
 

11 VIII Aug 2023

https://doi.org/10.22214/ijraset.2023.55366



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1388 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

High Secure Data Transactions in AXI System Bus 
using Firewall Protection 

 
Pruthvi D1, Dr. Srividya P2 

1Mtech Student, 2Assosiate Professor, Department of ECE, RVCE, Bangalore 
 
Abstract: An open-standard, on the chip interconnection protocol called the Advance Microcontroller Bus Architecture (AMBA) 
is used to link and manage functional blocks in systems on chip (SoC) architectures. An interface definition called Advanced 
eXtensible Interface (AXI) specifies the IP block interface rather than the connection itself. The point-to-point connections 
between a supervisor as well as subordinate are defined by the AXI protocol in terms of their signals and time. The existing AXI 
protocol only has the response mechanism for the slave error and the valid transactions. In this work the high secure data 
transactions in AXI system bus is introduced using the firewall protection where a certain range of address are protected to 
access from other master peripherials.  
This is indicated by a error response from the rresp and bresp signals rather than accessing the address to be accessed for the 
secure transaction. The entire AMBA AXI is an Finite State Machine (FSM), which can be obtained by composing the FSMs 
associated with each component. The main intent of the FSM is to validate the flow of transactions entering and leaving a 
subsystem has to be secured and stable and has to go through the various states of the state machine. The design of the AMBA 
AXI protocol is done using System Verilog and the formal checks in terms of System Verilog testbench are used to check the 
internal signals which is aiding the read write transactions of the memory which is acting as the slave for the peripheral. The 
AMBA AXI System bus is verified using the testbench created in SystemVerilog (SV) Universal Verification Methodology 
(UVM).  
The design is also tested for the connectivity of the internals signals of the slave with the master with the help System Verilog 
code where only the design and the SV files are needed for the verification. The read and write transactions for the various burst 
transactions in terms of Fixed, Increment(INCR) and Wrap transactions are tested to check the ability of the memory to respond 
to vari- ous signals given by the master. The complete design is verified using the Xilinx Vivado 2020.2 Design Suite and make 
sure that the design is free from bugs. 
Keywords: AXI, UVM, Verification, Xilinx Vivado, System On chip (SoC) 
 

I. INTRODUCTION 
Today's System on Chip designs employ numerous Intellectual Property (IP) cores and are becoming exponentially more complex. 
Advanced Extensible Interface (AXI) interconnection IP, one of the most used interconnect IPs, is one example of such an IP. 
Reusable components are necessary to reduce the time as well as difficulty associated with verification of designs as systems get 
bigger and quicker.  
Due to the increasing complexity of system-on-chip (SOC) designs, most common protocols and interface IP allow verification 
professionals to evaluate basic functionalities; nonetheless, this is starting to pose a serious problem. 
Specialised verification approaches, including as the Universal Verification Methodology (UVM), are employed to slow down the 
verification process. Because of the specific coding style used by these approaches, the code may be used in any testing 
environment based on the identical methodology.  The five channels of the AXI memory transactions—write data, write address, 
write response, read data and read address—are all verified as part of the process of verifying memory transactions. The test bench 
is designed to validate the memory interactions within the AXI protocol, including how data is moved between locations throughout 
read and write phases at the identical and distinct addresses. A typical system, as seen in Figure 1, is made up of multiple Manager 
and Subordinate components that are interconnected in some way. For the connections between devices, the AXI protocol offers a 
single interface description. 
1) Manager and the interconnect. 
2) Subordinate and the interconnect. 
3) Manager and a Subordinate. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1389 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

 
Figure 1: Interface and Interconnect[12] 

 
Numerous distinct connectivity architectures are supported by the aforementioned interface specification. The device with the 
interconnection is the same as a different device having identical Manager as well as Subordinate connectors to which the actual 
Manager along with Subordinate systems can be attached. One of three connectivity topologies is often used by systems: 
a) Channels for data and request sharing. 
b) Multi-layer, with numerous request and data channels; 
c) shared request channel;  
d) multiple data channels. 
The request for communication channels bandwidth need is often much lower that the information channel frequency required for 
the majority of systems. By utilising a common request connection with numerous data lanes that allow concurrent information 
transfers, these types of systems can strike a fair compromise among system efficiency and interconnection complication. 
 

