Homomorphism of Characteristic Fuzzy Subgroup and Abelian Fuzzy Subgroup

Amit Kumar Arya ${ }^{1}$, Dr. M. Z. Alam ${ }^{2}$
${ }^{1}$ Research Scholar, P.G. Department of Mathematics, M. U. Bodh Gaya, Bihar
${ }^{2}$ Associted Proofeser , P.G. Department of Mathematics, College of Commerence , Arts \& Science , Patna , Patliputra University , Patna - 20 , India

Abstract

In this paper, we have established some independent proof of homomorphism on algebra of abelian and characteristic fuzzy subgroup. The characteristic of fuzzy subgroup [13] was first introduced by P. Bhattacharya and N. P. Mukharjee in 1986. Keywords: Fuzzy subgroup, characteristic fuzzy subgroup, abelian fuzzy subgroup and normal fuzzy subgroup.

I. INTRODUCTION

The concept of fuzzy sets was introduced by L.A.Zadeh [15] in 1965.Study of algebraic structure was first introduced by A.Rosenfeld [1]. After that a series of researches have done in this direction P.Bhattacharya and N.P.Mukharjee[13] have defined fuzzy normal subgroup and characteristic fuzzy subgroup in 1986. In this paper we have tried to established some independent proof about the properties of fuzzy group homomorphism on algebra of characteristic fuzzy subgroup.

II. PRELIMINARIES

In this section, we recall and study some concepts associated with fuzzy sets and fuzzy group, which we need in the subsequent sections.

A. Fuzzy Set

Over the past three decades, a number of definitions of a fuzzy set and fuzzy group have appeared in the literature (cf., e.g., [15, 1 , $3,7,10]$). In [15], it has been shown that some of these are equivalent. We begin with the following basic concepts of fuzzy set, fuzzy point and fuzzy group.
Definition 2.1 [15] A fuzzy subset of D_{1} be a function $f_{1}: D_{1} \rightarrow[0,1]$ the set of all fuzzy subset of D_{1} is sad to be fuzzy power set of D_{1} and designate by $P_{1}\left(D_{1}\right)$.

Definition 2.2 [15] Support of fuzzy set. Suppose $A_{1} \in F_{1} P_{1}\left(D_{1}\right)$ then the set $\left\{A_{1}\left(d_{1}\right): d_{1} \in D_{1}\right\}$ is said to be the image of A_{1} is designate by $A_{1}\left(D_{1}\right)$. The set $\left\{d_{1}: d_{1} \in D_{1}, A_{1}\left(d_{1}\right)>0\right\}$ is said to be the support of A_{1} is designate by $A_{1} *$.
Definition 2.3 [15] Let $A_{1}, C_{1} \in F_{1} P_{1}\left(D_{1}\right)$ such that $A_{1}\left(d_{1}\right) \leq C_{1}\left(d_{1}\right), \forall d_{1} \in D_{1}$ then A_{1} is said to be contained in C_{1} and it is designate by $A_{1} \subseteq C_{1}$
Definition 2.4 [15] Let $B_{1} \subseteq A_{1}$ and $d_{1} \in[0,1]$ we defined $d_{1_{B_{1}}} \in F_{1} P_{1}\left(D_{1}\right)$ as

$$
d_{1_{C_{1}}}(a)=\left\{\begin{array}{l}
d_{1}, \text { for } a_{1} \in B_{1} \\
0, \text { for } a_{1} \in A_{1}
\end{array}\right.
$$

If B_{1} is a singleton $\left\{b_{1}\right\}$ then $D_{\left\{b_{1}\right\}}$ is called a fuzzy point.
For any collection $\left\{A_{i_{1}}, i_{1} \in I_{1}\right\}$ of fuzzy subset of D_{1}, where I_{1} is an index set the least upper bound (L.U.B.) $\bigcup_{i_{1} \in I_{1}} A_{i_{1}}$ and greatest lower bound (G.L.B) $\bigcap_{i_{1} \in I_{1}} A_{i_{1}}$ of $A_{i_{1}}$ are given by

$$
\begin{aligned}
& \left(\cup_{i_{1} \in I_{1}} A_{i_{1}}\right)\left(d_{1}\right)=\mathrm{v}_{i_{1} \in I_{1}} A_{i_{1}}\left(d_{1}\right), \forall d_{1} \in D_{1} \\
& \left(\bigcap_{i_{1} \in I_{1}} A_{i_{1}}\right)\left(d_{1}\right)=\wedge_{i_{1} \in I_{1}} A_{i_{1}}\left(d_{1}\right), \forall d_{1} \in D_{1}
\end{aligned}
$$

Fuzzy subgroup

In this section, we discuss the concept of a fuzzy subgroup in details (c.f.,[1]).

