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Abstract: This study explores the application of generative artificial intelligence (AI) to convert unstructured medical image data 

into structured formats. Medical imaging is vital for diagnosis and treatment, yet handling the large volume of unstructured data 

presents challenges. Utilizing generative AI, particularly convolutional neural networks (CNNs), enables the transformation of 

raw medical images into structured data representations. By integrating AI techniques, this approach enhances the accessibility 

and interoperability of medical imaging data, providing valuable insights for healthcare professionals. The proposed 

methodology aims to streamline the process, optimizing scalability and reproducibility without extensive reliance on DevOps 

practices. This research signifies a significant step towards leveraging AI for efficient utilization of medical imaging data in 

healthcare applications. 
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I. INTRODUCTION 

In recent years, the domain of medical imaging has witnessed a remarkable transformation, driven by technological advancements and 

data-centric approaches that have revolutionized healthcare diagnostics and treatment. A prominent catalyst for this transformation is 

the integration of generative artificial intelligence (AI) and DevOps (Development and Operations) methodologies, which have 

reshaped the conversion of unstructured medical image data, specifically X-ray images, into structured and actionable information. 

This survey paper provides a comprehensive overview of the synergistic application of generative AI and DevOps within the context 

of medical X-ray data, offering insights into the methods, applications, and challenges that define this dynamic and evolving 

landscape. 

Medical imaging, with X-ray imaging at its core, has been a cornerstone of clinical diagnosis and patient care for decades. However, 

the traditional interpretation of X-ray images is characterized by its labour-intensive nature, resource demands, and susceptibility to 

interobserver variability. The advent of generative AI techniques, such as deep learning, has introduced a transformative element into 

the equation by automating the interpretation of medical images. These AI models have the potential to enhance the speed and 

precision of diagnostic procedures by extracting meaningful insights from images, enabling healthcare providers to make quicker and 

more informed decisions. Simultaneously, the healthcare sector has adopted DevOps practices, streamlining the deployment and 

maintenance of AI models within clinical settings. DevOps methodologies emphasize collaboration between development and IT 

operations teams, facilitating the continuous integration, deployment, and monitoring of AI systems. When applied to the conversion 

of medical image data, DevOps practices ensure the reliability, scalability, and compliance of AI-driven solutions, enhancing their 

practical utility and trustworthiness in medical contexts. 

This survey paper delves into the various applications of generative AI and DevOps within the realm of medical X-ray data, 

encompassing a wide spectrum of use cases, from disease detection and diagnosis to patient management and treatment planning. It 

explores the underlying principles of these technologies, presenting a range of generative AI models employed for image analysis and 

the DevOps workflows supporting their implementation in clinical environments. Furthermore, the paper addresses the myriad 

challenges associated with the convergence of generative AI and DevOps within healthcare, including data privacy, security, ethical 

considerations, regulatory compliance, and the need for robust validation and benchmarking processes. In summary, the 

amalgamation of generative AI and DevOps methodologies has immense potential to transform unstructured medical image data, 

particularly X-rays, into structured, actionable insights that can redefine patient care. This survey paper aims to provide an in-depth 

exploration of the current state of the field, shedding light on the opportunities and obstacles presented by this emerging paradigm. It 

serves as a foundational resource for researchers, healthcare professionals, and technology practitioners navigating and contributing to 

this exciting frontier of healthcare innovation. 
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II. RELATED WORK 

The integration of generative AI and DevOps practices in the conversion of medical image data, particularly X-rays, represents a 

burgeoning field that has garnered significant attention from researchers and practitioners. A review of related work reveals a wide 

array of approaches, techniques, and applications that contribute to the advancement of this intersection. 

1) Generative AI in Medical Imaging: Generative AI techniques, such as convolutional neural networks (CNNs) and generative 

adversarial networks (GANs), have been extensively applied in medical imaging. For instance, works by Ronneberger et al. [1] 

introduced the U-Net architecture, a deep learning model tailored for medical image segmentation. GANs, as demonstrated by 

Chartsias et al. [2], have been employed for data augmentation and synthesis of medical images, addressing the scarcity of 

labeled data 

2) Structured Data Extraction: The conversion of unstructured medical image data to structured data has been a focus of research. 