II. LITERATURE SURVEY 
The Paper [1] depicts about the process for designing and verifying SoCs using Instruction Level Abstractions (ILAs), which have 
been synthesised. The ILA is a model of SoC technology that simulates firmware-visible state modifications at the instruction-level 
level. The ILA provides comprehensive verification for firmware working with hardware acceleration devices and is akin to an 
instruction-set architectural concept for programmable processors for hardware injectors. A modest SOC design based on the 8051 
microcontroller was used by the author to assess the technique, and this revealed 15 faults. 
An algebraic method for functionally verifying gate-level, arithmetic devices is presented in Paper[2]. Its foundation is the 
extraction of a distinct bit-level polynomial equation computed directly by the circuit using its gate-level implementation. The 
technique may be applied to either derive a mathematical function that was used by the device or to check the mathematical 
functions calculated with that circuitry against its established specifications. 
Checking integer multipliers with various architecture is the main topic of Paper 3. The author suggested a method for producing 
BDDs with a maximum of 1024 bits directly, without going through any circuits. When creating BDDs, the author uses the extra 
variable approach to limit the complexity of the BDD length to a third order quadratic. A technique for equivalence testing and 
validating up to 32-bit optimised multipliers has been presented for evaluating optimised multiplication. 
In Paper[4], methodologies are presented that are then applied to two instances of NoC components, offering positive as well as 
negative testing scenarios: A fundamental router as well as a Daniel router are examples. While Daniel router represents a 
complicated programmable open-source scenario, the Base router provides a straightforward case study to demonstrate suggested 
approaches. With a few settings and implemented algorithms, Daniel router offers the possibility to alter router design. This paper's 
integration of a complete UVM environment with several verification methods is its second major contribution. Utilising a 
repeatable and modular UVM framework and elements for NoC, target techniques involve error insertion and identification. The 
network response is examined based on the technique and error kind. 
Any AXI device may be tested using the structure of the verification framework presented in Paper[5] for the AMBA AXI interface. 
To verify whether the verification method includes all potential circumstances, a functional completeness model was created. Every 
testcase generates a coverage report that can be utilised afterwards to evaluate the testcase's efficacy. With the use of both random 
and guided test cases, complete coverage can be attained. 

 
A. AXI Write and Read Channel Architecture  
With master and slave devices used in the AXI protocols are depicted in Figure 1. Five independent channels for reading and 
writing are available; they are read data, read address along with write response, write data, and write address. Figure 1 depicts the 
write channel design. The transmission of information from a master device to a slave device is done through a write data channel. 
The write response signal is used by the slave to signify to the master that data transmission is complete. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1390 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

This mutual handshake technique is the foundation of the AXI interface. In order to let the slave know that an address as well as 
information regarding the channel is genuine, the master transmits an appropriate signal. Slave notifies master that it is prepared to 
take the data by sending a ready signal. By this manner, a handshake among the master as well as slave takes place before any 
information can transfer over the channel. In order for a write operation to take place, the master must first communicate the 
necessary address controls and data over the write address channel. Write data channels, which can be 32 or 64 bitwide, are used to 
transfer write data from the master to the slave. Slave delivers notification over the write response channel once the transaction is 
complete. Figure 2 depicts the write channel design. For reading data, the read address line includes address and control information. 

