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L. INTRODUCTION
The concept of fuzzy sets was introduced by L.A.Zadeh [15] in 1965.Study of algebraic structure was first introduced by
A Rosenfeld [1]. After that a series of researches have done in this direction P.Bhattacharya and N.P.Mukharjee[13] have defined
fuzzy normal subgroup and characteristic fuzzy subgroup in 1986. In this paper we have tried to established some independent proof
about the properties of fuzzy group homomorphism on algebra of characteristic fuzzy subgroup.

1L PRELIMINARIES
In this section, we recall and study some concepts associated with fuzzy sets and fuzzy group, which we need in the subsequent
sections.

A. Fuzzy Set

Over the past three decades, a number of definitions of a fuzzy set and fuzzy group have appeared in the literature (cf., e.g., [15, 1,
3,7, 10]). In [15], it has been shown that some of these are equivalent. We begin with the following basic concepts of fuzzy set,
fuzzy point and fuzzy group.

Definition 2.1 [15] A fuzzy subset of D; be a function f; : D;—> [0,1]the set of all fuzzy subset of D; is sad to be fuzzy power set
of D; and designate by P;(D;).

Definition 2.2 [15] Support of fuzzy set. Suppose A, €F,; P,(D,) then the set { A; (d,) : d, € D} is said to be the image of 4, is
designate by A, (D;). The set {d; : d; € D, , A, (d;)> 0} is said to be the support of 4, is designate by A, *.
Definition 2.3 [15] Let A, C; €F; P;(D,) such that 4, (d;) <C; (d,),V d; € D, then A; is said to be contained in C; and it is
designate by 4; < C;
Definition 2.4 [15] Let B; € A; andd; € [0,1] we defined d131 € F, P,(D,) as
dig, @={gr I S
If B, is a singleton {b, } then Dy, , is called a fuzzy point.
For any collection {A; ,i; € I,} of fuzzy subset of D;, where [, is an index set the least upper bound (L.U.B.) U;, ¢, 4;, and
greatest lower bound (G.L.B) N;, ¢, 4;, of A;, are given by
(Ui e, Ai) (d1)=Vier, Ay, (dy), Yd; € Dy

(Ni e, Ai) (dy) =A e, Ay, (dy), Vdy € Dy
Fuzzy subgroup
In this section, we discuss the concept of a fuzzy subgroup in details (c.f.,[1]).
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Definition 2.5 Fuzzy subgroup (or F; (G,)) Let G, be any group, we define the binary operation 0’ and unary operation ' on F, P,
(G,) as follows, VA,, C; € F; P, (G,) and Vd, € G;
(A1 0Cy) (d)=V{A; (Y1) ACy(21) Y121 =d1,V Y1, 29 EGLY
A'(d)=A (@d)
Proposition 2.1 [3] If A, € F; (G;), then forall d; € G;
(1) A;(e)=A;(dy)
(i) Ay (dy)=A; (d)
Proof (i)  Letd, € A,,thend, d, " =e,
Ay (1) = A (dy dl_l)
> Ay (dy) AA; (dy7Y)
= Ay (dy) ANA; (dy) = A4 (dy)
A (e1) > Ay (dy),Vd €Gy

(ii) Ay (d)= A (d D7
> A (dy )
> Ay (dy)
Finally, A, (dy)= A, (dy7h)

Anti fuzzy subgroup
In this section we discuss the basic concepts of anti fuzzy subgroup of Gy,[5]
Definition 2.6 A fuzzy subset A, of G, is said to be anti fuzzy group of G,, and is denoted as anti F, (G,) if for all d,, ¢, € G;
() Aq(dy . cy) <max{A; (dy), Acy)}
(i) Ay (d ™) =A; (dy)
Definition 2.7 Let G, be any group we define the binary operation 0’ and unary operation’ > on anti-fuzzy group of G, as follows
VA, B, €anti F; (G,) and Vd; € G,
i (A1By) (d1) =A{A;(c1) VBy (p1): ¢ p1 =dy, Ve, Py EGy}
ii. A, (d,"H=A,d,) Vd, €EG,
Proposition 2.2 [5] Suppose A, B; € anti F; V P, (G;) also Ay, antiF; P, (G;) foreachi €], the following holds

