

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 11 Issue: III Month of publication: March 2023

DOI: https://doi.org/10.22214/ijraset.2023.49282

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Generalized Investigated in Topological Space

Kharatti Lal

Dept. of Applied Science – Mathematics, Govt. Millennium polytechnic College Chamba, CHAMBA - Himachal Pradesh – 176310 (INDIA)

Abstract: In this paper, some characterizations and proportion of notion a investigated. Throughout this paper (X, τ) and (Y, σ) (simply, X and Y) represent topological spaces on which separation axioms are assumed unless otherwise mentioned. We introduce a new class of sets called regular generalized open sets which is properly placed in between the class of open sets and the class of - open sets. Throughout this paper (X, τ) represents a topological space on which no separation axiom is assumed unless otherwise mentioned. For a subset A of a topological space X, cl (A) and int (A) denote the closure of A and the interior of A respectively. X/A or Ac denotes the complement of A in X. introduced and investigated semi open sets, generalized closed sets, regular semi open sets, weakly closed sets, semi generalized closed sets , weakly generalized closed sets, strongly generalized closed sets, generalized pre - regular closed sets, regular generalized closed sets, and generalized α -generalized closed sets respectively.

Keywords: Topological space, Cluster Point, Open and Closed set, β^* - Continuous, Subset, .Regular open closed set, Separation axioms

I. INTRODUCTION

A function $f:(X,\tau)\to (Y,\sigma)$ is called super-continuous (resp. a-continuous α -continuous pre-continuous δ - smi - continuous Z - continuous γ - continuous continuous Z^* - continuou

 $f^{-1}(V)$ is δ - open (resp. a-open, α -open, per open, δ -semiopen, Z-open, γ -open, e- open, Z^* - open, β -open, e^* -open) in X, for each $V \in \sigma$. the notion of β -open sets and β -continuity in topological space. The concepts of Z^* - open set and Z *- continuity introduced by Mubarki. The purpose of this paper introduce and study the notions of β^* - open sets, β^* - continuous functions and (β^* - open sets. For a subset A of a (X, τ) , cl(A), int(A) and $X \setminus A$ denote the closure of A, the interior of A and the complement of A, respectively. A subset A of a topological space (X, τ) is called regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). A point X of X is called δ - cluster point of A if $int(cl(U)) \cap A = \phi$, for every open set A of A containing A.

The set of all δ -cluster points of A is called δ -closure of A and is denoted cl $\delta(A)$. A set A is δ -closed if and if A = cl $\delta(A)$. The complement of a a-open (resp. α -open, δ -semiopen, δ -preopen, Z-open, Z

Lemma 1.1

Let A be a subset of a space (X, τ) . Then:

- (1) δ -pint(A) = $A \cap int(cl\delta(A))$ and δ -pcl(A) = $A \cup cl$ (int $\delta(A)$),
- (2) $\beta Int(A) = A \cap cl (int(cl(A))) \text{ and } \beta cl (A) = A \cup int (cl(int (A))).$

β* - Open sets

Definition 2.1

A subset A of a topological space (X, τ) is said to be:

- (1) a β * open set if $A \subseteq cl(int(cl(A))) \cup int(cl\delta(A))$,
- (2) a β * closed set if in $t(cl(int(A))) \cap cl(int \delta c(A)) \subseteq A$.
- (3) The family of all β^* open (resp. β^* closed) subsets of a space (X, τ) will be as always denoted by β^* O(X) (resp. β^* C(X)).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Remark 3.1

The following diagram holds for each a subset A of X.

None of these implications are reversible as shown in the following examples

Example 4.1

Let $X = \{a, b, c, d\}$, with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then:

- (1) A subset $\{b, c\}$ of X is β^* open but it is not β -open,
- (2) A subset $\{b, d\}$ of X is e^* open but it is not β^* open,

Example 4.2

Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then $\{a, e\}$ is β^* - open but it is not Z^* - open.

Remark 3.3

By the following example we show that the intersection of any two β^* -open sets is not β^* - open.