 
Fig. 2. Write Channel Architecture 

Fig. 3. Read Channel Architecture 
 
1) AXI Write and Read Channel State Diagram 
The Figure 4 displays the AXI write channel's state diagram. Three cycles of the clock are required for the writing process. The 
initial state is IDLE if the ARESETn signals remains low, at which point the awready signal is raised to indicate that the slave is 
prepared to take the address over the write channel. When the master asserts awvalid, signaling that the address over the associated 
channel is valid, it will move into the DATA phase. In a result, the master specifies the initial address at which it wants to write the 
information. Writing data there is the subsequent action. A handshake takes place between the master and slave when the master 
asserts wvalid, signaling that the data on the channel is valid. By using the address listed in, write data is transferred from the master 
and recorded in the slave. The answer will be sent in the third cycle after the data has been sent to the slave. When sending a 
response, the slave is going to assert the bvalid signal. Eventually another data transmission occurs, and the cycle continues. 

Fig. 4. Write Channel State Diagram 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1391 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Figure 5 displays the AXI read channel's state diagram. Performing a read requires two clock cycles. The slave is prepared to take 
the read address in the first state, IDLE, when the arready signal is emitted. A master device will transmit an address over and 
araddr channel and emit an arvalid signal. The real data transfer occurs in the next state, DATA. Slave asserts the rvalid signal to 
indicate that the data on the read channel is acceptable. The main device will issue the rready signal, and the master's device will 
read the data.. Figure 3 and Figure 4 depicts about the methodology where the initial analyses on the protocol architecture for the 
memory is taken place which is then followed by the finite state machine (FSM) designs  to meet the Advanced Microcontroller 
Bus Architecture AXI protocol requirements. The complete design is completed using the SystemVerilog and then followed by 
integrating the memory module to the FSM’s. Once the design is ready, the testbench is developed using SystemVerilog UVM 
which is used for checking the design intent. 

 
Fig. 5. Read Channel State Diagram 

 
III. VERIFICATION FLOW 

A repeatable verification environment is made using the System Verilog UVM technique. The key benefit of UVM is that we can 
construct every element by just extending basic classes, which is how System Verilog employs OOPs ideas to make component 
development simpler and faster. Therefore, components for verification can be reused in other applications. The essential elements 
of the UVM-based testbench environment are listed below: 
1) Monitor: Pin-wiggles generated by the DUT are received by this part, which then turns these into transactions and sends them 

to other associated components like the scoreboard as well as coverage collection. It will disseminate transactions to all of the 
connected subscribers once it has received them from the DUT. 

2) Sequencer: All data fields that are controlled by the driver as well as monitored with the monitor are contained in the 
sequence-item. The information in these fields are provided to the driver through the sequencer in an arbitrary sequence. 
Between sequences and the driver, the sequencer synchronizes the flow of request and answer sequence pieces. Based on 
written sequences, this sequencer will produce and deliver AXI transaction messages to the driver. 

3) Driver: Transactions are transformed into pin wiggles by the driver before being sent to the DUT. Driver awaits the 
sequencer's transaction. Driver then drives the AXI DUT using the AXI packets it has received from the sequencer. Through 
the TLM interface, the sequencer as well as driver are coupled. Once the processor completes the present transaction, it will 
provide the sequencer a response confirming the transaction was successful, at which point the sequencer can begin driving 
the subsequent transaction. 

4) Agent: The sequencer, the driver as well as monitor are all included within the agent. Both active and passive agents are 
possible; active agents have each of the three components as well as transmit stimulation to the DUT, whereas passive agents 
simply have the monitor. In an agent's connection phase, the sequencer and driver are connected. 

5) Coverage Collector: The subscriber component that connects to the monitor is this one. It gets a transaction from the monitor 
and hits the cover points in line with that. In this component, different covering areas are created for each potential address 
and data value. 

6) Environment: The agent, scoreboard, and coverage collector are all instantiated there. In the complicated verification 
environment, it may contain more than one agent. During the connect step, the scoreboard as well as coverage collectors are 
linked to the monitor. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1392 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

7) Scoreboard: The AXI transactions are collected by this element from the monitor by using the UVM analysis imp's write 
method, and they are then placed in a queue. To ensure that the design is accurate, it compares the DUT output with the 
golden output. Shift operation is used to create a golden result according to the signals that are fed to the DUT, and the result 
is then compared to what is received rdata via the AXI slave device. 

