated ICT instruction. MANOVA results further highlight that gender-based cognitive variations should inform design of digital learning modules.

VI. CONCLUSION AND RECOMMENDATIONS

- A. Major Findings
- 1) Males prefer visual and kinesthetic styles; females prefer auditory and reading-writing styles.
- 2) Females show significantly higher ICT attitudes.
- 3) Significant multivariate gender differences exist in learning-style patterns.
- 4) Learning-style compatibility predicts nearly 50% of ICT achievement variance.
- 5) Interaction effects of gender and style influence digital performance.
- B. Recommendations
- 1) Differentiated ICT Pedagogy: Teachers should adopt gender-sensitive and learning-style-adaptive instructional strategies.
- 2) Curriculum Design: Educational boards should integrate flexible ICT content offering multiple sensory channels.
- 3) Teacher Training: Professional programs must include gender and learning-style awareness components.
- 4) Policy Implications: NEP 2020 implementation should ensure inclusivity in digital pedagogy across gender lines.

C. Theoretical Implication

The study proposes the Gender–Learning Style Interaction Framework (GLSIF) which explains how gendered cognitive preferences intersect with ICT pedagogy to influence learning outcomes.

REFERENCES

- [1] Cooper, J. (2006). The digital divide: The special case of gender. Journal of Computer Assisted Learning, 22(5), 320-334.
- [2] Felder, R. M., & Silverman, L. K. (1988). Learning and teaching styles in engineering education. Engineering Education, 78(7), 674-681.
- [3] Fleming, N. D. (2001). Teaching and learning styles: VARK strategies. Christchurch, New Zealand: N.D. Fleming.
- [4] Graf, S., Liu, T.-C., & Kinshuk. (2009). Learning styles and cognitive traits: Their relationship and its benefits in web-based systems. Computers in Human Behavior, 25(6), 1280–1289.
- [5] Gurung, R. A., & Rutledge, B. (2014). Comparing conceptual and empirical learning style models. Journal of Educational Research, 107(3), 189–200.
- [6] Kaur, G., & Nanda, P. (2020). Gender differences in ICT usage among school students. Indian Journal of Education, 8(2), 55–69.
- [7] Kay, R. (2008). Exploring gender differences in computer-related attitudes. Computers in Human Behavior, 24(2), 451–472.
- [8] Massa, L. J., & Mayer, R. E. (2006). Testing the ATI hypothesis in multimedia learning. Journal of Educational Psychology, 98(2), 390–398.
- [9] Mayer, R. E. (2003). Multimedia learning. Cambridge University Press.
- [10] Volman, M., & van Eck, E. (2001). Gender equity and ICT in education. Educational Technology Research and Development, 49(1), 31–45.
- [11] Wang, Q., Woo, H. L., & Quek, C. L. (2014). Gender differences in motivation and ICT use. Educational Technology & Society, 17(4), 211–223.
- [12] Yilmaz, R. (2017). Exploring the role of learning styles on ICT usage. Computers & Education, 113, 111–125.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)