

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 11 Issue: III Month of publication: March 2023 DOI: https://doi.org/10.22214/ijraset.2023.49282

www.ijraset.com

Call: 🕥 08813907089 🔰 E-mail ID: ijraset@gmail.com

Generalized Investigated in Topological Space

Kharatti Lal

Dept. of Applied Science – Mathematics, Govt. Millennium polytechnic College Chamba, CHAMBA - Himachal Pradesh – 176310 (INDIA)

Abstract: In this paper, some characterizations and proportion of notion a investigated. Throughout this paper (X, τ) and (Y, σ) (simply, X and Y) represent topological spaces on which separation axioms are assumed unless otherwise mentioned. We introduce a new class of sets called regular generalized open sets which is properly placed in between the class of open sets and the class of - open sets. Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl (A) and int (A) denote the closure of A and the interior of A respectively. X/A or Ac denotes the complement of A in X. introduced and investigated semi open sets, generalized closed sets, regular semi open sets, weakly closed sets, semi generalized closed sets , weakly generalized closed sets, strongly generalized closed sets, respectively.

Keywords: Topological space, Cluster Point, Open and Closed set, β^* - Continuous, Subset, .Regular open closed set, Separation axioms

I. INTRODUCTION

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called super-continuous (resp. *a*-continuous *a*-continuous pre-continuous δ - smi - continuous Z - continuous γ - continuous continuous Z*- continuous , β - continuous) if

 $f^{-1}(V)$ is δ - open (resp. *a*-open, α -open, per open, δ -semiopen, *Z*-open, γ -open, *e*- open, *Z*^{*} - open, β -open, *e**-open) in *X*, for each $V \in \sigma$. the notion of β -open sets and β -continuity in topological space. The concepts of *Z**- open set and *Z* *- continuity introduced by Mubarki. The purpose of this paper introduce and study the notions of β^* - open sets, β^* - continuous functions and (β^* - open sets. For a subset *A* of a (*X*, τ), cl(A), int(A) and *X* \ *A* denote the closure of *A*, the interior of *A* and the complement of *A*, respectively. A subset *A* of a topological space (*X*, τ) is called regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). A point *x* of *X* is called δ - cluster point of *A* if $int(cl(U)) \cap A = \phi$, for every open set *U* of *X* containing *x*. The set of all δ -cluster points of *A* is called δ -closure of *A* and is denoted $cl \ \delta(A)$. A set *A* is δ -closed if and if $A = cl \ \delta(A)$. The complement of a *a*-open (resp. *a*-open, δ -semiopen, δ -pre-closed *Z*-closed γ -closed , *e* - closed β -closed , *e**- closed The intersection of all δ - preclosed (resp. β -closed) set containing *A* is called the δ - preclosure (resp. β -closure) of *A* and is denoted by $\delta - pcl (A)$ (resp. β -cl(A)). The union of all δ -preopen (resp. β -open) sets containing *i* is called the δ - preopen, *Z**- open, β - preopen, *C*+- open, *Z**- open, β - preopen, *C*+- open, *Z**- open, β - preopen, *Z**- open, β

Lemma 1.1

Let A be a subset of a space (X, τ) . Then:

(1) δ -pint(A) = A \cap int(cl δ (A)) and δ -pcl(A) = A U cl (int δ (A)),

(2) $\beta - Int(A) = A \cap cl (int(cl(A))) and \beta - cl (A) = A \cup int (cl(int (A))).$

 β^* - Open sets

Definition 2.1

A subset A of a topological space (X, τ) is said to be:

- (1) a β^* open set if $A \subseteq cl(int(cl(A))) \cup int(cl\delta(A))$,
- (2) a β^* closed set if in $t(cl(int(A))) \cap cl(int \delta c(A)) \subseteq A$.
- (3) The family of all β^* open (resp. β^* closed) subsets of a space (X, τ) will be as always denoted by $\beta^* O(X)$ (resp. $\beta^* C(X)$).