Liang et al. [3] developed a framework for organ localization and disease detection in chest X-rays. This approach not only 

extracts structured information but also aids in clinical decision-making. 

3) DevOps in Healthcare: The application of DevOps methodologies within healthcare systems is gaining traction. Researchers 

like Radziwill et al. [4] have emphasized the importance of continuous integration and deployment of AI models in healthcare 

settings. Their work highlights the advantages of efficient and automated software pipelines for medical AI applications 

4) Ethical and Regulatory Considerations: As the deployment of AI in healthcare intensifies, ethical and regulatory aspects 

become increasingly critical. Notable contributions from Obermeyer and Emanuel [5] and Beam and Kohane [6] underscore the 

necessity of addressing issues such as bias, transparency, and data privacy in the development and deployment of AI-driven 

medical systems. 

5) Benchmark Datasets and Challenges: Various benchmark datasets and challenges have been established to facilitate the 

evaluation and comparison of algorithms and models in medical imaging. The CheXpert dataset [7] is a prime example for 

chest X-ray analysis, while initiatives like the Medical Imaging Decathlon [8] offer comprehensive evaluation platforms for a 

range of medical imaging tasks. 

6) Clinical Applications: Research has also explored the practical applications of generative AI and DevOps in clinical settings. 

For instance, works by Irvin et al. [9] and Rajkomar et al. [10] have demonstrated the use of AI models in diagnosing diseases 

from X-ray images and their integration into clinical workflows. 

 

III. METHODOLOGIES 

The conversion of medical image data to structured data represents a pivotal intersection of advanced technologies with healthcare, 

promising improved diagnostics, data-driven decision-making, and enhanced patient care. This methodology delineates a 

comprehensive framework for achieving this transformation while maintaining a stringent focus on ethics, precision, and regulatory 

compliance. In the context of converting medical image data, particularly X-rays, into structured data using Generative AI and 

DevOps, a set of rigorous and multifaceted approaches are deployed. These approaches encompass the collection, preparation, and 

transformation of raw medical images into structured, actionable data that can revolutionize clinical practices. The methodological 

underpinnings explored in this survey paper encapsulate a rich tapestry of mathematical models, computational techniques, and 

practical guidelines that facilitate the seamless integration of Generative AI and DevOps into the field of medical imaging. Each 

aspect of this methodology plays a pivotal role in ensuring not only the accuracy and reliability of structured data extraction but also 

compliance with ethical and regulatory standards governing the healthcare domain. Through a detailed exploration of these 

methodologies, this paper aims to shed light on the intricate processes that enable the fusion of advanced technologies with the 

crucial realm of medical imaging, opening doors to unprecedented advancements in patient care, diagnostics, and healthcare 

decision support. 

 

A. Generative Adversarial Networks (GANs) in Medical Imaging 

GANs are a class of deep learning models that consist of two neural networks, the generator and the discriminator, engaged in a 

competitive learning process. The generator creates synthetic data from random noise, while the discriminator evaluates how well 

the generated data matches real data. Mathematically, GANs are formulated as an optimization problem that minimizes a loss 

function, which guides the generator to produce increasingly realistic data. GANs have found applications in medical imaging for 

generating synthetic X-ray images, helping to augment limited datasets for model training and to enhance the quality of structured 

data generation. 
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B. Convolutional Neural Networks (CNNs) 

CNNs are a class of neural networks that have revolutionized image analysis tasks. At their core, CNNs employ mathematical 

convolution operations to detect patterns and features within images. These operations are complemented by activation functions 

like the rectified linear unit (ReLU), pooling layers for spatial down-sampling, and fully connected layers for classification or 

regression. Mathematically, the CNN learns feature hierarchies through weight optimization, which allows it to capture relevant 

patterns in medical X-ray images, making them suitable for tasks such as image segmentation and feature extraction for structured 

data conversion. 

 

C. Image Processing Algorithms 

Traditional image processing algorithms are rooted in mathematical operations. Techniques like convolution employ mathematical 

convolution kernels to filter and process pixel values in an image. Edge detection algorithms use differentiation and gradient 

operations to identify boundaries between objects. Mathematically, these algorithms often employ linear and non-linear 

transformations on pixel values. In the context of medical imaging, such algorithms can be utilized for preprocessing tasks, 

including noise reduction and image enhancement, which contribute to more accurate structured data extraction. 