8) Test and Sequences: This creates a sequence and an environment. The execution phase of the test component is where the 
sequence is initiated. There are several AXI read and write transactions in the sequence. 

Fig. 6. AXI Testbench Structure 
 
Figure 6 depicts the UVM-based AXI testbench topology. The primary goal of DUT verification is to write data into the device's 
internal shift register and then retrieve it back. Then it can be confirmed that both reading and writing operations occur correctly 
over the AXI interface through comparison of the data in the scoreboard. The control register along with the data register are the 
two registers on the DUT. One bit of data input from the shift register is stored in the control register together with the enable 
signal. When the En signal is strong, the shift register moves data to the left. Data output from a shift register is stored in a data 
register. By asserting the necessary AXI write channel signals, the UVM sequence creates an order to write a four-bit information 
to a shift register. These steps are provided to driver via sequencer. The data is entered into the DUT controller registers and 
subsequently the shift register when a driver transmits this sequence to the DUT. A different sequence is triggered to read 
information from the data register once writing is completed in four clock cycles. As a result, shifted information is written into 
the DUT's data register before being read. The address of the data register and the accompanying AXI reading channel signals are 
provided by the read sequence. The monitor transforms this DUT answer into transaction and monitors it. Data from the DUT is 
then compared to data that is put in the scoreboard. If the two data are identical, the AXI interface has successfully communicated 
the data. 

IV. SIMULATION RESULTS 
This section provide details related to results of the design implementation using Xilinx Vivado 2020.2 Design suite. The read and 
write transfer simulation uses a 100MHz clock frequency. To acquire the results for the various AXI write and read channels, 
including the channel for writing address, write data, writer response, read address, and read data channels, the System Verilog is 
components have been simulated with the testbench. The different burst type of transactions such as Fixed, INCR and the WRAP 
transactions are shown with the help of various read and write signals. Finally the type of the error response provided for the 
firewall protected address are shown in this chapter. 
 
A. AXI write Channels 
AXI Write consists of three channels namely Write data channel, write address channel and the write response channel. AXI Write 
signals which has a clock of 100MHz. There is a active low reset signal is used here in order to make sure that if the resetn signal is 
high at the positive edge of the clock cycle then the channels are in the active state. If the resetn signal is low at the positive clock 
edge then the channels go to the reset state which is the inactive state. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1393 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

1) Write Address Channel 
Figure 7 shows the AXI Write address channel which consists of the addr wrapwr, awvalid, awready, awid, awlen, awsize, awaddr, 
awburst. addr wrapwr indicates the next address in the wrap write. awvalid indicates the valid address to be written and it also 
indicates that the master is sending new valid address. awready indicates that the slave is ready to accept the request. awid indicates 
the unique ID for each transaction. awlen indicates the burst length for the AXI transfer ie., it can range from 1 to 256. awsize 
indicates the unique transaction size ie., 1, 2, 4, 8, 16,...128 bytes but in this work 4 bytes is used ie., 32 bits of address. awaddr 
indicates the write address of transaction. awburst indicates the burst type or the type of burst ode used in the transaction i.e., Fixed,  
INCR or WRAP transaction.  In the Figure 7 awvalid is high indicating the master is sending the new address and the written 
address is valid. awready is high in between the transaction indicating at this slave is ready for the transaction to happen. awid 
indicating the unique ID of 0x9. awlen taken here is 7 sets of transfer. awsize is 2 indicating that the 4 bytes (32bits) of the address 
is written. awaddr is indicating the different set of address in the transaction, awburst is 0x2 indicating the WRAP type of the burst 
transfer. 

 
Figure 7 AXI Write Address Channel signals 

 
2) Write Data Channel 
Figure 8 shows the AXI Write Data channel which consists of the wvalid, wready, wid, wdata, wstrb and wlast. wvalid indicates the 
valid data is been written and it also indicates that the master is sending new valid data. wready indicates that the slave is ready to 
accept the new data. wid indicates the unique ID for each transaction. wdata indicates the data that is being written during the AXI 
write transaction. wstrb indicates the lane having the valid data.  Rest of the lanes which does not have the valid data is not used for 
the write transaction. wlast signal indicates the last transfer in the write burst. 