Example 4.4

Let $X = \{a, b, c\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are β^* -open sets. But, $A \cap B = \{c\}$ is not β^* - open

Definition 2.2

Let (X, τ) be a topological space. Then:

- (1) The union of all β * open sets of contained in A is called the β *-
- (2) interior of A and is denoted by β^* -int (A),
- (3) The intersection of all β * closed sets of X containing A is called
- (4) The β * closure of A and is denoted by β * cl(A).

Theorem 5.1

Let A, B be two subsets of a topological space (X, τ) . Then the following are hold:

- (1) β^* int(X) = X and β^* $int(\phi) = \phi$,
- (2) $B * int(A) \subseteq A$,
- (3) If $A \subseteq B$, then β^* int(A) $\subseteq \beta^*$ int(B),
- (4) $x \in \beta^*$ int(A) if and only if there exist β^* open W such that $x \in W \subseteq A$,
- (5) $A \text{ is } \beta * \text{ open set if and only if } A = \beta * \text{ int}(A),$
- (6) $B * int(\beta * int(A)) = \beta * int(A),$
- (7) $B * int(A \cap B) \subseteq \beta^* int(A) \cap \beta^* int(B),$
- (8) β^* $int(A) \cup \beta^*$ - $int(B) \subseteq \beta^*$ - $int(A \cup B)$.

Example 4.5

Let $X = \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$.

- (1) If $A = \{a, c\}$, $B = \{b, c\}$, then $\beta^* cl(A) = A$, $\beta^* cl(B) = B$ and $\beta^* cl(B) = B$
- (2) $lc(A \cup B) = X$. Thus $\beta^* cl(A \cup B) \not\subset \beta^* cl(A) \cup \beta^* cl(B)$,
- (3) If $A = \{a, c\}$, $C = \{a, b\}$, then $\beta * cl(C) = X$, $\beta * cl(A) = A$ and $\beta * (A \cap C) = \{a\}$. Thus $\beta * cl(A) \cap \beta * cl(C) \notin \beta * cl(A \cap C)$,
- (4) If $E = \{c, d\}$, $F = \{b, d\}$, then $E \cup F = \{b, c, d\}$ and hence β^*
 Int $(E) = \phi$, β^* int (F) = F and β^* int $(E \cup F) = \{b, c, d\}$. Thus β^*
 Int $(E \cup F) \not\subset \beta^*$ int $(E) \cup \beta^*$ int(F).

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Theorem 5.2

For a subset A in a topological space (X, τ) , the following statements are true:

- $B * cl(X/A) = X \setminus \beta * int(A),$ (1)
- (2) $\beta * - int(X \setminus A) = X / \beta * - cl(A).$

Proof.

It follows from the fact the complement of β *- open set is a β * - closed And $\bigcap_{i}(X/A_i) = X/\bigcup_{i}A_i$.

Theorem 5.3

Let A be a subset of a topological space (X, τ) . Then the following are *Equivalent to :*

- A is a β * open set, (1)
- (2) $A = \beta - int(A) \cup pint\delta(A)$

.Proof

(1) \Rightarrow (2). Let A be a β^* - open set. Then $A \subseteq cl$ (int(cl (A))) \cup int (cl $\delta(A)$) and hence by (Lemma 1.1) $A \subseteq (A \cap cl)$ $(int(cl(A)))) \cup (A \cap int(cl\delta(A))) = \beta - int(A) \cup pint\delta(A) \subseteq A, (2) \Rightarrow (1).$

Theorem 2.4

For a subset A of space (X, τ) . Then the following are equivalent:

- (1) A is a β * - closed set,
- (2) $A = \beta - cl(A) \cap pcl \delta(A),$

Proof

Theorem 5.5

 β^* * - Continuous function

Example 4.6

Let $X \{a, b, c, d\}$ with topology $\tau = \{\phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, b\}, \{a, c\}, \{a, c\}, \{a, b\}, \{a, c\}, \{a,$ $\{a, c, d\}, X\}$. Then, the function $f: (X, \tau) \to (X, \tau)$ defined by f(a) = a, f(b) = f(c) = c and f(d) = d is β^* - continuous but it is not β^* continuous. The function $f: (X, \tau) \to (X, \tau)$ defined by f(a) = d, f(b) = a, f(c) = c and f(d) = b is e^* -continuous but it is not β^* continuous.