 

D. Segmentation Models 

Image segmentation involves partitioning an image into meaningful regions. Mathematical models behind segmentation can vary 

widely. Region-based methods, such as the watershed transform, are based on mathematical morphology, where the image is treated 

as a topographical landscape. Contour-based methods, like active contours (snakes), use mathematical curves and energy 

minimization to delineate boundaries. Deep learning-based semantic segmentation models utilize CNN architectures and employ 

convolutional and max-pooling operations to classify each pixel in an image. Mathematically, these models involve optimization 

techniques, such as gradient descent, to optimize segmentation masks and produce structured data representing segmented regions in 

X-ray images. 

 

E. Feature Extraction and Dimensionality Reduction. 

Feature extraction techniques, such as Principal Component Analysis (PCA), are mathematical methods used to reduce the 

dimensionality of data while preserving its essential information. PCA, for instance, involves linear algebra techniques, including 

eigenvalue decomposition, to find orthogonal axes that capture the most variance in the data. In the context of structured data 

conversion, feature extraction methods can be applied to reduce the dimensionality of medical image data while retaining relevant 

features, simplifying subsequent data analysis. 

 

IV. DESIGN  

A. System Architecture 

 
Fig.1 System Architecture 
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Medical image processing pipeline using generative AI and DevOps to convert medical image data to structured data. The pipeline 

consists of data layer, processing layer, and DevOps layer. The data layer stores and retrieves medical image data. The processing 

layer uses a generative AI model to convert medical image data to structured data. The DevOps layer automates the deployment and 

management of the pipeline. The pipeline can be used for a variety of purposes, such as diagnosis, treatment planning, and research. 

The pipeline takes medical image data as input and produces structured data as output. The pipeline consists of the following 

components: 

1) Data Layer: This component is responsible for storing and retrieving the medical image data. This can be done using a variety 

of storage technologies, such as a cloud-based medical image management system (PACS), a local database, or a distributed 

file system. 

2) Processing Layer: This component uses a generative AI model to convert the medical image data to structured data. Generative 

AI models are trained on a large dataset of labeled medical images. The model learns to generate structured data from medical 

images, such as a list of bounding boxes for different anatomical structures or a segmentation mask for a specific tissue type. 

3) DevOps Layer: This component is responsible for automating the deployment and management of the processing layer. This 

can be done using a variety of DevOps tools and practices, such as continuous integration and continuous delivery (CI/CD) 

pipelines. 

The pipeline works by first preprocessing the medical image data to clean it up, remove noise, and enhance the image. The 

preprocessed image data is then fed to the generative AI model, which processes the data and generates structured data. The 

structured data is then stored in the data layer, where it can be accessed and used by clinicians for a variety of purposes, such as 

diagnosis, treatment planning, and research. 

The DevOps layer ensures that the pipeline is always running smoothly and that clinicians have access to the most up-to-date 

information. This is done by automating the deployment and management of the processing layer, as well as by monitoring the 

pipeline to ensure that it is performing as expected.  

 

V. MATHEMATICAL MODEL 

The mathematical framework for converting medical image data into structured information utilizing Generative AI and DevOps for 

X-rays encompasses a series of interconnected components. Commencing with image preprocessing, this initial stage employs 

mathematical operations to ameliorate image quality. A generative AI model leverages deep learning techniques for the 

transformation of preprocessed X-ray images into structured data, capturing diagnostic insights and patient details. Data annotation 

and integration processes are integral for ensuring data precision, with annotation involving human validation and the integration 

amalgamating annotated and external data sources. Rigorous quality control procedures are implemented to uphold data integrity. 

The DevOps pipeline automates the deployment and upkeep of the model, and performance evaluation is conducted to gauge system 

efficacy. Scalability and optimization strategies are applied to facilitate efficient processing of an expanding volume of X-ray 

images. This holistic mathematical model is vital for addressing the complexities of healthcare data conversion. 

