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Abstract: In contemporary agriculture, leveraging advanced technologies has become crucial for maximizing greenhouse 

productivity and mitigating pest-related issues. Traditional monitoring systems often fall short due to their manual nature and 

delayed responsiveness to environmental fluctuations. This paper introduces a smart greenhouse monitoring and control system 

that integrates the Internet of Things (IoT) with artificial intelligence (AI) to deliver a robust solution. Utilizing an array of 

sensors, the system continuously tracks vital parameters such as temperature, humidity, air composition, and light levels. A 

central microcontroller interprets these readings and activates corresponding actuators to maintain favorable growing 

conditions. Additionally, a pest detection unit powered by a convolutional neural network (CNN) enables early identification of 

infestations by analyzing plant images. This combination of real-time environmental regulation and AI-based pest monitoring 

presents a comprehensive and efficient framework for modern greenhouse management, enhancing both sustainability and 

productivity while minimizing manual labor. 
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I. INTRODUCTION 

Agriculture is a foundational aspect of India’s economy, with a significant proportion of the population depending on it for their 

livelihood. Nevertheless, conventional farming methods often face limitations in meeting the growing food demand, largely due to 

irregular climatic conditions and pest outbreaks. To overcome these obstacles and increase efficiency, the adoption of innovative 

technological tools in agriculture has become essential. Greenhouse farming, which provides a controlled setting for crop 

cultivation, has emerged as a viable solution. Yet, challenges persist in efficiently regulating these environments and detecting plant 

diseases at early stages. In recent years, technological strides in sensor networks, wireless communication, machine learning, and 

cloud platforms have shaped what is known as Agriculture 4.0. These advancements are critical in developing automated and 

intelligent greenhouse systems aimed at improving crop health and yield. 

This paper details the design and implementation of a smart greenhouse solution that employs real-time sensor data collection, 

automated control mechanisms, and image-based disease recognition. The proposed Greenhouse Crop Monitoring and Disease 

Identification System seeks to minimize manual oversight, enhance operational efficiency, and provide proactive solutions for 

sustainable farming. 

 

II. RELATED WORKS 

Previous research in the field has yielded various innovations in smart farming systems. Farooq et al. [1] introduced an IoT-driven 

model aimed at enhancing greenhouse performance, addressing sensor communication methods and security concerns within smart 

agricultural environments. 

Martin [2] implemented a robot operating system (ROS)- based framework combining manipulation and sensing tools to facilitate 

early pest identification. This approach enhanced detection speed and allowed targeted pesticide deployment. Dong [3] built a web 

GIS-based solution for predicting and tracking the spread of agricultural pests across China. Machine learning was used to improve 

forecasting accuracy and reduce dependence on chemical interventions. 

Subahi [4] explored an energy-conscious temperature control system leveraging IoT analytics and Petri Nets. Their model included 

a dynamic graph system that supported real-time visualization of crop status. 

Geng [5] proposed a dual-controller approach using both Raspberry Pi and Arduino units to streamline data processing and improve 

communication reliability. Techniques like filtering algorithms and cyclic redundancy checks (CRC) were employed to enhance 

long-range data transmission. Additional research has covered a broad spectrum of IoT- based applications in farming, such as smart 

irrigation using AI, LoRaWAN-enabled sensor networks, and cloud-based predictive systems, highlighting the versatility and impact 

of such technologies. 
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III. METHODOLOGY 

The proposed greenhouse monitoring system integrates Internet of Things (IoT) technology with artificial intelligence (AI) to ensure 

real-time environmental control and early disease detection. The methodology centers around the dual objectives of maintaining 

optimal crop-growing conditions and performing image-based pest or disease diagnosis. The system employs environmental 

sensors, a microcontroller-based control logic, image acquisition tools, and a convolutional neural network (CNN) for classification. 

All components are synchronized to form a closed-loop decision-making structure that minimizes human intervention and maximizes 

productivity. 

 

 
Figure 1. Block Diagram of the Smart Greenhouse System Architecture 

 

A. Sensor Data Acquisition 

Sensor data acquisition is the first step in the monitoring process. The system uses a combination of sensors to measure 

environmental variables such as temperature, humidity, light intensity, and air quality. These sensors are interfaced with the Arduino 

Nano microcontroller, which collects and interprets real-time data. Sensor readings are continuously monitored to detect deviations 

from optimal thresholds for greenhouse conditions. 