Remark 3.1

The following diagram holds for each a subset *A* of *X*.

None of these implications are reversible as shown in the following examples

Example 4.1

Let $X = \{a, b, c, d\}$, with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a,$

 $\{a, c, d\}, X\}$. Then:

- (1) A subset $\{b, c\}$ of X is β^* open but it is not β -open,
- (2) A subset $\{b, d\}$ of X is e^* open but it is not β^* open,

Example 4.2

Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then $\{a, e\}$ is β^* - open but it is not Z^* - open.

Remark 3.3

By the following example we show that the intersection of any two β^* -open sets is not β^* - open.

Example 4.4

Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are β^* -open sets. But, $A \cap B = \{c\}$ is not β^* - open

Definition 2.2

Let (X, τ) be a topological space. Then:

- (1) The union of all β^* open sets of contained in A is called the β^* -
- (2) interior of A and is denoted by β^* -*int* (A),
- (3) The intersection of all β^* closed sets of X containing A is called
- (4) The β^* closure of *A* and is denoted by β^* *cl*(*A*).

Theorem 5.1

Let A, B be two subsets of a topological space (X, τ) . Then the following are hold:

- (1) $\beta^*- int(X) = X \text{ and } \beta^*- int(\phi) = \phi$,
- (2) $B * int(A) \subseteq A$,
- (3) If $A \subseteq B$, then β^* int $(A) \subseteq \beta^*$ int(B),
- (4) $x \in \beta^*$ int(A) if and only if there exist β^* open W such that $x \in W \subseteq A$,
- (5) A is β^* open set if and only if $A = \beta^*$ int(A),
- (6) $B * int(\beta * int(A)) = \beta * int(A),$
- (7) $B^* int(A \cap B) \subseteq \beta^* int(A) \cap \beta^* int(B),$
- (8) $\beta^* int(A) \cup \beta^* int(B) \subseteq \beta^* int(A \cup B).$

Example 4.5

Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$.

- (1) If $A = \{a, c\}, B = \{b, c\}$, then $\beta^* cl(A) = A, \beta^* cl(B) = B$ and $\beta^* \beta^* cl(B) = B$
- (2) $lc(A \cup B) = X$. Thus $\beta^* cl(A \cup B) \not\subset \beta^* cl(A) \cup \beta^* cl(B)$,
- (3) If $A = \{a, c\}, C = \{a, b\}$, then $\beta^* cl(C) = X, \beta^* cl(A) = A$ and β^* -
- $(A \cap C) = \{a\}. \text{ Thus } \beta^* cl(A) \cap \beta^* cl(C) \notin \beta^* cl(A \cap C),$
- (4) If $E = \{c, d\}$, $F = \{b, d\}$, then $E \cup F = \{b, c, d\}$ and hence β^* - $Int (E) = \phi, \beta^* - int (F) = F$ and $\beta^* - int (E \cup F) = \{b, c, d\}$. Thus $\beta^* - Int (E \cup F) \not\subset \beta^* - int(E) \cup \beta^* - int(F)$.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Theorem 5.2

For a subset A in a topological space (X, τ) , the following statements are true: (1) $B^* - cl(X/A) = X \setminus \beta^* - int(A)$,

(2) $\beta * - int(X \setminus A) = X / \beta * - cl(A).$

Proof.

It follows from the fact the complement of β *- open set is a β * - closed And $\cap_i(X / A_i) = X / \cup_i Ai$.

Theorem 5.3

Let A be a subset of a topological space (X, τ). Then the following are Equivalent to :

(1) $A \text{ is } a \beta^* - open \text{ set},$

(2) $A = \beta - int(A) \cup pint\delta(A)$

.Proof

(1) \Rightarrow (2). Let *A* be a β^* - open set. Then $A \subseteq cl$ (*int*(*cl* (*A*))) \cup *int* (*cl* δ (*A*)) and hence by (Lemma 1.1) $A \subseteq (A \cap cl$ (*int*(*cl*(*A*)))) \cup ($A \cap int$ (*cl* δ (*A*))) $= \beta - int$ (A) \cup *pint* δ ($A \subseteq A$, (2) \Rightarrow (1).