Definition 2.5 Fuzzy subgroup (or $\left.F_{1}\left(G_{1}\right)\right)$ Let G_{1} be any group, we define the binary operation o' and unary operation ${ }^{-1}$ on $F_{1} P_{1}$ $\left(G_{1}\right)$ as follows, $\forall \mathrm{A}_{1}, \mathrm{C}_{1} \in F_{1} P_{1}\left(G_{1}\right)$ and $\forall d_{1} \in G_{1}$

$$
\begin{aligned}
\left(\mathrm{A}_{1} \circ \mathrm{C}_{1}\right)\left(d_{1}\right) & =\mathrm{V}\left\{\mathrm{~A}_{1}\left(\mathrm{y}_{1}\right) \wedge \mathrm{C}_{1}\left(\mathrm{z}_{1}\right): \mathrm{y}_{1} \mathrm{z}_{1}=d_{1}, \forall \mathrm{y}_{1}, \mathrm{z}_{1} \in G_{1}\right\} \\
\mathrm{A}_{1}^{-1}\left(d_{1}\right) & =\mathrm{A}_{1}\left(d_{1}^{-1}\right)
\end{aligned}
$$

Proposition 2.1 [3] If $\mathrm{A}_{1} \in F_{1}\left(G_{1}\right)$, then for all $d_{1} \in G_{1}$
(i) $\mathrm{A}_{1}\left(e_{1}\right) \geq \mathrm{A}_{1}\left(d_{1}\right)$
(ii) $\mathrm{A}_{1}\left(d_{1}\right)=\mathrm{A}_{1}\left(d_{1}^{-1}\right)$

Proof (i) Let $d_{1} \in \mathrm{~A}_{1}$, then $d_{1} d_{1}{ }^{-1}=e_{1}$

$$
\begin{aligned}
\mathrm{A}_{1}\left(e_{1}\right) & =\mathrm{A}_{1}\left(d_{1} d_{1}^{-1}\right) \\
& \geq \mathrm{A}_{1}\left(d_{1}\right) \wedge \mathrm{A}_{1}\left(d_{1}^{-1}\right) \\
& \geq \mathrm{A}_{1}\left(d_{1}\right) \wedge \mathrm{A}_{1}\left(d_{1}\right)=\mathrm{A}_{1}\left(d_{1}\right)
\end{aligned}
$$

$$
\therefore \quad \mathrm{A}_{1}\left(e_{1}\right) \geq \mathrm{A}_{1}\left(d_{1}\right), \forall d_{1} \in \mathrm{G}_{1}
$$

(ii)

$$
\begin{aligned}
\mathrm{A}_{1}\left(d_{1}\right) & =\mathrm{A}_{1}\left(d_{1}^{-1}\right)^{-1} \\
& \geq \mathrm{A}_{1}\left(d_{1}^{-1}\right) \\
& \geq \mathrm{A}_{1}\left(d_{1}\right)
\end{aligned}
$$

Finally,

$$
\mathrm{A}_{1}\left(d_{1}\right)=\mathrm{A}_{1}\left(d_{1}^{-1}\right)
$$

Anti fuzzy subgroup

In this section we discuss the basic concepts of anti fuzzy subgroup of $G_{1},[5]$
Definition 2.6 A fuzzy subset A_{1} of G_{1} is said to be anti fuzzy group of G_{1}, and is denoted as anti $F_{1}\left(G_{1}\right)$ if for all d_{1}, $c_{1} \in G_{1}$
(i) $\mathrm{A}_{1}\left(d_{1} \cdot \mathrm{c}_{1}\right) \leq \max \left\{\mathrm{A}_{1}\left(d_{1}\right), \mathrm{A}\left(\mathrm{c}_{1}\right)\right\}$
(ii) $\mathrm{A}_{1}\left(d_{1}^{-1}\right)=\mathrm{A}_{1}\left(d_{1}\right)$