 

B. Environmental Parameter Regulation: 

Environmental control is managed by actuators triggered through predefined logic in the microcontroller. When a sensor detects a 

parameter outside of its acceptable range, corresponding devices such as fans, artificial lighting, and buzzers are activated. This 

ensures that the greenhouse remains within optimal growing conditions. The control logic is designed to be flexible, allowing future 

upgrades to intelligent decision-making techniques like fuzzy logic or PID control for more precise regulation. 
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C. Image Acquisition and Preprocessing 

In parallel, a camera module installed inside the greenhouse captures periodic images of plant leaves. These images form the input 

for disease and pest analysis. To maintain consistency, captured images are preprocessed through resizing, normalization, and 

segmentation. These steps remove noise, isolate the leaf regions, and standardize input formats, enhancing the classification model's 

efficiency and accuracy. 

 

D. Convolutional Neural Network Classification 

Image classification is carried out using a trained convolutional neural network. The CNN model identifies visual symptoms of plant 

diseases or pest infestations based on color distortion, texture irregularities, and shape anomalies in leaf surfaces. The model has 

been enhanced through the use of data augmentation, dropout regularization, and transfer learning to increase generalization and 

robustness. Upon classification, the output identifies whether the plant is healthy or infected and, in some cases, specifies the type of 

disease or pest. 

 

E. Alert and Notification System 

The alert mechanism is responsible for notifying users of any anomalies in environmental parameters or pest detection results. When 

a deviation is observed or an infection is detected, the microcontroller triggers visual and audio alerts using an LCD display and 

buzzer. These alerts ensure that field personnel can take prompt corrective action. Additionally, data can be transmitted wirelessly to 

a computer for remote monitoring and long-term data analysis. 

 

F. Feedback Workflow Integration 

The entire system operates in a closed-loop feedback structure. Sensor readings and camera data are continuously updated, 

processed, and used to make real-time decisions. This ensures synchronized monitoring of both environmental and biological factors, 

significantly reducing the dependence on manual supervision and enabling proactive management of greenhouse conditions. 

 

IV. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

The proposed smart greenhouse management system is organized into two main functional blocks: an environmental monitoring 

module and a pest detection module. Together, these subsystems provide automated environmental control and disease monitoring 

to reduce manual intervention and enhance crop yield. This architecture ensures modular operation, real-time adaptability, and 

expandability for future enhancements like pesticide dispensing. 

 

A. Environmental Monitoring Module 

This module forms the core of the greenhouse automation loop. It integrates multiple environmental sensors with an Arduino Nano 

microcontroller for real-time monitoring and control. The sensors collect data on parameters such as temperature, humidity, light 

intensity, and air quality. These readings are evaluated against predefined threshold values. When a deviation is detected, the system 

actuates relevant devices—such as fans for ventilation or artificial lighting—to restore optimal conditions. An LCD display is used to 

show current readings and system statuses. Communication with a PC for data logging or further analysis is handled via a UART 

interface, enabling live updates or historical reviews. This module is designed to operate with minimal latency, ensuring timely 

environmental responses. 

 

B. Pest Detection Module 

The pest detection unit functions independently but complements the environmental monitoring subsystem. It consists of a camera 

that captures periodic images of plant leaves. These images are analyzed using a convolutional neural network trained on a dataset 

of pest-infected and healthy leaf samples. The model considers visual features such as discoloration, pattern distortion, and texture 

anomalies to determine the health of the plant. Once a pest or disease is detected, an alert is generated on the connected PC interface. 

The modular structure allows future expansion of this unit to include automated pesticide spraying using servo-controlled dispensers, 

making the platform more responsive and self- sufficient. 

 

C. Integrated Control Logic 

The Arduino Nano, powered by an ATmega328P microcontroller, serves as the central decision-making unit for the environmental 

monitoring module.  
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It provides sufficient I/O lines, analog inputs, and UART support for managing all connected peripherals. Sensor inputs are read 

periodically and compared with stored setpoints. Based on this logic, actuators such as DC fans or relays are triggered to adjust the 

internal environment. The modular coding approach supports easy updates, allowing for future inclusion of advanced control 

algorithms like PID or fuzzy logic controllers. 