 
Figure 8  AXI Write Data Channel signals 

 
In the Figure 8 wvalid is high indicating the master is sending the new data and the written data is valid. wready is high in between 
the transaction indicating that this slave is ready for the write data transaction to happen . wid indicating the unique ID of 0x9. 
wdata holds the data that is being written during the AXI Write transaction. wstrb is 0xF indicating high for all the 4 lanes meaning 
that all the 4 lanes are having valid data for the transaction. wlast signal high indicates the last byte of data is being written and after 
this the write data transaction is completed. 
 
3) Write Response Channel 
Figure 9 shows the AXI Write Response channel which consists of 4 signals namely bvalid, bready, bid, bresp. bvalid indicates that 
the slave has the valid response. bready indicates that the master is ready to accept the response from the slave. bid indicates the 
unique ID for each transaction. bresp indicates the response for the invalid transaction. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1394 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

 
Figure 9 AXI Write Response Channel signals 

 
In the Figure 9 bvalid is high indicating the slave has the valid response. bready is high in between the transaction indicating that 
this master is ready to accept the response which is sent from the slave.  wid indicating the unique ID of 0x9.  Since this is a valid 
write transaction happening the bresp is giving the OK response of 0x0. 
 
B. AXI Read Channels 
AXI Read consists of two channels namely Read Address Channel and the Read Data Channel. The AXI Read signals which has a 
clock of 100MHz. There is a active low reset signal is used here in order to make sure that if the resetn signal is high at the positive 
edge of the clock cycle then the channels are in the active state. If the resetn signal is low at the positive clock edge then the 
channels go to the reset state which is the inactive state. Here the Read address channel consists of the arvalid, arready, arid,arlen, 
arsize, araddr, arburst. The read data channel consists of rresp, rvalid, rready, rid, rdata, rstrb and rlast. All these signals operation 
will be shown in further sections. 
 
1) Read Address Channel  
Figure 10 shows the AXI Read Address channel which consists of the arvalid, arready, arid, arlen, arsize, araddr, arburst. arvalid 
indicates the valid address to be read and it also indicates that the master is sending new valid address. arready indicates that the 
slave is ready to accept the request. arid indicates the unique ID for each transaction. arlen indicates the burst length for the AXI 
transfer ie., it can range from 1 to 256. arsize indicates the unique transaction size ie., 1, 2, 4, 8, 16,...128 bytes but in this work 4 
bytes is used ie., 32 bits of address. araddr indicates the read address of transaction. arburst indicates the burst type or the type of 
burst ode used in the transaction i.e., Fixed, INCR or WRAP transaction. 
 

 
Figure 10 AXI Read Address Channel signals 

 
In the Figure 10 arvalid is high indicating the master is sending the new address and the read address is valid. arready is high in 
between the transaction indicating at this slave is ready for the transaction to happen. arid indicating the unique ID of 0x0. arlen 
taken here is 7 sets of transfer. arsize is 2 indicating that the 4 bytes (32bits) of the address is read. araddr is indicating the different 
set of address in the transaction, arburst is 0x2 indicating the WRAP type of the burst transfer. 
 
2) Read Data Channel  
Figure 11 shows the AXI Read Data channel which consists of the rresp, rvalid, rready, rid, rdata, rstrb and rlast. rresp indicates the 
response to the invalid read trans- action. rvalid indicates the valid data is been read and it also indicates that the master is sending 
new valid data. Ready indicates that the slave is ready to accept the new data. rid indicates the unique ID for each transaction. rdata 
indicates the data that is being read during the AXI read transaction. rstrb indicates the lane having the valid data. Rest of the lanes 
which does not have the valid data is not used for the read transaction. rlast signal indicates the last transfer in the read burst. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1395 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

 
Figure 11 AXI Read Data Channel signals  

 
In the Figure 11 rvalid is high indicating the master is sending the new data and the read data is valid. rready is high in between the 
transaction indicating that this slave is ready for the read data transaction to happen. rid indicating the unique ID of 0x0. rdata holds 
the data that is being read during the AXI read transaction. rstrb is 0xF indicating high for all the 4 lanes meaning that all the 4 
lanes are having valid data for the transaction. rlast signal high indicates the last byte of data is being read and after this the read 
data transaction is completed. 
 