(1) (A 0By) (dy) =A C1eGy {A; (c1) V By (c;71dy)}
=A C1eGy {A; (dy ¢, V By (c1)}
(ii) (ac'1 0Ay)(d))=A;(¢;7dy) Vdy, ¢ €G

(A0 acl) (d)=A,(dyc;™") dy,c €G
PROOF:- (i) Wehaved;,c; €EG,=>c;7 € G
(dici e =di (i) =die=d;
Also o td)=(,qgHd =ed, =d;
Thus,

{A; (dy ¢, VB (c) =A C1eGy {(A; (d1) VA, (c;7H) VB (¢1)}
=N¢ €Gy {(A; (dy) V(A Ay (171 VB (c1)}
=N¢ €Gy {(A; (dy) V(A 0By) (c;7cy)}
=A C1eGy {A;0(A;0By) (dre)
=(A;0B;)d,,Vd, € G,

Similarly, we get
A C1eGy {A; (c1) VB, (c;7'dy)} = (A 0By) (dy) Vd; €Gy
(i) (a010 A (d)= A C1eGy {A1 (c;71dy) VA (dy)}
=A C1eGy {A; (c;7) VA, (dy) VA (dy)}

=A C1eGy {A; (c;7") VA, (dy)}
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= A (c;7'dy) V dy, ¢, €EGy

(A0 acl) (dy)=A {A; (dy) VA, (dy ;™)
=N¢ €Gy {A; (dy) VA, (dy) VA (¢, )}
=N¢ EG1{ Ay (dy) VA (c;7h)}
=A;(di™) di,c €EG

C1€eGq

Fuzzy homomorphism
In this section author have extend the properties of fuzzy homomorphism in abelian fuzzy subgroup and anti-abelian fuzzy

subgroup

I11. ABELIAN FUZZY SUBGROUP [6]

Definition 2.8 IfA; € F, (G,) and ifA; (d; ¢;)=A4 (¢; d;) foralld; , ¢; € G, then A; is called an abelian fuzzy subgroup of G,
Proposition 3.1:- If f; : G; = G, be a homomorphism of group G, into G,. Let A; € F; (G;) is abelian fuzzy sub group then
expression that f; (A;) € F; (G,) is also an abelian fuzzy subgroup.
PROOF:-Let m;, n; € G, then
(fi (Ay) (my ny) = V{A; (p1) : p1 € Gy, f1 (p1) =My Ny}

V{A; (dy ¢1) 1dy, ¢ € Gy, fi (dy)=my, f; (1) =1y}
V{A; (¢; dy) 1dy, ¢ € Gy, fi (dy)=my, f; () =104}
= V{A; (c1) ANAy (dy) 1 dy, ¢ € Gy, fy (dy) =my, fi (¢) =14}
V{Ai(c1):c1 €Gy, f () =my} A{V{A;(dy):c1 €Gy, fi (dy) =1y}

=f1 (Ay) (my) A f; (Ay) ()

= (fi (Ay) (myny) Vimy, 0y €G,

Hence, f; (A;) € F1(G,) is an abelian fuzzy subgroup (ABFSG) of G,.
Proposition 3.2:- Let f; : G; — G, is a homomorphism of group G, into a group G,. If A; € F,(G,) is an abelian fuzzy subgroup of
G, Then show that f, "*( A; ) € F; (G,) is also an abelian fuzzy subgroup of G, .
PROOF:- Let f; : G; = G, be homomorphism of group G; into group G, . Let A; € F,(G,) be an abelian fuzzy subgroup of G;.
Then show £, "'(A; ) € F; (Gy) is also an abelian fuzzy subgroup of G;.
Suppose d,, c; € G; we have

(fl_l( A1) (dy ¢1) =Aq (f1 (dy 1))

v

=A; (fi (dy) f1 (&), since f; is a homomorphism
= A, (fi (c1) f1 (dv)), since G, is an abelian subgroup
=A; (f (¢, dy))