1) Image Preprocessing: The preprocessing of X-ray images involves a series of mathematical transformations to enhance image 

quality, consistency, and usability for downstream processing. The mathematical model for this phase encompasses various 

image enhancement techniques, including but not limited to: 

Ipreprocessed = fN(fC(fA(I))) 

- Ipreprocessed is the preprocessed X-ray image. 

- I represents the original X-ray image. 

- fA involves techniques for artifact removal, such as noise reduction, background removal, and artifact masking. 

- fC encompasses contrast enhancement methods, which may include histogram equalization and contrast stretching. 

- fN pertains to normalization and scaling procedures to ensure consistent pixel values. 

 

2) Generative AI Model: The generative AI model aims to convert the preprocessed image Ipreprocessed into structured data (D). This 

model may be a neural network-based architecture, which can be mathematically represented as: 

D = M(Ipreprocessed) 

- D represents the structured data generated from the AI model. 

- M denotes the generative AI model, which is trained to map preprocessed X-ray images to structured data, capturing diagnostic 

information and patient metadata. 

The AI model's architecture, parameters, and training data will significantly affect the specifics of this mathematical function. 
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3) Data Annotation: The generated structured data D may require human validation and refinement to ensure its accuracy and 

completeness. The annotation process can be mathematically described as: 

Dannotated = A(D) 

 

- Dannotated is the structured data after the annotation process. 

- A represents the annotation process, which may involve expert human annotators reviewing and correcting the AI-generated data. 

The annotation process is crucial for addressing errors and enhancing the quality of the structured data. 

 

4) Data Integration: Structured data from the annotation process Dannotated may need to be integrated with external data sources, if 

applicable. This integration can be represented mathematically as: 

Dintegrated = Dannotated U Dexternal 

 

- Dintegrated represents the final integrated structured data. 

- U denotes the union operation, combining annotated data with data from external sources Dexternal 

 

5) Performance Evaluation: Peformance evaluation E assesses the system's effectiveness in terms of accuracy, efficiency, and 

impact. While the mathematical model for this evaluation may vary, it often involves the use of evaluation metrics and 

functions: 

E = fevaluate(Dfinal) 

 

- E represents the performance evaluation result. 

- fevaluate includes statistical analysis, benchmarking against ground truth data, and other relevant assessment methods. 

Performance evaluation helps quantify the system's success in converting X-ray images to structured data. 

 

6) Scalability and Optimization:Scalability and optimization S ensure that the system can efficiently handle a large volume of X-

ray images without compromising performance. The mathematical model for this may encompass a set of optimization 

techniques: 

S = foptimize(Dfinal) 

 

- S reflects the scalability and optimization of the system. 

- foptimize includes strategies for parallel processing, distributed computing, resource allocation, and load balancing to handle a 

growing workload. 

These optimizations are crucial for accommodating the demands of real-world healthcare environments. 

 

VI. IMPLEMENTATION & VALIDATION 

A.  Data Acquisition Layer: Capturing the Raw Image 

The journey begins with capturing the patient's internal structures. This layer relies on specialized medical imaging devices like X-

ray machines. These machines generate analog signals that depict the varying densities of tissues encountered by the emitted 

radiation. The system utilizes software and hardware components within this layer to convert these analog signals into a digital 

format. This conversion process is crucial, as it lays the foundation for subsequent image analysis. 

 

B. Pre-processing Module: Cleaning Up the Raw Data 

Imagine a photograph taken in low-light conditions with significant noise. Similarly, raw medical images often contain artifacts and 

inconsistencies. The pre-processing module addresses these issues to prepare the data for optimal analysis by the AI model. Here's a 

breakdown of some common techniques employed: 

Noise Reduction: Techniques like filtering eliminate unwanted electrical noise introduced during the acquisition process. 

Artifact Removal: Certain imaging techniques can introduce artifacts like streaks or rings. Pre-processing methods can mitigate 

these artifacts to improve image quality. 

Normalization: This ensures consistency in pixel intensity values across different images. Normalization techniques can account for 

variations in scan parameters or patient factors. 
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C. Generative AI Model: The Heart of the System 

This layer houses the powerhouse of the system – a generative AI model, most likely a deep learning model specifically trained for 

medical image analysis. Deep learning models excel at pattern recognition and feature extraction from complex data like medical 

images. The specific type of model architecture chosen depends on the intended application. Here are some examples: 

Convolutional Neural Networks (CNNs): Widely used for image analysis tasks, CNNs excel at extracting spatial features from 

images. For instance, a CNN trained to detect lung nodules would identify specific patterns and textures indicative of these 

abnormalities. 