Example 4.7

Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then function $f: (X, \tau) \to (X, \tau)$ which defined by f(a) = a, f(b) = e, f(c) = c, f(d) = d and f(e) = b is β^* -continuous but it is not Z^* -continuous.

Theorem 5.5

Let $f:(X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are Equivalent:

- f is β * continuous, (1)
- (2) For each $x \in X$ and $V \in \sigma$ containing f(x), there exists $U \in \beta * O(X)$
- (3) containing x such that $f(U) \subseteq V$, The inverse image of each closed set in Y is β * - closed in X,
- $int(cl(int(f-1(B)))) \cap cl(int\delta(f-1(B))) \subseteq f-1(cl(B)), for each B \subseteq Y,$ (4)
- (5) $f-1(int(B)) \subseteq cl(int(cl(f-1(B)))) \cup int(cl\delta(f-1(B))), \text{ for each } B \subseteq Y,$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

- β^* $cl(f-1(B)) \subseteq f-1(cl(B))$, for each $B \subseteq Y$,
- (7) $f(\beta * - cl(A)) \subseteq cl(f(A)), \text{ for each } A \subseteq X,$
- $f 1(int(B)) \subseteq \beta * int(f 1(B)), for each B \subseteq Y.$ (8)

Proof

- $(1) \Leftrightarrow (2)$ and $(1) \Leftrightarrow (3)$ are obvious,
- $(3) \Rightarrow (4)$. Let $B \subseteq Y$. Then by (3) f l(cl(B)) is β^* -closed. This

means $f-l(cl(B)) \supseteq int(cl(int(f-l(cl(B))))) \cap cl$ (int $\delta(f-l(cl(B)))) \supseteq int(cl(int(f-l(B)))) \cap cl$ (int $\delta(f-l(B)))$,

 $(4) \Rightarrow (5)$. By replacing Y/B instead of B in (4), we have

Int $(cl\ (int(f-l\ (Y/B)))) \cap cl\ (int\ \delta(f-l\ (Y/B))) \subseteq f-l\ (cl\ (Y/B))$, and

therefore $f - l(int(B)) \subseteq cl(int(cl(f - l(B)))) \cup int(cl\delta(f - l(B)))$, for each $B \subseteq Y$,

- $(5) \Rightarrow (1)$. Obvious,
- (3) \Rightarrow (6). Let $B \subseteq Y$ and $f l(c \mid B)$ be $\beta *$ closed in X. Then
- $B^*-cl(f-l(B)) \subseteq \beta^*-cl(f-l(cl(B))) = f-l(cl(B)),$
- (7). Let $A \subseteq X$. Then $f(A) \subseteq Y$. By (6), we have $f 1(cl(f(A))) \supseteq \beta^*$ -
- $Cl\ (f-1\ (f(A))) \supseteq \beta^* cl\ (A)$. Therefore, $cl\ (f(A)) \supseteq ff-l\ (cl\ (f(A))) \supseteq f\ (\beta^* cl\ (A))$,
- $(7) \Rightarrow (3)$. Let $F \subseteq Y$ be a closed set. Then, f l(F) = f l(cl(F)). Hence by
- $(7), f(\beta^*-cl(f-1(F))) \subseteq cl(f(f-1(F))) \subseteq (F) = F, \text{ thus, } \beta^*-cl(f-1(F)) \subseteq f-1(F),$
- so, $f-1(F) = \beta^* cl(f-1(F))$. Therefore, $f-1(F) \in \beta^* C(X)$,
- Int $(f I(int(B))) \subseteq \beta^*$ int (f I(B)). Therefore, $f I(int(B)) \subseteq \beta^*$ int (f I(B)),
- (8) \Rightarrow (1). Let $U \subseteq Y$ be an open set. Then $f I(U) = f I(int(U)) \subseteq \beta^*$ -int (f I(U)).