=(fi '(A)) (6 dy) Vdy,¢i € Gy

Hence, f; '(A,)€ F, (G,) isan abelian fuzzy subgroup of G, .
Proposition 3.3:- If f; : G; = G;' is a homomorphism of group G, into G;’ and g; : G;" — G;" be a homomorphism of group G’ into
group G;". Let A; € F; (G,) then show that the composition (g, o f;) (A,) € F; (G;").
PROOF:-Let ay, f; € G;". If possible, leta; & (g, 0 f1) (Gy) or f; & (81 0 f1) (G1) then
(810 f1) Ay (@) A (810 f1) Ay (B1) =0<(g1 0 f1) Ay (1))
If we suppose a; & (g1 0 f1) (Gy) thena; ™ & (g1 0 f1) (Gy)
Implies that (g, 0 f1) (A)) &y =0=(g1 0 f1) (A) ;™!
Again if we assume
a; =(g10f;)(dy)and By = (g1 0 f;) (¢; ) for some dy, ¢; € Gy.
Also

(810 f1) (Ay) (@1B1) = V{A; (p1) : Py €Gy, (810 f1) P1 =11}

(810 f1) (A (a181)
=V{A;(dyc):dy, ¢ €Gy,(810f1)dy =ag,(810f1) ¢y =P}
=V {A (d)AA(¢1):dy,¢61 €EGy,(8r0f1)dy=ag,(810f1) ¢ =P}
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=V{A(d)):ds €Gy,(g10fi)di=a} AV ((Ag(c1)):¢1 €Gy, (810 f1) cr € By}
(810f1) Ay (@) A(g1 0 f1) Ay (By)

Also,
(810fi)A a7t

=V{A (p):p1€G (@rof)pi=a ™'}
=V{A ()P €EG (gof)p ™ =y}
= (810 /1) Ay (ay)
Hence,
(810 f1) (Ay) €F; (G1")
Proposition 3.4:- Suppose f; : G; = G;" and g, : G;" = G," where f; and g, are homomorphism of a group G, into group G’ and
from a group G,' into a group G," respectively then the composition homomorphism (g, o f;) from G; into G,". Let A; € F; (G,) is
an abelian group then prove that (g, o f;) (A;) € F; (G,") is also an abelian group.
PROOF :-Let a; B; € G;" then we have by extension principle

(810 f1) (Ay) (ay, By)
= V{A; (p1) :P1 Gy, (81 0 fi) P1 = a1 1)}
2V{A;(dyc1):dy, ¢ €Gy,(810f1) dy=ay, (810 /1) ¢ =pi}
=V{A;(c1dy):dy,¢c, €Gy,(810f1) dy=ay,(810f1) c1 =1}
Since A; € F,(G,) is an abelian group
(810 f1) (Ay) (ay, By)
=V{Ai(c1) ANA; (dy) :dy, ¢ € Gy, (810 /1) dy =y, (810 1) 1= P}
=V[{A1(c1) ¢ €Gy, (81 0f1) 1 =P} A[VA E(dy):dy € Gy, (81 0f1) dy =]
=(810f1) (A (B) A(g10f1) (A) (1)
=(810 f1) (A) (BL 1)

Hence,
(81 0 f1) A; € F; (G,") is an abelian fuzzy subgroup of G,".

Proposition on abelian anti fuzzy subgroup

Proposition 3.5 If f; : G; — G, be a homomorphism of group G; into group G,. Let A; € anti F; (G,) is abelian anti fuzzy subgroup
of G4, then show that é A, € F; (G,) is also abelian anti fuzzy subgroup of G,.