Definition 2.7 Let G_{1} be any group we define the binary operation 'o' and unary operation' ${ }^{\text {, }}$, on anti-fuzzy group of G_{1} as follows $, \forall \mathrm{A}_{1}, \mathrm{~B}_{1} \in$ anti $\mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ and $\forall d_{1} \in \mathrm{G}_{1}$
i. $\quad\left(\mathrm{A}_{1} \mathrm{~B}_{1}\right)\left(d_{1}\right)=\wedge\left\{\mathrm{A}_{1}\left(\mathrm{c}_{1}\right) \vee \mathrm{B}_{1}\left(\mathrm{p}_{1}\right): c_{1} \mathrm{p}_{1}=d_{1}, \forall c_{1}, \mathrm{p}_{1} \in \mathrm{G}_{1}\right\}$
ii. $\quad \mathrm{A}_{1}\left(d_{1}^{-1}\right)=\mathrm{A}_{1}^{-1}\left(d_{1}\right) \forall d_{1} \in \mathrm{G}_{1}$

Proposition 2.2 [5] Suppose $A_{1}, B_{1} \in$ anti $F_{1} \forall P_{1}\left(G_{1}\right)$ also A_{1} anti $F_{1} P_{1}\left(G_{1}\right)$ for each $i \in I$, the following holds
(i)

$$
\text { (i) } \left.\quad \begin{array}{rl}
\left(\mathrm{A}_{1} \circ \mathrm{~B}_{1}\right)\left(d_{1}\right) & =\wedge_{c_{1 \in \mathrm{G}_{1}}\left\{\mathrm{~A}_{1}\left(c_{1}\right) \vee \mathrm{B}_{1}\left(c_{1}^{-1} d_{1}\right)\right\}} \\
& =\wedge_{c_{1 \in \mathrm{G}_{1}}\left\{\mathrm{~A}_{1}\left(d_{1} c_{1}^{-1}\right) \vee \mathrm{B}_{1}\left(c_{1}\right)\right\}} \\
\text { (ii) } \quad & \left(a_{c_{1}} \circ \mathrm{~A}_{1}\right)\left(d_{1}\right)
\end{array}=\mathrm{A}_{1}\left(c_{1}^{-1} d_{1}\right) \quad \forall d_{1}, c_{1} \in \mathrm{G}_{1}\right\}\left(\mathrm{A}_{1} \circ a_{c_{1}}\right)\left(d_{1}\right)=\mathrm{A}_{1}\left(d_{1} c_{1}^{-1}\right) \quad d_{1}, c_{1} \in \mathrm{G}_{1} .
$$

PROOF:- (i) We have $d_{1}, c_{1} \in \mathrm{G}_{1} \Rightarrow c_{1}{ }^{-1} \in \mathrm{G}_{1}$

$$
\left(d_{1} c_{1}^{-1}\right) c_{1}=d_{1}\left(c_{1}^{-1} c_{1}\right)=d_{1} \mathrm{e}=d_{1}
$$

Also

$$
c_{1}\left(c_{1}^{-1} d_{1}\right)=\left(c_{1} c_{1}^{-1}\right) d_{1}=\mathrm{e} d_{1}=d_{1}
$$

Thus,

$$
\begin{aligned}
\left\{\mathrm{A}_{1}\left(d_{1} c_{1}^{-1}\right) \vee \mathrm{B}_{1}\left(c_{1}\right)\right. & =\Lambda_{c_{1 \in \mathrm{G}_{1}}}\left\{\left(\mathrm{~A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(c_{1}^{-1}\right) \vee \mathrm{B}_{1}\left(c_{1}\right)\right\}\right. \\
& =\wedge_{c_{1 \in \mathrm{G}_{1}}}\left\{\left(\mathrm{~A}_{1}\left(d_{1}\right) \vee\left(\wedge \mathrm{A}_{1}\left(c_{1}^{-1}\right) \vee \mathrm{B}_{1}\left(c_{1}\right)\right\}\right.\right. \\
& =\wedge_{c_{1 \in \mathrm{G}_{1}}}\left\{\left(\mathrm{~A}_{1}\left(d_{1}\right) \vee\left(\mathrm{A}_{1} \circ \mathrm{~B}_{1}\right)\left(c_{1}^{-1} c_{1}\right)\right\}\right. \\
& =\wedge_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1} \circ\left(\mathrm{~A}_{1} \circ \mathrm{~B}_{1}\right)\left(d_{1} e\right)\right. \\
& =\left(\mathrm{A}_{1} \circ \mathrm{~B}_{1}\right) d_{1}, \forall d_{1} \in \mathrm{G}_{1}
\end{aligned}
$$