Theorem 2.4

For a subset A of space (X, τ) . Then the following are equivalent:

(1) A is a β *- closed set,

(2) $A = \beta - cl(A) \cap pcl \,\delta(A),$

Proof

Theorem 5.5 β^* * - Continuous function

Example 4.6

Let *X* {*a*, *b*, *c*, *d*} with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then, the function *f*: (*X*, τ) \rightarrow (*X*, τ) defined by *f*(*a*) = *a*, *f*(*b*) = *f*(*c*) = *c* and *f*(*d*) = *d* is β^* - continuous but it is not β^* - continuous. The function *f*: (*X*, τ) \rightarrow (*X*, τ) defined by *f*(*a*) = *d*, *f*(*b*) = *a*, *f*(*c*) = *c* and *f*(*d*) = *b* is *e**- continuous but it is not β^* - continuous .

Example 4.7

Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then function $f : (X, \tau) \rightarrow (X, \tau)$ which defined by f(a) = a, f(b) = e, f(c) = c, f(d) = d and f(e) = b is β^* - continuous but it is not Z^* - continuous.

Theorem 5.5

Let $f: (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are Equivalent :

- (1) $f is \beta^* continuous$,
- (2) For each $x \in X$ and $V \in \sigma$ containing f(x), there exists $U \in \beta * O(X)$
- (3) containing x such that $f(U) \subseteq V$,

The inverse image of each closed set in Y is β * - closed in X,

- $(4) \quad int (cl(int (f-1(B)))) \cap cl (int \delta (f-1(B))) \subseteq f-1(cl(B)), for each B \subseteq Y,$
- (5) $f l(int(B)) \subseteq cl(int(cl(f-1(B)))) \cup int(cl\delta(f-1(B))), \text{ for each } B \subseteq Y,$

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue III Mar 2023- Available at www.ijraset.com

- (6) β^* $cl(f-l(B)) \subseteq f-l(cl(B))$, for each $B \subseteq Y$,
- (7) $f(\beta * cl(A)) \subseteq cl(f(A)), \text{ for each } A \subseteq X,$
- (8) $f l(int(B)) \subseteq \beta * int(f l(B)), \text{ for each } B \subseteq Y.$

Proof

(1) \Leftrightarrow (2) and (1) \Leftrightarrow (3) are obvious, (3) \Rightarrow (4). Let $B \subseteq Y$. Then by (3) f - l(cl(B)) is β^* -closed. This means $f-l(cl(B)) \supseteq int(cl(int(f-l(cl(B))))) \cap cl(int \delta(f-l(cl(B))))) \supseteq int(cl(int(f-l(B)))) \cap cl(int \delta(f-l(B))))$ (4) \Rightarrow (5). By replacing *Y*/*B* instead of *B* in (4), we have Int $(cl (int(f-1(Y/B)))) \cap cl (int \delta(f-1(Y\setminus B))) \subseteq f-1(cl (Y/B))$, and therefore $f - l(int(B)) \subseteq cl(int(cl(f - l(B)))) \cup int(cl\delta(f - l(B))))$, for each $B \subseteq Y$, (5) \Rightarrow (1). Obvious, (3) \Rightarrow (6). Let $B \subseteq Y$ and $f - l(c \ l(B))$ be β^* - closed in X. Then $B^{*} cl(f - l(B)) \subseteq \beta^{*} cl(f - l(cl(B))) = f - l(cl(B)),$ (7). Let $A \subseteq X$. Then $f(A) \subseteq Y$. By (6), we have $f - I(cl(f(A))) \supseteq \beta^*$ - $Cl (f-l(f(A))) \supseteq \beta^* - cl(A)$. Therefore, $cl (f(A)) \supseteq f(f-l(cl(f(A))) \supseteq f(\beta^* - cl(A))$, (7) \Rightarrow (3). Let $F \subseteq Y$ be a closed set. Then, f - l(F) = f - l(cl(F)). Hence by (7), $f(\beta^* - cl(f - l(F))) \subseteq cl(f(f - l(F))) \subseteq (F) = F$, thus, $\beta^* - cl(f - l(F)) \subseteq f - l(F)$, so, $f-1(F) = \beta^* - cl(f-1(F))$. Therefore, $f-1(F) \in \beta^* C(X)$, Int $(f - 1(int (B))) \subseteq \beta^*$ - int (f - 1(B)). Therefore, f - 1 (int $(B)) \subseteq \beta^*$ - int (f - 1 (B)), (8) \Rightarrow (1). Let $U \subseteq Y$ be an open set. Then $f - I(U) = f - I(int(U)) \subseteq \beta^*$ -int (f - I(U)). Hence, f - I(U) is β^* - open in X. Therefore, f is β^* - continuous. Remarks 3.3