C. Error response for Firewall Protected Address 
Response messaging is offered by AXI for both writing and reading transactions. The response data provided by the subordinate is 
sent as a signal via the read information channel using rresp for read transactions. Bresp is used to convey the response information 
for write transactions on the written response channel. Both rresp hence bresp are made up of just two bits, and when these signals 
are encoded, the following four answers can be transmitted: 

 
Figure 12 AXI OKAY Response for valid transaction 

 
The OKAY answer, regular access success, or restricted access failure is indicated by the rresp = 00. The response most frequently 
used in transactions is OKAY. A successful normal access is signaled by the word OKAY. The failure of an exclusive access can 
also be inferred from this answer. When many managers may access the same subordinate simultaneously but not the same memory 
range, this is referred to as an exclusive access. The AXI database OKAY Response for a legitimate transaction is shown in Figure 
12.rresp = 01 denotes EXOKAY, or exclusive access is permitted. EXOKAY denotes the accomplishment of precisely the ability to 
read or write component of an exclusive access. 
When rresp = 10 implies subordinate mistake, or SLVERR. When information has successfully reached the subordinate but the 
subordinate needs to report a mistake condition to their original captain, SLVERR is employed. This is a sign of a failed transfer.  

 
Figure 13 AXI Error Response for Slave Error 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1396 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

For instance, when a prohibited transfer size is attempted or when writing access to a read-only location is attempted. The the AXI 
database Error Response with Slave Error regarding addresses 0x5 is displayed in Figure 13. 

 
Figure 14 AXI Error Response with States for Firewall Protection 

 
The rresp = 11 indicates Firewall Protection error or the Invalid Transaction. When there has been no supervisor at the transaction's 
address, an interconnect component will frequently create this message to let users know. Figure 14 shows the AXI Error Response 
with States for Firewall Protection for the invalid addresses 0x16a, 0x146, 0x19f, 0x165. Figure 15 shows the AXI Error Response 
for Address Protected under the Firewall Protection for the invalid addresses 0x16a, 0x146, 0x19f, 0x165. 

 
Figure 15 AXI Error Response for Address Protected under the Firewall Protection 

 
A manager can inform a subordinate whether bytes on the data bus are needed using a write data strobe signal. Write storage 
strobes are helpful for fast transfer of sparse data matrices across cache accesses. In addition to writing data strobes, unaligned start 
addresses can also be used to optimize data transfers. Each bytes on the data bus for the writer channel encounters one strobe bit. 
The WSTRB signal is composed of these bits. A manager must make sure that only byte lanes with valid data have their write 
strobes set to 1. 
 

V. CONCLUSIONS 
This paper is mainly focused on-designing the Advanced Micro-controller Bus Architecture (AXI) protocol using System Verilog 
for the high secure read and write transactions. These read and write transactions for the three phases of the channel (Address, Write, 
and Response) are designed and verified with the supporting signals sent by the master to the slave to perform read and write 
operations to the memory with various burst transactions that the protocol supports. The Wrap, INCR and Fixed bursts have been 
tested using the Xilinx Vivado 2020.2 design suite for all the read and write transactions. The present AXI protocol supports the 
Fixed, INCR and WRAP type of bursts where most of the lanes are left empty while the transactions occur. This leads to the 
wastage of the memory lanes and more and more memory space would be required for the transactions to be happened for SoCs. In 
order to reduce this memory wastage the empty lanes can be made used by reusing each empty lane for the read and write 
transactions. In manual verification, an actual tester generally starts the programmed, selects a testcase, selects on widgets in 
accordance with the sequence specified by the testcase, and continues the process until the testing requirements is met. It becomes 
difficult for the tester to discover all testcases, prioritize and choose testcases based on certain criteria, perform each of the chosen 
examples any error or omission, and check the outcome of performing each testcase when this approach is used to test the 
application. These issues can be solved by implementing automated verification, and the GUI can be checked automatically using 
the Capture/Replay approach. In this technique, a human tester runs a series of test cases on the GUI, which the capture tool watches 
and records. The replay tool runs identical testcases using the GUI afterwards to look for any regressions. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 
1397 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