Similarly, we get

$$
\begin{align*}
& \wedge_{c_{1 \in \mathrm{G}_{1}}\left\{\mathrm{~A}_{1}\left(c_{1}\right) \vee \mathrm{B}_{1}\left(c_{1}^{-1} d_{1}\right)\right\}}=\left(\mathrm{A}_{1} \circ \mathrm{~B}_{1}\right)\left(d_{1}\right) \forall d_{1} \in \mathrm{G}_{1} \\
& \text { (ii) } \quad\left(a_{c_{1}} \circ \mathrm{~A}_{1}\right)\left(d_{1}\right)=\wedge_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1}\left(c_{1}^{-1} d_{1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right)\right\} \tag{ii}\\
&=\wedge_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1}\left(c_{1}^{-1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right)\right\} \\
&=\wedge_{c_{1} \in \mathrm{G}_{1}}\left\{\mathrm{~A}_{1}\left(c_{1}^{-1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right)\right\}
\end{align*}
$$

$$
=\mathrm{A}_{1}\left(c_{1}^{-1} d_{1}\right) \quad \forall d_{1}, c_{1} \in \mathrm{G}_{1}
$$

Also,

$$
\begin{aligned}
\left(\mathrm{A}_{1} \circ a_{c_{1}}\right)\left(d_{1}\right) & =\Lambda_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(d_{1} c_{1}^{-1}\right)\right\} \\
& =\Lambda_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(c_{1}^{-1}\right)\right\} \\
& =\Lambda_{c_{1 \in \mathrm{G}_{1}}}\left\{\mathrm{~A}_{1}\left(d_{1}\right) \vee \mathrm{A}_{1}\left(c_{1}^{-1}\right)\right\} \\
& =\mathrm{A}_{1}\left(d_{1} c_{1}^{-1}\right) d_{1}, c_{1} \in \mathrm{G}_{1}
\end{aligned}
$$

Fuzzy homomorphism

In this section author have extend the properties of fuzzy homomorphism in abelian fuzzy subgroup and anti-abelian fuzzy subgroup

III. ABELIAN FUZZY SUBGROUP [6]

Definition 2.8 If $A_{1} \in F_{1}\left(G_{1}\right)$ and if $A_{1}\left(d_{1} c_{1}\right)=A_{1}\left(c_{1} d_{1}\right)$ for all $d_{1}, c_{1} \in G_{1}$ then A_{1} is called an abelian fuzzy subgroup of G_{1}
Proposition 3.1:- If $f_{1}: G_{1} \rightarrow G_{2}$ be a homomorphism of group G_{1} into G_{2}. Let $A_{1} \in F_{1}\left(G_{1}\right)$ is abelian fuzzy sub group then expression that $f_{1}\left(\mathrm{~A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{2}\right)$ is also an abelian fuzzy subgroup.
PROOF:- Let $m_{1}, n_{1} \in G_{2}$ then

$$
\begin{aligned}
\left(f_{1}\left(\mathrm{~A}_{1}\right)\right)\left(\mathrm{m}_{1} \mathrm{n}_{1}\right) & =\mathrm{V}\left\{\mathrm{~A}_{1}\left(\mathrm{p}_{1}\right): \mathrm{p}_{1} \in \mathrm{G}_{1}, f_{1}\left(\mathrm{p}_{1}\right)=\mathrm{m}_{1} \mathrm{n}_{1}\right\} \\
& \geq \mathrm{V}\left\{\mathrm{~A}_{1}\left(d_{1} c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\mathrm{m}_{1}, f_{1}\left(c_{1}\right)=\mathrm{n}_{1}\right\} \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(c_{1} d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\mathrm{m}_{1}, f_{1}\left(c_{1}\right)=\mathrm{n}_{1}\right\} \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(c_{1}\right) \wedge \mathrm{A}_{1}\left(d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\mathrm{m}_{1}, f_{1}\left(c_{1}\right)=\mathrm{n}_{1}\right\} \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(c_{1}\right): c_{1} \in \mathrm{G}_{1}, f_{1}\left(c_{1}\right)=\mathrm{m}_{1}\right\} \wedge\left\{\mathrm{V}\left\{\mathrm{~A}_{1}\left(d_{1}\right): c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\mathrm{n}_{1}\right\}\right. \\
& =f_{1}\left(\mathrm{~A}_{1}\right)\left(\mathrm{m}_{1}\right) \wedge f_{1}\left(\mathrm{~A}_{1}\right)\left(\mathrm{n}_{1}\right) \\
& =\left(f_{1}\left(\mathrm{~A}_{1}\right)\right)\left(\mathrm{m}_{1} \mathrm{n}_{1}\right) \forall \mathrm{m}_{1}, \mathrm{n}_{1} \in \mathrm{G}_{2}
\end{aligned}
$$