The composition of two β^* - continuous functions need not be β^* - continuous as show by the following example.

Example 4.7

Let $X = Y = Z = \{a, b, c, d\}$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Let $f: X \to Y$ and $g: Y \to Z$ be functions defined by f(a) = b, f(b) = b, f(c) = c, f(d) = d and g(a) = a, g(b) = c, g(c) = a, g(d) = d, respectively. Then f and g are β *- continuous but $g \circ f$ is not β *- continuous.

Theorem 5.6

If $f: (X, \tau) \to (Y, \sigma)$ is a β^* - continuous function and A is δ - open in X, then the restriction $f \setminus A: (A, \tau) \to (Y, \sigma)$ is β^* -continuous.

Proof.

Let V be an open set of Y. Then by hypothesis $f^{-1}(V)$ is β^* - open in X. we have $(f \land A)^{-1}(V) = f^{-1}(V) \cap A$ $\beta^* \in O(A)$. Thus, it follows that f/A is β^* - continuous.

Lemma 1.2

Let A and B be two subsets of a space (X, τ) . If $A \in \delta O(X)$ and $B \in \beta^* O(A)$, the $A \cap B \in \beta^* O(X)$.

Theorem 5.7

Let $(X, \tau) \rightarrow (Y, \sigma)$ be a function and {Gi: $i \in I s$ } be a cover of X by δ -open sets of (X, τ) . If $F/Gi : (Gi, \tau Gi) \rightarrow (Y, \sigma)$ is β^* -continuous for each $i \in I$, then f is β^* -continuous.

Proof.

Let V be an open set of (Y, σ) . Then by $(V) = X \cap (V) = \bigcup \{Gi \cap f^{-1}(V) : i \in I\} = \bigcup \{(f \setminus Gi)^{-1}(V) : i \in I\}$. Since $f \setminus Gi$ is β^* -Continuous for each $i \in I$, then $(f / Gi)^{-1}(V) \in YO(Gi)$ for each $i \in I$. we s $(f \setminus Gi)^{-1}(V)$ is β^* - continuous in X. Therefore, f is β^* - continuous in (X, τ) .

Definition 2.3 The β^* - s frontier of a subset *A* of *X*, denoted by β^* - *Fr* (*A*), is defined by β^* - *Fr* (*A*) = β^* - *cl* (*A*) $\cap \beta^*$ - *Cl* (*X*/*A*) equivalently β^* - *Fr* (*A*) = β^* - *cl* (*A*) / β^* - *int* (*A*)

Theorem 5.8

The set of all points x of X at which a function f: $(X, \tau) \rightarrow (Y, \sigma)$ is not β^* - continuous is identical with the union of the β^* - frontiers of the inverse images of open sets containing f (x).