Hence, f - I(U) is β^* - open in X. Therefore, f is β^* - continuous.

Remarks 3.3

The composition of two β^* - continuous functions need not be β^* - continuous as show by the following example.

Example 4.7

Let $X = Y = Z = \{a, b, c, d\}$ with topologies $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$

. Let $f: X \to Y$ and $g: Y \to Z$ be functions defined

by f(a) = b, f(b) = b, f(c) = c, f(d) = d and g(a) = a, g(b) = c, g(c) = a, g(d) = d,

respectively. Then f and g are β *- continuous but $g \circ f$ is not β *- continuous.

Theorem 5.6

If $f: (X, \tau) \to (Y, \sigma)$ is a β^* - continuous function and A is δ - open in X, then the restriction $f \setminus A: (A, \tau) \to (Y, \sigma)$ is β^* continuous.

Proof.

Let V be an open set of Y. Then by hypothesis $f^{-1}(V)$ is β^* - open in X, we have $(fA)^{-1}(V) = f^{-1}(V) \cap A$ $\beta^* \in O(A)$. Thus, it follows that f/A is β^* -continuous.

Lemma 1.2

Let A and B be two subsets of a space (X, τ) . If $A \in \delta O(X)$ and $B \in \beta^* O(A)$, the $A \cap B \in \beta^* O(X)$.

Theorem 5.7

Let $(X, \tau) \to (Y, \sigma)$ be a function and $\{Gi: i \in I \ s\}$ be a cover of X by δ -open sets of (X, τ) . If $F/Gi: (Gi, \tau Gi) \to (Y, \sigma)$ is β^* continuous for each $i \in I$, then f is β^* -continuous.

Proof.

Let V be an open set of (Y, σ) . Then by $(V) = X \cap (V) = \bigcup \{Gi \cap f^{-1}(V): i \in I\} = \bigcup \{(f \setminus Gi)^{-1}(V): i \in I\}$. Since $f \setminus Gi$ is β^* -Continuous for each $i \in I$, then $(f / Gi)^{-1}(V) \in YO(Gi)$ for each $i \in I$, we s $(f \backslash Gi)^{-1}(V)$ is β^* - continuous in X. Therefore, f is β^* - continuous in (X, τ) .

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Theorem 5.8

The set of all points x of X at which a function f: $(X, \tau) \to (Y, \sigma)$ is not β^* - continuous is identical with the union of the β^* - frontiers of the inverse images of open sets containing f (x).

Proof. Necessity. Let x be a point of X at which f is not β^* - continuous. Then, there is an open set V of Y containing f(x) such that $U \cap (X \backslash f^{-1}(V)) \neq \emptyset$, for every $U \in \beta^*O(X)$ containing x. Thus, we have $x \in \beta^*$ - $cl(X \backslash f^{-1}(V)) = X / \beta^*$ - $int(f^{-1}(V))$ and $x \in f^{-1}(V)$. Therefore, we have $x \in \beta^*$ - $Fr(f^{-1}(V))$. Sufficiency. Suppose that $x \in \beta^*$ - $Fr(f^{-1}(V))$, for some V is open set containing f(x). Now, we assume that f is β^* - continuous at $x \in X$. Then there exists $U \in \beta^*O(X)$ containing x such that $f(U) \subseteq V$. Therefore, we have $x \in U \subseteq f^{-1}(V)$ and hence $x \in \beta^*$ - $int(f^{-1}(V)) \subseteq X / \beta^*$ - $Fr(f^{-1}(V))$. This is a contradiction. This means that f is not β^* - continuous at $x \in V$.

Theorem 5.9

If $f: (X, \tau) \to (Y, \sigma)$ is $\alpha \beta^*$ -continuous injection and (Y, σ) is Ti, then (X, τ) is β^* -Ti, where i = 0, 1, 2.

Proof.