Hence, $f_{1}\left(\mathrm{~A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{2}\right)$ is an abelian fuzzy subgroup (ABFSG) of G_{2}.
Proposition 3.2:- Let $f_{1}: G_{1} \rightarrow G_{2}$ is a homomorphism of group G_{1} into a group G_{2}. If $A_{1} \in F_{1}\left(G_{2}\right)$ is an abelian fuzzy subgroup of G_{2} Then show that $f_{1}^{-1}\left(\mathrm{~A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is also an abelian fuzzy subgroup of G_{1}.
PROOF:- Let $f_{1}: G_{1} \rightarrow G_{2}$ be homomorphism of group G_{1} into group G_{2}. Let $A_{1} \in F_{1}\left(G_{2}\right)$ be an abelian fuzzy subgroup of G_{1}. Then show $f_{1}^{-1}\left(\mathrm{~A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is also an abelian fuzzy subgroup of G_{1}.

Suppose $d_{1}, c_{1} \in \mathrm{G}_{1}$ we have

$$
\begin{array}{rlr}
\left(f_{1}^{-1}\left(\mathrm{~A}_{1}\right)\right)\left(d_{1} c_{1}\right) & =\mathrm{A}_{1}\left(f_{1}\left(d_{1} c_{1}\right)\right) & \\
& =\mathrm{A}_{1}\left(f_{1}\left(d_{1}\right) f_{1}\left(c_{1}\right)\right), & \operatorname{sinc} \\
& =\mathrm{A}_{1}\left(f_{1}\left(c_{1}\right) f_{1}\left(d_{1}\right)\right), & \operatorname{sinc} \\
& =\mathrm{A}_{1}\left(f\left(c_{1} d_{1}\right)\right) \\
& =\left(f_{1}^{-1}\left(\mathrm{~A}_{1}\right)\right)\left(c_{1} d_{1}\right) \forall d_{1}, c_{1} \in \mathrm{G}_{1} .
\end{array}
$$

$$
=\mathrm{A}_{1}\left(f_{1}\left(d_{1}\right) f_{1}\left(c_{1}\right)\right), \quad \text { since } f_{1} \text { is a homomorphism }
$$

$$
=\mathrm{A}_{1}\left(f_{1}\left(c_{1}\right) f_{1}\left(d_{1}\right)\right), \quad \text { since } \mathrm{G}_{2} \text { is an abelian subgroup }
$$