Proof. Necessity. Let *x* be a point of *X* at which *f* is not β^* - continuous. Then, there is an open set *V* of *Y* containing *f*(*x*) such that $U \cap (X f^{-1}(V)) \neq \phi$, for every $U \in \beta^* O(X)$ containing *x*. Thus, we have $x \in \beta^*$ - *cl* $(X/f^{-1}(V)) = X / \beta^*$ - *int* $(f^{-1}(V))$ and $x \in f^{-1}(V)$. Therefore, we have $x \in \beta^*$ - *Fr* $(f^{-1}(V))$.Sufficiency. Suppose that $x \in \beta^*$ - *Fr* $(f^{-1}(V))$, for some *V* is open set containing *f*(*x*). Now, we assume that *f* is β^* - continuous at $x \in X$. Then there exists $U \in \beta^* O(X)$ containing *x* such that $f(U) \subseteq V$. Therefore, we have $x \in \beta^*$ - *int* $(f^{-1}(V)) \subseteq X / \beta^* - Fr(f^{-1}(V))$. This is a contradiction. This means that *f* is not β^* - continuous at $x \in V$.

Theorem 5.9

If $f: (X, \tau) \to (Y, \sigma)$ is a β^* - continuous injection and (Y, σ) is Ti, then (X, τ) is β^* - Ti, where i = 0, 1, 2.

Proof.

We prove that the theorem for i = 1. Let *Y* be T_1 and *x*, *y* be distinct points in *X*. There exist open subsets *U*, *V* in *Y* such that $f(x) \in U$, $f(y) \notin U$, $f(x) \notin V$ and $f(y) \in V$. Since *f* is $\beta * -$ continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are $\beta * -$ open subsets of *X* such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$, $x \notin f^{-1}(V)$ and $y \in f^{-1}(V)$. Hence, *X* is $\beta * - T_1$.

Theorem 5.10

If $f: (X, \tau) \to (Y, \sigma)$ is β^* - continuous, $g:(X, \tau) \to (Y, \sigma)$ is super-continuous and Y is Hausdorff, then the set $\{x \in X: f(x) = G(x)\}$ is β^* - closed in X. f is β^* - continuous in (X, τ) .

Proof :

Let $A = \{x \in X : f(x) = g(x)\}$ and $x \notin A$. Then $f(x) \neq g(x)$. Since *Y* is Hausdorff, there exist open sets *U* and *V* of *Y* such That $f(x) \in U$, $g(x) \in V$ and $U \cap V = \phi$. Since *f* is β^* - continuous, there exists a β^* - open set *G* containing *x* such that $f(G) \subseteq U$. Since *g* is super - continuous, there exist an δ -open set *H* of *X* containing *x* such that $g(H) \subseteq V$. Now, put $W = G \cap H$, we have *W* is a β^* - open set containing *x* and $f(W) \cap g(W) \subseteq U \cap V = \phi$. Therefore, we obtain $W \cap A = \phi$ and hence $x \in s \beta^* - cl(A)$. This shows that $A = \delta^* - cl(A)$. This shows that $A = f(A) \subseteq U$. Let $f(A) \subseteq X \to Y$ be a function. The subse $\{(x, f(x)) : x \in X\}$ of the product space $X \times Y$ is called the graph of *f* and is denoted by G(f).

Explain : Definition 2.4 A function $f : X \to Y$ has a (β^*, τ) - graph if for each $(x, y) \in (X \times Y) / G(f)$, there exist a β^* -open U of X containing x and an open set V of Y containing y such that $(U \times V) \cap G(f) = \phi$. **Proof:** It follows readily from the above definition.

Theorem 5.11

If $f: X \to Y$ is a β^* - continuous function and Y is Hausdorff, then f has a (β^*, τ) s - graph.

Proof.