We prove that the theorem for i = 1. Let Y be T_1 and x, y be distinct points in X. There exist open—subsets U, V in Y such that $f(x) \in U$, $f(y) \notin U$, $f(x) \notin V$ and $f(y) \in V$. Since f is β * - continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are β * - open subsets of X such that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$, $x \notin f^{-1}(V)$ and $y \in f^{-1}(V)$. Hence, X is β * - T_1 .

Theorem 5.10

If $f: (X, \tau) \to (Y, \sigma)$ is β^* - continuous, $g: (X, \tau) \to (Y, \sigma)$ is super-continuous and Y is Hausdorff, then the set $\{x \in X: f(x) = G(x)\}$ is β^* - closed in X. $f: \beta^*$ - continuous in (X, τ) .

Proof:

Let $A = \{x \in X : f(x) = g(x)\}$ and $x \notin A$. Then $f(x) \neq g(x)$. Since Y is Hausdorff, there exist open sets U and V of Y such That $f(x) \in U$, $g(x) \in V$ and $U \cap V = \phi$. Since f is β^* - continuous, there exists a β^* - open set G containing G such that $f(G) \subseteq U$. Since G is super - continuous, there exist an G-open set G containing G such that G and the G is super - open set containing G and G and G is G is super - open set G open set G

Explain : Definition 2.4 A function $f: X \to Y$ has a (β^*, τ) - graph if for each $(x, y) \in (X \times Y) / G(f)$, there exist a β^* -open U of X containing x and an open set Y of Y containing y such that $(U \times V) \cap G(f) = \phi$. **Proof:** It follows readily from the above definition.

Theorem 5.11

If $f: X \to Y$ is a $\beta *$ - continuous function and Y is Hausdorff, then f has a $(\beta *, \tau)$ s - graph.

Proof.

Let $(x, y) \in X \times Y$ such that $y \neq f(x)$. Then there exist open see that $y \in U$, $f(x) \in V$ and $V \cap U = \phi$. Since f is $\beta *$ - continuous, there exists $\beta *$ - open W containing x such that $f(W) \subseteq V$. This $I(W) \cap U \subseteq V \cap U = \phi$.

Definition 2.5

A space X is said to be β^* - compact if every β^* - open cover of X has a finite subcover.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Theorem 5.12

If f: $(X, \tau) \to (Y, \sigma)$ has a (β^*, τ) - graph, then f(K) is closed in (Y, σ) for each subset K which is β^* - compact relative to (X, τ) .

Proof.

Suppose that $y \in f(K)$. Then $(x, y) \in G(f)$ for each $x \in K$. Since G(f) is (β^*, τ) - graph, there exist a β^* - open set U x containing x and an open set V x of Y containing y such that $f(U|x) \cap V|x = \emptyset$. The family $\{U|s|x: x \in K\}$ is a cover of K by β^* -open sets. Since K is β^* -compact relative to (X, τ) , there exists a finite subset—that $K \subseteq \bigcup \{U|x: x \in K_0\}$. Let $V = \bigcap \{V|x: x \in K_0\}$. have $f(K) \cap V \subseteq \bigcup_{x \in K_0} f(U_x) \cap V \subseteq \bigcup_{x \in K_0} f(U_x) \cap V = \emptyset$. It follows that, $y \in cl(f(K))$. Therefore, f(K) is closed in (Y, σ) .

Corollary 6.1

If $f: (X, \tau) \to (Y, \sigma)$ is β^* -continuous function and Y is Hausdorff, then f(K) is closed in (Y, σ) for each subset K which is β^* -compact relative to (X, τ) .

Theorem 5.13

If f: $X \to Y$ is a β * - continuous function and Y is a Hausdorff space, then f has a (β^*, τ) - graph.

Proof

Let $(x, y) \in X \times Y$ such that $y \neq f(x)$ and Y be a Hausdorff space. Then there sexist two open sets U and V such that $y \in U$, $f(x) \in V$ and $V \cap U = \phi$. Since f is β * - continuous, there exists a β *-open set W containing x such that $f(W) \subseteq V$. This implies that $f(W) \cap U \subseteq V \cap U = \phi$. Therefore f has $a(\beta)$ *, τ - graph.