REFERENCES 
[1] P. Subramanyan, B.-Y. Huang, Y. Vizel, A. Gupta, and S. Malik, “Template-based parameterized synthesis of uniform instruction-level abstractions for soc 

verifica- tion,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1692–1705, 2018. 
[2] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski, “Formal verification of arithmetic circuits by function extraction,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 35, no. 12, pp. 2131–2142, 2016. 
[3] J. Kumar, Y. Miyasaka, A. Srivastava, and M. Fujita, “Formal verification of in- teger multiplier circuits using binary decision diagrams,” IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 4, pp. 1365– 1378, 2023. 
[4] S. El-Ashry, M. Khamis, H. Ibrahim, A. Shalaby, M. Abdelsalam, and M. W. El- Kharashi, “On error injection for noc platforms: A uvm-based generic 

verification environment,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 5, pp. 1137–1150, 2020. 
[5] V. Melikyan, S. Harutyunyan, A. Kirakosyan, and T. Kaplanyan, “Uvm verification ip for axi,” in 2021 IEEE East-West Design Test Symposium (EWDTS), 

2021, pp. 1–4. 
[6] N. K. P, D. V, A. M, S. K. R, and E. S, “Design and verification of amba axi3 pro- tocol for high speed communication,” in 2022 Smart Technologies, 

Communication and Robotics (STCR), 2022, pp. 1–5. 
[7] P. Dwivedi, N. Mishra, and A. Singh-Rajput, “Assertion functional coverage driven verification of amba advance peripheral bus protocol using system 

verilog,” in 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), 2021, pp. 1–6. 
[8] T. Strauch, “Dynamic inside-out verification using inverse transactions in tlm,” in 2018 Forum on Specification Design Languages (FDL), 2018, pp. 5–16. 
[9] H. H. Ardakani, A. M. Gharehbaghi, and S. Hessabi, “A performance and functional assertion-based verification methodology at transaction-level,” in 2007 

Internatonal Conference on Microelectronics, 2007, pp. 133–136. 
[10] M. Siegel, “Achieving earlier verification closure using advanced formal verifica- tion,” in Formal Methods in Computer Aided Design, 2010, pp. 275–275. 
[11] L. Duan, Y. Hu, H. Liu, W. Feng, and J. Gan, “An efficient formal verification method in i/o multiplexing module based on vc formal cc,” in 2020 IEEE 3rd In- 

ternational Conference on Electronics and Communication Engineering (ICECE), 2020, pp. 112–116. 
[12] M. W. Anwar, M. Rashid, F. Azam, A. Naeem, M. Kashif, and W. H.  Butt,  “A unified model-based framework for the simplified execution of static and 

dynamic assertion-based verification,” IEEE Access, vol. 8, pp. 104 407–104 431, 2020. 
[13] P. Gurha and R. R. Khandelwal, “Systemverilog assertion based verification of amba-ahb,” in 2016 International Conference on Micro-Electronics and 

Telecom- munication Engineering (ICMETE), 2016, pp. 641–645. 
[14] P. Bhamidipati, S. M. Achyutha, and R. Vemuri, “Security analysis of a system- on-chip using assertion-based verification,” in 2021 IEEE International 