Hence, $\quad f_{1}{ }^{-1}\left(\mathrm{~A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is an abelian fuzzy subgroup of G_{1}.
Proposition 3.3:- If $f_{1}: G_{1} \rightarrow G_{1}{ }^{\prime}$ is a homomorphism of group G_{1} into $G_{1}{ }^{\prime}$ and $g_{1}: G_{1}{ }^{\prime} \rightarrow G_{1}{ }^{\prime \prime}$ be a homomorphism of group $G_{1}{ }^{\prime}$ into group $G_{1}{ }^{\prime \prime}$. Let $A_{1} \in F_{1}\left(G_{1}\right)$ then show that the composition $\left(g_{1} \circ f_{1}\right)\left(A_{1}\right) \in F_{1}\left(G_{1}{ }^{\prime \prime}\right)$.
PROOF:- Let $\alpha_{1}, \beta_{1} \in \mathrm{G}_{1}{ }^{\prime \prime}$. If possible, let $\alpha_{1} \notin\left(\mathrm{~g}_{1} \circ f_{1}\right)\left(\mathrm{G}_{1}\right)$ or $\beta_{1} \notin\left(\mathrm{~g}_{1} \circ f_{1}\right)\left(\mathrm{G}_{1}\right)$ then
$\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1}\left(\alpha_{1}\right) \wedge\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1}\left(\beta_{1}\right)=0 \leq\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1}\left(\alpha_{1} \beta_{1}\right)$.
If we suppose $\alpha_{1} \notin\left(\mathrm{~g}_{1} \circ f_{1}\right)\left(\mathrm{G}_{1}\right)$ then $\alpha_{1}^{-1} \notin\left(\mathrm{~g}_{1} \circ f_{1}\right)\left(\mathrm{G}_{1}\right)$
Implies that $\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right) \alpha_{1}=0=\left(\mathrm{g}_{1}\right.$ o $\left.f_{1}\right)\left(\mathrm{A}_{1}\right) \alpha_{1}^{-1}$
Again if we assume
$\alpha_{1}=\left(\mathrm{g}_{1} \circ f_{1}\right)\left(d_{1}\right)$ and $\beta_{1}=\left(\mathrm{g}_{1} \circ f_{1}\right)\left(c_{1}\right)$ for some $d_{1}, c_{1} \in \mathrm{G}_{1}$.
Also
$\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1} \beta_{1}\right)=\mathrm{V}\left\{\mathrm{A}_{1}\left(\mathrm{p}_{1}\right): \mathrm{p}_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) \mathrm{p}_{1}=\alpha_{1} \beta_{1}\right\}$
$\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1} \beta_{1}\right)$

$$
\begin{aligned}
& \geq \mathrm{V}\left\{\mathrm{~A}_{1}\left(d_{1} c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& \geq \mathrm{V}\left\{\mathrm{~A}_{1}\left(d_{1}\right) \wedge \mathrm{A}_{1}\left(c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\vee\left\{\mathrm{A}_{1}\left(d_{1}\right): d_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1}\right\} \wedge\left\{\vee\left(\left(\mathrm{A}_{1}\left(c_{1}\right)\right): c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1} \in \beta_{1}\right\}\right. \\
& =\left(\mathrm{g}_{1} \mathrm{of} f_{1}\right) \mathrm{A}_{1}\left(\alpha_{1}\right) \wedge\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1}\left(\beta_{1}\right)
\end{aligned}
$$

Also,
$\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1} \alpha_{1}{ }^{-1}$

$$
\begin{aligned}
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(p_{1}\right): p_{1} \in \mathrm{G},\left(\mathrm{~g}_{1} \circ f_{1}\right) p_{1}=\alpha_{1}{ }^{-1}\right\} \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(p_{1}{ }^{-1}\right): p_{1} \in \mathrm{G},\left(\mathrm{~g}_{1} \circ f_{1}\right) p_{1}^{-1}=\alpha_{1}\right\} \\
& =\left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1}\left(\alpha_{1}\right)
\end{aligned}
$$

Hence,
$\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{1}{ }^{\prime \prime}\right)$
Proposition 3.4:- Suppose $f_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{1}{ }^{\prime}$ and $\mathrm{g}_{1}: \mathrm{G}_{1}{ }^{\prime} \rightarrow \mathrm{G}_{1}{ }^{\prime \prime}$ where f_{1} and g_{1} are homomorphism of a group G_{1} into group $\mathrm{G}_{1}{ }^{\prime}$ and from a group G_{1} ' into a group $G_{1}{ }^{\prime \prime}$ respectively then the composition homomorphism (g_{1} o f_{1}) from G_{1} into $G_{1}{ }^{\prime \prime}$. Let $A_{1} \in F_{1}\left(G_{1}\right)$ is an abelian group then prove that $\left(\mathrm{g}_{1} \mathrm{o} f_{1}\right)\left(\mathrm{A}_{1}\right) \in \mathrm{F}_{1}\left(\mathrm{G}_{1}{ }^{\prime \prime}\right)$ is also an abelian group.
PROOF :-Let $\alpha_{1}, \beta_{1} \in \mathrm{G}_{1}{ }^{\prime \prime}$ then we have by extension principle