Let $(x, y) \in X \times Y$ such that $y \neq f(x)$. Then there exist open see that $y \in U$, $f(x) \in V$ and $V \cap U = \phi$. Since f is β^* - continuous, there exists β^* - open W containing x such that $f(W) \subseteq V$. This I $(W) \cap U \subseteq V \cap U = \phi$.

Definition 2.5

A space X is said to be β^* - compact if every β^* - open cover of X has a finite subcover.

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Theorem 5.12

If $f: (X, \tau) \rightarrow (Y, \sigma)$ has a (β^*, τ) - graph, then f(K) is closed in (Y, σ) for each subset K which is β^* - compact relative to (X, τ) .

Proof.

Suppose that $y \in f(K)$. Then $(x, y) \in G(f)$ for each $x \in K$. Since G(f) is (β^*, τ) - graph, there exist a β^* - open set Ux containing x and an open set V x of Y containing y such that $f(U x) \cap V x = \phi$. The family $\{U s x : x \in K\}$ is a cover of K by β^* - open sets. Since K is β^* -compact relative to (X, τ) , there exists a finite subset that $K \subseteq \bigcup \{U x : x \in K_0\}$. Let $V = \cap \{V x : x \in K_0\}$. have $f(K) \cap V \subseteq (\bigcup_{x \in K_0} f(\bigcup_x)) \cap V \subseteq \bigcup_{x \in K_0} (f(\bigcup_x)) \cap V = \phi$. It follows that, $y \in cl(f(K))$. Therefore, f(K) is closed in (Y, σ) .

Corollary 6.1

If $f: (X, \tau) \to (Y, \sigma)$ is β^* -continuous function and Y is Hausdorff, then f(K) is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Theorem 5.13

If $f: X \to Y$ is a β^* - continuous function and Y is a Hausdorff space, then f has a (β^*, τ) - graph.

Proof

Let $(x, y) \in X \times Y$ such that $y \neq f(x)$ and Y be a Hausdorff space. Then there sexist two open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \phi$. Since f is β^* - continuous, there exists a β^* -open set W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \phi$. Therefore f has $a(\beta^*, \tau)$ - graph.

Corollary 6.2

If $f: X \to Y$ is β^* - continuous and Y is Hausdorff, then G(f) is β^* - closed in $X \times Y$.

Theorem 5.14

If $f: X \to Y$ has a (β^*, τ) -graph and $g: Y \to Z$ is a β^* - continuous function, then the set $\{(x, y): f(x) = g(y)\}$ is β^* - closed in $X \times Y$.

Proof:

Let $A = \{(x, y): f(x) = g(y)\}$ and (x, y). We have $f(x) \neq g(y)$ and then $(x, g(y)) \in (X \times Z) \setminus G(f)$. Since *f* has a (β^*, τ) - graph, then there exist a β^* - open set *U* and an set *V* containing *x* and g(y), respectively such that $f(U) \cap V = \phi$. Since *g* is a β^* - continuous function, then there exist an β^* - open set *G* containing *y* such that $g(G) \subseteq V$. We have $f(U) \cap g(G) = \phi$. This implies that $(U \times G) \cap A = \phi$. Since $U \times G$ is β^* - open, then $(x, y) \beta^*$ - cl(A). Therefore, *A* is β^* - closed in $X \times Y$.

Corollary 6.3

If $f: X \to Y$, $g: Y \to Z$ are β^* -continuous functions and Z is Hausdorff, then the Set $\{(x, y): f(x) = g(y)\}$ is β^* -closed in $X \times Y$.

Theorem 5.15

If $f: X \to Y$ is a β^* - continuous function and Y is Hausdorff, then the set $\{(x, y) \in X \times X: f(x) = f(y)\}$ is β^* - closed in $X \times X$.