PROOF: Let ¢

(fi Ap) (2 ﬁ1)
= AN{A; (p1) :P1 €Gy, f1 (P) =y B}
= A {A1 (dicy) 1 dy, ¢ € Gy, fi(dy) =ay, fi (c1) =B}
=A{A1(c1dy)idy, 0 € G1éf1 (dy) =ay, fi (c1) = B1}
A ALYV AI(d):d e GLfid)=%,,/ )=P
= AN A{A1(c1): 1 €Gy, f1 ()= V(Afi(dy):dy €Gy, fi (dy) =4 })
{fi(A)V fi (A} (By a)

=(f1 (A1) (B 1) Vay, p; €G,
Hence f; (A,) € anti F; (G,) is abelian anti-fuzzy subgroup of G,

IA

Proposition 3.6:- Let f; : G; [1[1G, is a homomorphism of a group G, into a group G,. If A; [1 anti F; (G,) is an abelian anti-fuzzy
subgroup of G, then show that f; ™' (A;) [J anti F, (G,) is also an abelian anti-fuzzy subgroup of G;.
PROOF :- Suppose f; : G; [1[]G, is a homomorphism of a group G, into a group G,. Let A; [J anti F; (G,) be abelian anti-fuzzy
subgroup of G,. Then show that f; ~1(A; ) [1 anti F; (G,) is also an abelian anti-fuzzy subgroup G;.
Letd, [1ll¢; (111G,
We have (f; " (A1) (dy &) = A; (fy (d1 &)

= A (f1 (dy) f1 (c) since f; is a homomorphism

= A (fi (o) f1 (dy) since G, is an abelian subgroup

= A (fy (¢p dy))
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_ =fi (A (¢1,d1)

Finally,f 1 (4, € anti Fy (G)) is an abelian anti-fuzzy subgroup.
Proposition 3.7: Suppose f; : G; = G;" and g; : G, = G," where f; and g, are homomorphism of a group G, into group G,’ and
from a group G,' into a group G," respectively. Let A; € anti F;(G;) is an abelian anti fuzzy subgroup of G, then prove that the
image of composition homo — morphism of fuzzy anti subgroup A; of G;” is also an abelian anti fuzzy subgroup of G,"
PROOF: - Let a; f; € G;" then we have by extension principle
(810 f1) (A (ay,B)

= A{A1(p1) :P1 €Gy, (810 1) 1 =y 1)}

SA{A1(dy¢1)idy, ¢, €Gy,(810fy) dy=ay,(810f1) ¢ =P}

= A{A1(c1dy):dy,c1€Gy,(810f1) dy=ay(810f1) ¢y Bu}

S A{Ay(c)) VA (dy) 1dy, ¢ €Gy, (810 f1) dy =y, (810 f1) €1= By}

= A [{A1(c1) 1 €Gy, (810 fi) ey =P}l VIAA(Dy) :dy €Gy, (810 f1) di]

=a; (810f1) (A1) (By) V(810 f1) (Ay) (1)

= (g10/1) (A1) (B, ay)
Finally,
(g1 0 f1) Ay F, (G;") is an abelian anti fuzzy subgroup of G,".

Iv. CHARACTERISTIC FUZZY SUBGROUP [13]
DEFINITION: 4.1:- Let A, be a fuzzy subgroup of G; and ¢ be a function from G, into itself. Now define the fuzzy subset A;® of
G, by Alq’(dl) = A (dlq’), where d1¢ = ¢(d;) A; subgroup K of group G, is called a characteristic subgroup if K® = K for
every automorphism ¢ of G;, where K?denote ¢ (k).
Definition 4.2 Characteristic fuzzy subgroup: A fuzzy subgroup A; on a group K is called a fuzzy characteristic subgroup of G,
if A,®(d;) = A,(d,) for every automorphism ¢ of G, and forall d; € G,
Proposition 4.1 :- Let A, is a fuzzy subgroup of a group G, if
a. If ¢ is a homomorphism of G, into itself, then Alq’ is a fuzzy subgroup of G,
b. If A, is a fuzzy characteristic subgroup of G; then A; is a normal.
PROOF : (i) dy, c; € G, then
A1¢(d1 ¢1) = A (dy ¢)°
= A, (dy ¢Cl )
Subsequently ¢ is a homomorphism and A; is a fuzzy subgroup of G;.
A; (d, e *) = A (4 ¢) AA; (¢ ®)
A%y o) = AP ) AA (o)

Also, AC(d, ™) = Ag(d,Y)”
-1
= A,(d,?)
= A (d, ?)
= A1¢(d1 )
Hence, A1¢ is a fuzzy subgroup of G;.