$$
\begin{aligned}
& \left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1}, \beta_{1}\right) \\
& \left.=\mathrm{V}\left\{\mathrm{~A}_{1}\left(p_{1}\right): p_{1} \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) p_{1}=\alpha_{1} \beta_{1}\right)\right\} \\
& \geq \vee\left\{\mathrm{A}_{1}\left(d_{1} c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(c_{1} d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& \text { Since } A_{1} \in F_{1}\left(G_{1}\right) \text { is an abelian group } \\
& \left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1}, \beta_{1}\right) \\
& =\mathrm{V}\left\{\mathrm{~A}_{1}\left(c_{1}\right) \wedge \mathrm{A}_{1}\left(d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& =\vee\left[\left\{\mathrm{A}_{1}\left(c_{1}\right) c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\}\right] \wedge\left[\vee \mathrm{A}_{1} \in\left(d_{1}\right): d_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1}\right] \\
& =\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\beta_{1}\right) \wedge\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1}\right) \\
& =\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\beta_{1} \alpha_{1}\right) \\
& \text { Hence, } \\
& \left(\mathrm{g}_{1} \circ f_{1}\right) \mathrm{A}_{1} \in \mathrm{~F}_{1}\left(\mathrm{G}_{1}{ }^{\prime \prime}\right) \text { is an abelian fuzzy subgroup of } \mathrm{G}_{1}{ }^{\prime \prime} \text {. }
\end{aligned}
$$

Proposition on abelian anti fuzzy subgroup

Proposition 3.5 If $f_{1}: G_{1} \rightarrow G_{2}$ be a homomorphism of group G_{1} into group G_{2}. Let $A_{1} \in$ anti $F_{1}\left(G_{1}\right)$ is abelian anti fuzzy subgroup of G_{1}, then show that $f_{1} A_{1} \in F_{1}\left(G_{2}\right)$ is also abelian anti fuzzy subgroup of G_{2}.
PROOF: Let $\alpha_{1}, \beta_{1} \in \mathrm{G}_{2}^{1}$

$$
\begin{aligned}
\left.\left(f_{1} \mathrm{~A}_{1}\right)\right)\left(\alpha_{1}\right. & \left.\beta_{1}\right) \\
& =\wedge\left\{\mathrm{A}_{1}\left(\mathrm{p}_{1}\right): \mathrm{p}_{1} \in \mathrm{G}_{1}, f_{1}\left(\mathrm{p}_{1}\right)=\alpha_{1} \beta_{1}\right\} \\
& =\wedge\left\{\mathrm{A}_{1}\left(d_{1} c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\alpha_{1}, f_{1}\left(c_{1}\right)=\beta_{1}\right\} \\
& =\wedge\left\{\mathrm{A}_{1}\left(c_{1} d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\alpha_{1}, f_{1}\left(c_{1}\right)=\beta_{1}\right\} \\
& \leq \wedge\left\{\mathrm{A}_{1}\left(\mathrm{c}_{1}\right) \vee \mathrm{A}_{1}\left(\mathrm{~d}_{1}\right): \mathrm{d}_{1}, \mathrm{c}_{1} \mathrm{G}_{1}, f_{1}\left(\mathrm{~d}_{1}\right)=\alpha_{1},, f_{1}\left(\mathrm{c}_{1}\right)=\beta_{1}\right\} \\
& =\wedge\left\{\mathrm{A}_{1}\left(c_{1}\right): c_{1} \in \mathrm{G}_{1}, f_{1}\left(c_{1}\right)=\beta_{1} \vee\left(\wedge f_{1}\left(d_{1}\right): d_{1} \in \mathrm{G}_{1}, f_{1}\left(d_{1}\right)=\alpha_{1}\right\}\right) \\
& =\left\{f_{1}\left(\mathrm{~A}_{1}\right) \vee f_{1}\left(\mathrm{~A}_{1}\right)\right\}\left(\beta_{1} \alpha_{1}\right) \\
& =\left(f_{1}\left(\mathrm{~A}_{1}\right)\right)\left(\beta_{1} \alpha_{1}\right) \quad \forall \alpha_{1}, \beta_{1} \in \mathrm{G}_{2}
\end{aligned}
$$