 
Figure 2. Operational Flowchart of the Smart Greenhouse Monitoring and Control System 

 

D. Hardware Implementation 

The core hardware components are selected for low power consumption and ease of integration. The LM35 temperature sensor 

provides linear analog voltage output relative to Celsius temperature. The DHT11 sensor complements this by providing both 

temperature and humidity in digital format. 

The light sensor, typically implemented with a light- dependent resistor (LDR), helps regulate artificial lighting based on ambient 

conditions. The MQ135 air quality sensor is used to monitor harmful gases, which is critical for maintaining safe greenhouse 

conditions. 

The 16x2 LCD display is used to output sensor readings and system messages. It is interfaced in 4-bit mode to conserve GPIO pins on 

the Arduino Nano. The power supply unit includes voltage regulators to step down external voltages to 5V or 12V as required by the 

components. It is also designed with overcurrent protection features to prevent damage during operational faults. 

The DC fan is a critical actuator in this setup. Controlled via a relay or MOSFET driver circuit, it ensures air circulation and 

temperature control. Its 12V operation makes it compatible with typical greenhouse power setups and allows for scalable power 

delivery. 

 

E. System Integration and Workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. System Integration and Component Workflow of the Smart Greenhouse Monitoring System 
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Once powered, the sensors begin data acquisition at defined intervals. The Arduino Nano reads these values and displays them on 

the LCD in real time. If environmental conditions deviate from the set thresholds, corresponding actuators are activated 

immediately. Simultaneously, thecamera module captures images of the crop and sends them to the CNN model for analysis. If an 

anomaly is detected, a signal is sent to the PC interface, alerting the user. This entire workflow operates in a loop, continuously 

adjusting environmental parameters while monitoring plant health.This hybrid approach ensures that both environmental and 

biological aspects of crop health are addressed in a synchronized and intelligent manner. The separation of modules also allows 

independent upgrades and maintenance, increasing the overall robustness of the system. 

 

V. RESULTS AND DISCUSSION 

The developed smart greenhouse monitoring system was deployed and tested in a controlled greenhouse environment to evaluate its 

performance in real-time conditions. The system was assessed based on sensor accuracy, actuation timing, pest detection efficiency, 

and overall impact on plant health and environmental stability. 

 

A. Environmental Monitoring Performance 

The Arduino Nano-based environmental monitoring module demonstrated stable and accurate sensor readings throughout the test 

period. Sensors including the LM35, DHT11, MQ135, and light sensor consistently delivered real- time data within acceptable 

tolerance limits. Temperature readings showed a deviation of less than ±0.5°C from a standard reference thermometer, while 

humidity values from the DHT11 remained within ±2% relative humidity. Light sensor readings were responsive to both natural and 

artificial lighting changes, facilitating effective lighting control. 

Actuators such as the 12V DC fan and external lighting systems were successfully controlled via the microcontroller logic. The 

system reacted promptly to environmental fluctuations, with activation delay times averaging less than 1.5 seconds after threshold 

breach. The LCD display provided continuous feedback, presenting live values for all monitored parameters. This helped the 

operator verify system behavior and make on-the-spot decisions when needed. 

 

B. Alert Mechanism and Safety Protocols 

The alerting subsystem, consisting of visual and audio indicators, was tested by simulating extreme environmental conditions. When 

thresholds were exceeded— such as high CO₂ levels detected by the MQ135 or low humidity during peak sunlight hours—the 

buzzer and LCD display activated accordingly. These alerts served as an effective early warning system, enabling immediate human 

intervention in critical scenarios. Additionally, the UART communication with a PC allowed historical data to be logged and 

graphed for long-term trend analysis and threshold optimization. 