(ii) Letd,, c; € Gy to prove that A; is normal we have to show
Ap (dy ¢1)=A; (¢ dy)

Let ¢ be function from G; into itself definition by

¢(z)=d, ‘zd, , V 2€G,

Since A, is a fuzzy characteristic subgroup of Gy,

~AP=A,
Thus A, (d; ¢1)=A,%(d; ¢;)

=A; (dy ¢)®
=A; (¢ (d; &)
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=A; (dy _1(d1 c1)dy)
=A;(¢; dy)

Hence A; is normal subgroup of G;.
V. MAIN RESULT

Proposition 5.1 : Let A;, C; be the fuzzy subgroup of G, if
(i) If ¢ is a homomorphism of G, into itself, then Alq’ is a fuzzy subgroup of G,
(ii) If A, is a fuzzy characteristic subgroup of G, then A, is a normal.
PROOF : (i) dy, c; € G, then

A1¢(d1 ¢1) = Ay (d; ¢)°

=A; (dy ¢Cl )
Subsequently ¢ is a homomorphism and A; is a fuzzy subgroup of G;.
A; (d, e *) = A (4 ¢) AA; (¢ ®)
A%(dy ) = AP(d ) ANAP ()

Also, AC(d, ) = A(d, )Y
= ,(d, )
= A,(d,?)
= A1¢(d1 )
Hence, A1¢ is a fuzzy subgroup of G;.

Proposition 5.2 : Let A;, C; be the fuzzy subgroups of a group G;. Then the following statement hold
(i) If ¢ is a homomorphism of G, into itself. Then A,® & C,® are fuzzy subgroup of

G;. Then show that (a) (A; U C;)® and (b) (A, N C;)?® are fuzzy subgroup of G,.

(ii) If A,, C; are fuzzy characteristic subgroup of G;, so A; and C; are normal then
we have to show that A; U C; and A; N C; are also normal.

Proof:(i) Let A;, C; € F; P, (G;) and ¢ is a homomorphism of G, into itself. Letd; ¢; € G, we have

(AU C1)¢ ((dl 1) ) = (A, UCy) ((dy )®)
=(A U C1)(d1 ¢Cl ¢)
= A(d, be, *)v ¢, (dy be, )
2 (A1 (dl ¢) AA; (e ¢)) v (Cl(dl ¢) ACy(ey ¢))
= (A1 (dl ¢) v Cl(dl ¢)) A (A1(01 ®) v C,(cq ¢))
= (A Ucl)d1¢A(A1UC1)Cl¢
(AL UC)¥(dy 1) = (AL UC)HP(dy) A(ALUC)P(e, ?)
(AU C1)¢(d1 _1) = (AU C1)¢(d1 _1)¢
= (Al U C1) ((d1 ¢)_1)
= A, (d,®) 7 AC,(d,®) " since Ay, Cy € Fy (Gy)
= A, (d.®)ncy(d,®)
= (Al U C1) (d1 ¢)
= AV C1)¢(d1)
Hence, (A,ucC)) e F, (Gy)
Similarly,
i (b) we have
(A n C1)¢(d1 ) = (A;nCy) (a4 C1)¢)
=(A;n C1)(d1 ¢Cl ¢)
= A(d, be, *)AC, (d, be, )
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2 (A1 (dl ¢) AA; (e ¢)) A (Cl(dl ¢) ACy(ey ¢))

= (A1 (dl ¢) A Cl(dl ¢)) A (A1 (c; *) A Cy(cq ¢))
= (A nc1)d1¢/\(A1 ncl)cl¢
= (A, NCP%) A A, NCey
ie, (AN C1)¢(d1 1) =2 (AN C1)¢(d1) AA N C1)¢(c1)
Also, (A, N C)®(d; ) = (A, nc)®(d; 1)°

= (Al n C1) ((d1 ¢)_1)