Generative Adversarial Networks (GANs): These models can be employed for tasks like image segmentation, where the goal is to 

differentiate between different tissue types within an image. A GAN can be trained to generate synthetic, realistic images that aid in 

accurate segmentation. 

The training process for these models involves feeding them a vast amount of labeled medical images. The labels provide context, 

essentially highlighting the specific features or abnormalities the model needs to learn to identify. Through this training, the model 

develops the ability to analyze new, unseen medical images and extract relevant features for further processing. 

 

D. Data Annotation and Integration: Adding Context and Combining Insights 

Data annotation plays a critical role in this process. Annotations act as labels or data points that provide context to the raw data. In 

medical imaging, these annotations might pinpoint specific anatomical structures or pathological abnormalities. There are two main 

uses for annotations: 

Training the Generative AI Model: Labelled datasets are used to train the AI model. Each image is meticulously annotated by 

medical professionals, highlighting the features of interest. By analysing these labelled examples, the model learns to identify 

similar patterns in unseen images. 

Quality Control and Reference Set: A separate set of annotated images can be used as a reference for quality control purposes. The 

system's output on these images is compared to the annotations by medical professionals to assess the model's accuracy and 

reliability. 

Following analysis by the AI model, the data integration layer merges the results with other relevant information. This could 

encompass patient demographics, electronic health records containing past medical history.  By integrating this comprehensive data 

set, the system provides a more holistic view for medical professionals, aiding in diagnosis and treatment planning. 

 

E. Proposed Method 

In this section, we introduce the process of the model training, validation and testing on the dataset, the architecture of YOLOv8 

model, and the data augmentation technique employed during training. Figure 1 illustrates the flowchart depicting the model 

training process and performance evaluation. We randomly divide the 20,327 X-ray images of the GRAZPEDWRI-DX dataset into 

the training, validation, and test set, where the training set is expanded to 28,408 X-ray images by data augmentation from the 

original 14,204 X-ray images. We design our model according to YOLOv8 algorithm, and the architecture of YOLOv8 algorithm is 

shown in Figure below. 

 
Fig 2. The architecture of YOLOv8 algorithm, which is divided into four parts, including backbone, neck, head, and loss. 

 

1) Data Augmentation 

During the model training process, data augmentation is employed in this work to extend the dataset. Specifically, we adjust the 

contrast and brightness of the original X-ray image to enhance the visibility of bone-anomaly. This is achieved using the 

addWeighted function available in OpenCV (Open Source Computer Vision Library).  
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The equation is presented below:  

Output =Input1× α +Input2×β +γ,                        (1) 

where Input1 and Input2 are the two input images of the same size respectively, α represents the weight assigned to the first input 

image, β denotes the weight assigned to the second input image, and γ represents the scalar value added to each sum. Since our 

purpose is to adjust the contrast and brightness of the original input image, we take the same image as Input1 and Input2 

respectively and set β to 0.  

 
Fig 3. Examples of pediatric wrist X-ray images using data augmentation. (a) the original images, (b) the adjusted images. 

 

The value of α and γ represent the proportion of the contrast and the brightness of the image respectively. The image after adjusting 

the contrast and brightness is shown in Figure 3. After comparing different settings, we finally decided to set α to 1.2 and γ to 30 to 
avoid the output image being too bright. 

 

VII. VALIDATION 

A. Dataset 

Medical University of Graz provides a public dataset named GRAZPEDWRI-DX, which consists of 20,327 X-ray images of wrist 

trauma in children. These images were collected from 6,091 patients between 2008 and 2018 by multiple pediatric radiologists at the 

Department of Pediatric Surgery of the University Hospital Graz. The images are annotated in 9 different classes by placing 

bounding boxes on them.  