Corollary 6.2

If f: X \rightarrow *Y is* β^* - *continuous and Y is Hausdorff, then G(f) is* β^* - *closed in X* \times *Y.*

Theorem 5.14

If $f: X \to Y$ has a (β^*, τ) -graph and $g: Y \to Z$ is a β^* -continuous function, then the set $\{(x, y): f(x) = g(y)\}$ is β^* -closed in $X \times Y$.

Proof:

Corollary 6.3

If $f: X \to Y$, $g: Y \to Z$ are β^* -continuous functions and Z is Hausdorff, then the Set $\{(x, y): f(x) = g(y)\}$ is β^* -closed in $X \times Y$.

Theorem 5.15

If $f: X \to Y$ is a β^* -continuous function and Y is Hausdorff, then the set $\{(x, y) \in X \times X: f(x) = f(y)\}$ is β^* -closed in $X \times X$.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 11 Issue III Mar 2023- Available at www.ijraset.com

Proof:

Let $A = \{(x, y): f(x) = f(y)\}$ and let $(x, y) \in (X \times X) \setminus A$. Then $f(x) \neq f(y)$. Since Y is Hausdorff, then there exist open sets U and V containing f(x) and f(y), respectively, such that $U \cap V = \emptyset$. But, f is β^* -continuous, then there exist β^* - open sets H and G in X containing X and Y, respectively, such that $f(H) \subseteq U$ and $f(G) \subseteq V$. This implies $(H \times G) \cap A = \emptyset$ we have $H \times G$ is a β^* - open set in $X \times X$ containing (X, Y). Hence, $X = X \setminus X$ is a $X = X \setminus X$.

Theorem 5.16

If $f: (X, \tau) \to (Y, \sigma)$ is β^* -continuous and S is closed in $X \times Y$, then $vx (S \cap G(f))$ is β^* -closed in X, where vx-represents the projection of $X \times Y$ onto X.

Proof.

Let *S* be a closed subset of $X \times Y$ and $x \in \beta^*$ -cl Let $U \in \tau$ containing x and $V \in \sigma$ containing f(x). Since f is β^* -continuous, $x \in f^{-1}(V) \subseteq \beta^*$ - $int(f^{-1}(V))$. Then $U \cap \beta^*$ - $int(f^{-1}(V)) \cap v$ and $x \in G(f)$ contains some point $x \in G(f)$. This implies that $(x, f(x)) \cap G(f)$ and $x \in V$ and $x \in V$

II. CONCLUSION

A topological space (X, τ) is said to be β^* -connected if it is not the union of two nonempty disjoint β^* - open sets. If (X, τ) is a β^* -connected space and $f:(X, \tau) \to (Y, \sigma)$ has a (β^*, τ) -graph and β^* -continuous function, the constant. Suppose that f is not constant. There exist disjoint points $x, y \in X$ such that f(x) = f(y). Since (x, f(x)) G(f), then $y \neq f(x)$, hence by, there exist open sets U and V containing x and f(x) respectively such that $f(U) \cap V = \phi$. Since f is g - continuous, there exist a g - open sets G containing g such that $g(G) \subseteq V$. Since g and g are disjoint g-open sets of g-open sets of g-open sets of g-continuous.

REFERENCES

- [1] Dontchev. J. and Noiri.T. Quasi-normal spaces and closed sets, Acta Math. Hungar. 89(3) (2000), 211-219.
- [2] O. Njastad On some classes of nearly open sets pacific .J. Math. 15 (1965), pp 47 53.
- [3] A.S. Mashhour, M.E. Abd. EI Monsef, S.N. EI Deeb on pre continuous and weak pre Continuous mappings Proc. Math. Phys. Soc. Egypt, 53 (1982), pp 47 53.
- [4] A.I.EL Magharabi, A.M. Mubarki Z open sets z Continuitty in topological space. Int. Journal Math Arch. 2(10) (2011), PP. 1819 1827.
- [5] E.Ekici On a open sets and decompositions of continuity and super continuity Annales Univ. Sci. Budapest, 51 (2008), p p 39 51.

10.22214/IJRASET

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)