Midwest Symposium on Circuits and Systems (MWSCAS), 2021, pp. 826–831. 
[15] M Girish, G Gopakumar, and D. S. Divya, “Formal and simulation verification: Comparing and contrasting the two verification approaches,” in 2021 2nd Inter- 

national Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), 2021, pp. 41–44. 
[16] S. Zhang and L. Cao, “Security and fault diagnosis-based assertion-based verifica- tion for fpga,” in 2019 IEEE 19th International Conference on Software 

Quality, Reliability and Security Companion (QRS-C), 2019, pp. 478–481. 
[17] A. Shkil, A. Miroshnyk, G. Kulak, and K. Pshenychnyi, “Assertion based design of timed finite state machine,” in 2021 IEEE East-West Design Test 

Symposium (EWDTS), 2021, pp. 1–4. 
[18] A. Hussien, S. Mohamed, M. Soliman, et al., “Development of a generic and a reconfigurable uvm-based verification environment for soc buses,” in 2019 31st 

In- ternational Conference on Microelectronics (ICM), 2019, pp. 195–198. 
[19]  R. Claris´o, C. A. Gonz´alez, and J. Cabot, “Smart bound selection for the verification of uml/ocl class diagrams,” IEEE Transactions on Software 

Engineering, vol. 45, no. 4, pp. 412–426, 2019. 
[20] D. Wang, J. Yan, and Y. Qiao, “Research on chip verification technology based on uvm,” in 2021 6th International Symposium on Computer and Information 

Pro- cessing Technology (ISCIPT), 2021, pp. 117–120. 
[21] H. Xu, Z. Li, Z. Li, et  al., “Reducing sram reading power with column data seg- ment and weights correlation enhancement for cnn processing,” IEEE 

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 40, no. 11, pp. 2237–2250, 2021. 
[22] F. Plasencia-Balabarca, E. Mitacc-Meza, M. Raffo-Jara, and C. Silva-C´ardenas, “A flexible uvm-based verification framework reusable with avalon, ahb, axi 

and wish- bone bus interfaces for an aes encryption module,” in 2019 IEEE Latin American Test Symposium (LATS), 2019, pp. 1–4. 
[23] B. Vineeth and B. B. Tripura Sundari, “Uvm based testbench architecture for coverage driven functional verification of spi protocol,” in 2018 International 

Con- ference on Advances in Computing, Communications and Informatics (ICACCI), 2018, pp. 307–310. 
[24] D Yashas, P. S. Hari Babu, and N Shylashree, “Uvm-based logic verification of input output interface,” in 2019 4th International Conference on Recent Trends 

on Electronics, Information, Communication Technology (RTEICT), 2019, pp. 420– 423. 
[25] H. Sangani and U. Mehta, “Uvm based verification of read and write transactions in axi4-lite protocol,” in 2022 IEEE Region 10  Symposium  (TENSYMP), 

2022, pp. 1–5. 
[26] K. Mahmoud, R. Ahmed, K. Ayman, et al., “Towards a generic uvm,” in 2022 IEEE High Performance Extreme Computing Conference (HPEC), 2022, pp. 1–6. 
[27] S. El-Ashry and A. Adel, “Efficient methodology of sampling uvm ral during sim- ulation for soc functional coverage,” in 2018 19th International Workshop 

on Mi- croprocessor and SOC Test and Verification (MTV), 2018, pp. 61–66. 
[28] E. Massoud, M. AbdelSalam, M. Safar, and M. Watheq El-Kharashi, “A reusable uvm-systemc verification environment for simulation, hardware emulation, 

and fpga prototyping: Case studies,” in 2022 International Conference on Microelectronics (ICM), 2022, pp. 38–41. 
[29] D.-J. Wang and S. Narayan, “Soc verification,” in Twelfth Annual IEEE Interna- tional ASIC/SOC Conference (Cat. No.99TH8454), 1999, pp. 25–26. 
[30] H. J. Kwon, M.-H. Oh, and W.-o. Kwon, “Verification of interconnect rtl code for memory-centric computing using uvm,” in 2021 International Conference on 

Electronics, Information, and Communication (ICEIC), 2021, pp. 1–4. 



 