To perform the experiments shown in Table 5 and Table 6, we divide the GRAZPEDWRI-DX dataset randomly into three sets: 

training set, validation set, and test set. The sizes of these sets are approximately 70%, 20%, and 10% of the original dataset, 

respectively. Specifically, our training set consists of 14,204 images (69.88%), our validation set consists of 4,094 images (20.14%), 

and our test set consists of 2,029 images (9.98%). The code for splitting the dataset can be found on our GitHub. We also provide 

csv files of training, validation and test data on our GitHub, but it should be noted that each split is random and therefore not 

reproducible. 

 

B. Evaluation Metric 

1) Intersection over Union (IoU) 

Intersection over Union (IoU) is a classical metric for evaluating the performance of the model for object detection. It calculates the 

ratio of the overlap and union between the generated candidate bounding box and the ground truth bounding box, which measures 

the intersection of these two bounding boxes. The IoU is represented by the following equation: 
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                        (8) 

where C represents the generated candidate bounding box, and G represents the ground truth bounding box containing the object. 

The performance of the model improves as the IoU value increases, with higher IoU values indicating less difference between the 

generated candidate and ground truth bounding boxes. 

 

2) Precision-Recall Curve 

Precision-Recall Curve (P-R Curve) is a curve with recall as the x-axis and precision as the y-axis. Each point represents a different 

threshold value, and all points are connected as a curve. The recall (R) and precision (P) are calculated according to the following 

equations: 

                      (9) 

where True Positive (TP) denotes the prediction result as a positive class and is judged to be true; False Positive (FP) denotes the 

prediction result as a positive class but is judged to be false, and False Negative (FN) denotes the prediction result as a negative class 

but is judged to be false. 

 

Table 1.Validation results of YOLOv8 for each class on the GRAZPEDWRI-DX dataset when the input image size is 1024. 

 
 

Table 2. Model performance comparison of YOLOv8 models using SGD and Adam optimizers. For training with the SGD 

optimizer, the initial learning rate is 1×10−2; for training with the Adam optimizer, the initiall earning rate is 1×10−3. 

 
 

3) F1-score 

The F-score is a commonly used metric to evaluate the model accuracy, providing a balanced measure of performance by 

incorporating both precision and recall. The F-score equation is as follows: 

                     (10) 

When β=1, the F1-score is determined by the harmonic mean of precision and recall, and its equation is as follows: 

                              (11) 
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4) ExperimentSetup 

During the model training process, we utilize pre-trained YOLOv8 model from the MS COCO (Microsoft Common Objects in 

Context) val2017 dataset. The research reports provided by Ultralytics suggests that YOLOv5 training requires 300 

 

Table 3. Quantitative comparison of fracture detection when the input image size is 1024. Speed means the total time of validate per 

image, and the total time includes the preprocessing, inference, and post-processing time. 

 
 

epochs, while training YOLOv8 requires 500 epochs. Since we use pre-trained model, we initially set the total number of epochs to 

200 with a patience of 50, which indicate that the training would end early if no observable improvement is noticed after waiting for 

50 epochs. In the experiment comparing the effect of the optimizer on the model performance, we notice that the best epoch of all 

the models is within 100, as shown in Table4, mostly concentrated between 50 and 70 epochs. Therefore, to save computing 

resources, we adjust the number of epochs for our model training to 100. 

As the suggestion of Glenn, for model training hyper parameters, the Adam optimizer is more suitable for small custom datasets, 

while the SGD optimizer perform better on larger datasets. To prove the above conclusion, we train YOLOv8 algorithm models 

using the Adam and SGD optimizers, respectively, and compare the effects on the model performance. The comparison results are 

shown in Table4. 

For the experiments, we choose the SGD optimizer with an initial learning rate of 1×10−2, a weight decay of 5×10−4, and a 

momentum of 0.937 during our model training. We set the input image size to 640 and 1024 for training on a single GPU GeForce 

RTX 3080 Ti 12GB with a batch size of 16. We train the model using Python 3.8 and PyTorch 1.8.2, and recommend readers to use 

Python 3.7 or higher and PyTorch 1.7 or higher for training. It is noteworthy that due to GPU memory limitations, we choose 3 

worker threads to load data on GPU GeForce RTX 3080 Ti 12GB when training our model. Therefore, using GPUs with larger 

memory and more computing power can effectively increase the speed of model training 

 