Proof:

International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Let $A = \{(x, y): f(x) = f(y)\}$ and let $(x, y) \in (X \times X) \setminus A$. Then $f(x) \neq f(y)$. Since *Y* is Hausdorff, then there exist open sets *U* and *V* containing f(x) and f(y), respectively, such that $U \cap V = \phi$. But, *f* is β^* -continuous, then there exist β^* - open sets *H* and *G* in *X* containing *x* and *y*, respectively, such that $f(H) \subseteq U$ and $f(G) \subseteq V$. This implies $(H \times G) \cap A = \phi$ we have $H \times G$ is a β^* - open set in $X \times X$ containing (x, y). Hence, *A* is β^* - closed in $X \times X$.

Theorem 5.16

If $f: (X, \tau) \to (Y, \sigma)$ is β^* - continuous and S is closed in $X \times Y$, then $vx (S \cap G(f))$ is β^* - closed in X, where vxrepresents the projection of $X \times Y$ onto X.

Proof.

Let *S* be a closed subset of $X \times Y$ and $x \in \beta^*$ -*cl* Let $U \in \tau$ containing *x* and $V \in \sigma$ containing *f*(*x*). Since *f* is β^* -continuous, $x \in f^{-1}(V) \subseteq \beta^*$ - *int*($f^{-1}(V)$). Then $U \cap \beta^*$ - *int*($f^{-1}(V) \cap v x$ ($S \cap G(f)$) contains some point *z* of *X*. This implies that (*z*, *f*(*z*)) *S* and *f*(*z*) $\in V$. Thus we have ($U \times V$) $\cap S \neq \phi$ and hence (*x*, *f*(*x*)) *cl*(*S*). Since *A* is closed, then (*x*, *f*(*x*)) $S \cap G(f)$ and $x \in v x$ ($S \cap G(f)$). Therefore v x ($S \cap G(f)$) is β^* -closed in (X, τ).

II. CONCLUSION

A topological space (X, τ) is said to be β^* -connected if it is not the union of two nonempty disjoint β^* - open sets. If (X, τ) is a β^* connected space and $f:(X, \tau) \to (Y, \sigma)$ has a (β^*, τ) -graph and β^* - continuous function, the constant. Suppose that f is not constant. There exist disjoint points $x, y \in X$ such that f(x) = f(y). Since (x, f(x)) G(f), then $y \neq f(x)$, hence by, there exist open sets U and Vcontaining x and f(x) respectively such that $f(U) \cap V = \phi$. Since f is β^* - continuous, there exist a β^* - open sets G containing y such that $f(G) \subseteq V$. Since U and V are disjoint β^* - open sets of (X, τ) , it follows that (X, τ) is not β^* - connected Therefore, f is constant. Let $(X1, \tau 1), (X2, \tau 2)$ and (X, τ) be topological spaces. Define a function $f: (X, \tau) \to (X1 \times X2, \tau 1 \times \tau 2)$ by f(x) = (f(x1), f(x2)). Then fi: $X \to (Xi, \tau i)$, where (i = 1, 2) is β^* -continuous if f is β^* - continuous.

REFERENCES

- [1] Dontchev. J. and Noiri.T. Quasi-normal spaces and closed sets, Acta Math. Hungar. 89(3) (2000), 211-219.
- [2] O. Njastad On some classes of nearly open sets pacific .J. Math. 15 (1965), pp 47 53.
- [3] A.S. Mashhour, M.E. Abd. EI Monsef, S.N. EI Deeb on pre continuous and weak pre Continuous mappings Proc. Math. Phys. Soc. Egypt, 53 (1982), pp 47 – 53.
- [4] A.I.EL Magharabi, A.M. Mubarki Z open sets z Continuitty in topological space. Int. Journal Math Arch. 2(10) (2011), PP. 1819 1827.
- [5] E.Ekici On a open sets and decompositions of continuity and super continuity Annales Univ. Sci. Budapest, 51 (2008), p p 39 51.

45.98

IMPACT FACTOR: 7.129

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call : 08813907089 🕓 (24*7 Support on Whatsapp)