= A (D) AC(d ®) 7 since A, , C €F, (Gy)
= A (dl ¢) A Cl(dl ¢)
(ArnCy) (d; ?)
= (AN C1)¢(d1)
Hence, (A;nCy) € F,(Gy)
(i) Letd,, c; € G; to prove that A, is normal we have to show
Ap (dy ¢1)=A; (¢ dy)
Let ¢ be function from G; into itself definition by
¢(z)=d, ‘zd, , V 2€G,
Since A, is a fuzzy characteristic subgroup of G,

A1¢ =A;
Thus A, (dy ¢)= A1¢(d1 1)
=A; (dy ¢1)®
=A; (¢ (dy 1))
=A,; (d, "'(dy ¢;)dy)
=A; (¢, dy)
Hence A; is normal subgroup of G,.
Again, Suppose d;, ¢; € F;(G,) to prove that (A; N C;) is a normal fuzzy subgroup of G, it is necessary to show
A nC(ici) = (A nCy(eidy)
Let ¢ be the function of group G, into itself defined by
d@)=4d, "zd, Vd EG
Since A; and C; are fuzzy characteristic subgroup of G,, hence be normal as we prove
(Al n C1)¢ = (A1 n C1)
(A;NCy(dycy) (A, NCP¥(dy¢y)
(A1 NCy)(dycy)®
Ay nCyp) (d1 _1(d1 ¢1)dy )
=(A;NnCy) ((dl _ldl) (c1dy ))
=(A;NCy) (c1dy)

Hence (A; N C;) € F;(G,) is normal.
Similarly,

(AL U C1)¢ = (A UCy)
(A UCy (e dy) = (AU C1)¢(c1 d;)
= (A, UCy)(erdp)?
AV C1)(d1 _1(01 d;)d, )
=(A V() (d1 _ldl) (c1dy ))
= (A, UC)(c1 dy)

O©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IV Apr 2022- Available at www.ijraset.com

Hence (A; U C;) € F,(G,) is also normal.
PROPOSITION 5.3: Let A, is a normal fuzzy subgroup of G, and let ¢ be a homomorphism of G; into itself. Then ¢ induces a

homomorphism ¢ of % into itself defined by
1

d(diA) = (dy)A, Foralld, € (Gy)
Proof: Letd,;, c; € G; we have
dy Ay =¢ Ay
Then we have to show that
¢ (di)A = (c1)A
Since
dy Ay =c Ay
we have
dy Ay (dy)=c A (dy)
=>A; ()=A; (c; 'dy)
dy Ay (c1)=c1 A (1)
= A (d, o) =A (o)
Ay (i 7Mdy)=A (4, _101) =A; (e)
Implies that
(¢;7dy), (dy _101) €Ay,
Since we have
¢ (Ar,) =Aq,
Therefore d(c; ~1d, ) and ¢(d; ~'¢; ) also belong to Ay,
Which implies that
Ay (b(c; My ) = Ay (d(d,y _101 ) =A; (e)

Let g € G, Then
¢ (d)A(g1) = A (b (d, _1) g1)

=A1 (d(dy ()b (™) gy)

= Ay ($(dy _1) ¢ (cr) AAL (P ™D gy)

=A; (¢(d, _101 NA)(c) A (81)

=A1(©AD (1) ANA;(81)

= ¢ (c1) A (81)
Finally,
G(di)A; (81) 2P (c1)A1 (1) -ooviiiiin (1)
Similarly, we can prove that
GAi)A1(81)SP(1)AL(81) wvvevineninns (i1)
Since g; € G, is arbitrary
Hence,
¢ (di)A = (c1) Ay
Therefore,

we find that ¢ is well defined
Now we have only to show that ¢ is a homomorphism
Letd; ,c; €Gy.
Since ¢ is homomorphism
¢ (dici)=d(d)d(cr)
ﬂ) (dicy)A1 =0 (dy) d(cr) Ay
¢(dic)A = qi(dl A1 . § (c1)A;.
= il)(dl Ap. G Ay)
=¢(dy Ar) P (c1 Ay).

O©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1648



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue IV Apr 2022- Available at www.ijraset.com

Hence ¢ is a homomorphism.
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