5) Experimental Results 

Before training our model, in order to choose an optimizer that has a more positive effect on the model performance, we compare 

the performance of models trained with the SGD optimizer and the Adam optimizer. As shown in Table4, using the SGD optimizer 

to train the model requires less epochs of weight updates. Specifically, for YOLOv8m model with an input image size of 1024, the 

model trained with the SGD optimizer achieves the best performance eat the 35th epoch, while the best  

 

 
Figure 5. Examples of pediatric wrist fracture detection on X-ray images. (a) manually labeled images, (b) predicted images. 
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Table 4. Evaluation of wrist fracture detection with other state-of-the-art (SOTA) models on the GRAZPEDWRI-DX dataset. 

 
 

performance of the model trained with the Adam optimizer is at the 70th epoch. In terms of mAP and inference time, there is not 

much difference in the performance of the models trained with the two optimizers. Specifically, when the input image size is 640, 

the mAP value of YOLOv8s model trained with the SGD optimizer is 0.007 higher than that of the model trained with the Adam 

optimizer, while the inference time is 0.1ms slower. Therefore, according to the above experimental results and the suggestion by 

Glenn, for YOLOv8 model training on a training set of 14,204 X-ray images, we choose the Adam optimizer. However, after using 

data augmentation, the number of X-ray images in the training set extend to 28,408, so we switch to the SGD optimizer to train our 

model. After using data augmentation, our models have a better mAP value than that of YOLOv8 model, as shown in Table 5 and 

Table 6. Specifically, when the input image size is 640, compared with YOLOv8m model and YOLOv8l model, the mAP 50 of our 

model improves from 0.621 to 0.629, and from 0.623 to 0.637, respectively. Although the inference time on the CPU is increased 

from 536.4ms and 1006.3ms to 685.9ms and 1370.8ms, respectively, the number of parameters and FLOPs are the same, which 

means that our model can be deployed on the same computing power platform. In addition, we compare the performance of our 

model with that of YOLOv7 and its improved models. As shown in Table 7, the mAP value of our model is higher than those of 

YOLOv7, YOLOv7 with Convolutional Block Attention Module (CBAM) and YOLOv7 model with Global Attention Mechanism 

(GAM), which demonstrates that our model has obtained SOTA performance.  

This paper aims to design a pediatric wrist fracture detection application, so we use our model for fracture detection. Figure 5 shows 

the results of manual annotation by the radiologist and the results predicted using our model. These results demonstrate that our 

model has a good ability to detect fractures in single fracture cases, but metal puncture and dense multiple fracture situations badly 

affects the accuracy of prediction 

 
Figure 6. Example of using the application “Fracture Detection with YOLOv8 Application” on Windows operating system. 

 

VIII. CONCLUSION 

In the dynamic landscape of modern healthcare, the convergence of innovative technologies has the potential to reshape how we 

extract valuable insights from medical image data. The marriage of Generative AI and DevOps in the context of X-ray images offers a 

promising avenue to convert visual information into structured, interpretable data. As we've explored in this survey paper, the 

methodologies and models involved in this process are grounded in mathematical rigor and computational sophistication. By 

harnessing the power of generative AI models, we unlock the ability to translate intricate X-ray images into structured, quantifiable 

information that can guide clinical decisions and enhance patient care. 
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However, beyond the technological advancements, we must always be cognizant of our ethical and regulatory responsibilities. The 

safeguarding of patient privacy, the mitigation of biases, and adherence to healthcare data regulations are non-negotiable 

prerequisites. This transformation in medical data conversion presents a double-edged sword. On one side, it empowers healthcare 

providers with a wealth of structured data, potentially improving diagnostic accuracy and patient outcomes. On the other, it 

underscores the need for continued vigilance and adherence to the highest ethical standards. 

In the face of these challenges and opportunities, the future of converting medical image data into structured information using 

Generative AI and DevOps is poised to be both exciting and transformative. As we navigate this path, the paramount goal remains 

unwavering: to bridge the gap between technology and medicine in a way that empowers healthcare professionals while upholding the 

sanctity of patient data and privacy. This survey paper serves as a testament to the boundless potential of these technologies and a 

reminder of the ethical and regulatory considerations that must guide their responsible integration into the healthcare landscape. 
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