Parameter Observation / Metric Remarks 

Temperature Accuracy  

±0.5°C (LM35) 

Within standard tolerance 

Humidity Accuracy ±2% RH (DHT11) Reliable for greenhouse control 

Actuation Response Time  

<1.5 seconds 

Fast enough for real-time control 

 

Light Sensor Response 

High sensitivity to natural/artificial 

light 

Enabled dynamic lighting control 

 

Alert System 

Visual + Buzzer triggered at 

threshold breach 

Effective early warning 

Communication Latency (UART) <300 ms, even with extended 

cabling 

Stable and scalable 

 

Pest Detection Accuracy 

 

91.7% (CNN- 

based classification) 

High performance with low false detections 

 

Pest Detection Time 

 

~2 seconds per image 

Reasonably fast for real- time detection 

 

Plant Health Improvement 

 

20% increase vs control group 

Verified via manual and image-based tracking 

 

System Uptime/Stability 

Stable during 

full 30-day period 

No major data loss or failures observed 

Table 1. Summary of Smart Greenhouse System Performance Metrics and Observations 
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C. Pest Detection Accuracy and Responsiveness 

The pest detection module, which utilized a convolutional neural network for image-based classification, yielded strong 

performance during the field tests. A diverse dataset of healthy and pest-infected leaves was used to evaluate the model. The CNN 

achieved an average classification accuracy of 91.7%, successfully detecting anomalies in the form of discoloration, spots, and 

texture deviations. In operational conditions, the average processing time per image was approximately 2 seconds, making the 

solution both accurate and time-efficient. 

The system demonstrated a low rate of false positives and false negatives, largely attributed to the use of image preprocessing 

techniques such as normalization and segmentation. Data augmentation during training improved the model’s generalization across 

varying lighting and background conditions. The real-time image analysis and classification were conducted on an external system 

connected to the camera module, and results were relayed via PC interface, providing actionable insights to the operator. 

 
Figure 5. Comparative Analysis of Plant Health and System Performance Metrics 

 

D. Impact on Plant Health and Growth Efficiency 

The deployment of the automated monitoring and control system had a measurable impact on the greenhouse's microclimate and 

plant vitality. Over a 30-day testing period, plants grown under the automated system exhibited a 20% increase in health metrics 

compared to those in a non- automated greenhouse control group. These metrics included leaf color richness, stem firmness, and 

growth rate, all of which were tracked manually and verified through image- based documentation. 

The improved growth performance is attributed to the system’s ability to maintain stable growing conditions and reduce plant stress 

due to temperature fluctuations or poor air quality. The pest detection mechanism also contributed by enabling early identification 

and manual containment of pest threats before visible crop damage occurred. 

 
Figure 6. Comparative Analysis of Plant Growth 

 

Wireless communication between various components of the system, particularly between the microcontroller and PC interface, was 

stable throughout the test duration. Data packets transmitted via UART showed negligible loss, and communication latency 

remained below 300 milliseconds even in extended setups with longer cabling and environmental interference. This ensures the 

system can scale to larger greenhouse areas without compromising on responsiveness or reliability. 
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E. Limitations and Future Improvements 

While the current implementation performed reliably, there are areas for further enhancement. The CNN model, although accurate, 

was dependent on external processing hardware. A more efficient edge computing solution, such as integration with a Raspberry Pi 

or NVIDIA Jetson Nano, could support real-time onboard image classification. Additionally, the planned integration of an 

automated pesticide spraying module will further reduce manual intervention and improve pest management responsiveness. 

 

VI. CONCLUSION 

The smart greenhouse monitoring system presents a cost-effective, scalable solution that integrates IoT-based environmental sensing 

with AI-driven pest detection to automate modern agriculture. By monitoring key parameters such as temperature, humidity, light 

intensity, and gas levels in real time, it ensures precise climate control and optimal plant health while minimizing human 

intervention. Its modular design, using accessible components like Arduino Nano, LM35, DHT11, and MQ135 sensors, supports 

easy customization for different crops and climates. The system demonstrated high sensing accuracy, fast communication, and 

improved crop outcomes during field tests. It promotes sustainability by reducing energy, water waste, and pesticide use through 

intelligent automation. Future enhancements could include cloud integration for remote monitoring, edge computing with Raspberry 

Pi for real-time AI processing, solar power adoption, automated nutrient and pesticide dispensing, predictive analytics for proactive 

care, wireless mesh networking for large deployments, and interoperability with other platforms. This innovative architecture paves 

the way for transforming greenhouses into intelligent, self-regulating environments, advancing productivity and eco-friendly 

farming practices, and contributing to the global push toward sustainable and smart agriculture. 
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