Hence $f_{1}\left(\mathrm{~A}_{1}\right) \in$ anti $\mathrm{F}_{1}\left(\mathrm{G}_{2}\right)$ is abelian anti-fuzzy subgroup of G_{2}
Proposition 3.6:- Let $f_{1}: G_{1} \square \square G_{2}$ is a homomorphism of a group G_{1} into a group G_{2}. If $A_{1} \square$ anti $F_{1}\left(G_{2}\right)$ is an abelian anti-fuzzy subgroup of G_{2} then show that $f_{1}{ }^{-1}\left(\mathrm{~A}_{1}\right) \square$ anti $\mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is also an abelian anti-fuzzy subgroup of G_{1}.
PROOF :- Suppose $f_{1}: G_{1} \square \square G_{2}$ is a homomorphism of a group G_{1} into a group G_{2}. Let $A_{1} \square$ anti $F_{1}\left(G_{2}\right)$ be abelian anti-fuzzy subgroup of G_{2}. Then show that $f_{1}{ }^{-1}\left(\mathrm{~A}_{1}\right) \square$ anti $\mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is also an abelian anti-fuzzy subgroup G_{1}.
Let $d_{1} \square \square c_{1} \square \square \mathrm{G}_{1}$
We have $\left(f_{1}{ }^{-1}\left(\mathrm{~A}_{1}\right)\right)\left(d_{1} c_{1}\right)=\mathrm{A}_{1}\left(f_{1}\left(d_{1} c_{1}\right)\right)$

$$
\begin{array}{ll}
=\mathrm{A}_{1}\left(f_{1}\left(d_{1}\right) f_{1}\left(c_{1}\right)\right) & \text { since } f_{1} \text { is a homomorphism } \\
=\mathrm{A}_{1}\left(f_{1}\left(c_{1}\right) f_{1}\left(d_{1}\right)\right) & \text { since } \mathrm{G}_{2} \text { is an abelian subgroup } \\
=\mathrm{A}_{1}\left(f_{1}\left(c_{1} d_{1}\right)\right) &
\end{array}
$$

$$
=f_{1}^{-1}\left(A_{1}\right)\left(c_{1}, d_{1}\right)
$$

Finally, $f_{1}{ }^{-1}\left(A_{1}\right){ }^{\in}$ anti $\mathrm{F}_{1}\left(\mathrm{G}_{1}\right)$ is an abelian anti-fuzzy subgroup.
Proposition 3.7: Suppose $f_{1}: \mathrm{G}_{1} \rightarrow \mathrm{G}_{1}{ }^{\prime}$ and $\mathrm{g}_{1}: \mathrm{G}_{1}{ }^{\prime} \rightarrow \mathrm{G}_{1}{ }^{\prime \prime}$ where f_{1} and g_{1} are homomorphism of a group G_{1} into group $\mathrm{G}_{1}{ }^{\prime}$ and from a group $G_{1}{ }^{\prime}$ into a group $G_{1}{ }^{\prime \prime}$ respectively. Let $A_{1} \in$ anti $F_{1}\left(G_{1}\right)$ is an abelian anti fuzzy subgroup of G_{1} then prove that the image of composition homo - morphism of fuzzy anti subgroup A_{1} of $G_{1}{ }^{\prime \prime}$ is also an abelian anti fuzzy subgroup of $G_{1}{ }^{\prime \prime}$
PROOF: - Let $\alpha_{1}, \beta_{1} \in \mathrm{G}_{1}{ }^{\prime \prime}$ then we have by extension principle
$\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1}, \beta_{1}\right)$

$$
\begin{aligned}
& \left.=\wedge\left\{\mathrm{A}_{1}\left(p_{1}\right): p_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) p_{1}=\alpha_{1} \beta_{1}\right)\right\} \\
& \leq \wedge\left\{\mathrm{A}_{1}\left(d_{1} c_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& =\wedge\left\{\mathrm{A}_{1}\left(c_{1} d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1}\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1} \beta_{1}\right\} \\
& \leq \wedge\left\{\mathrm{A}_{1}\left(c_{1}\right) \vee \mathrm{A}_{1}\left(d_{1}\right): d_{1}, c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}=\alpha_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) c_{1}=\beta_{1}\right\} \\
& =\wedge\left[\left\{\mathrm{A}_{1}\left(c_{1}\right) c_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \mathrm{o} f_{1}\right) c_{1}=\beta_{1}\right\}\right] \vee\left[\wedge \mathrm{A}\left(d_{1}\right): d_{1} \in \mathrm{G}_{1},\left(\mathrm{~g}_{1} \circ f_{1}\right) d_{1}\right] \\
& =\alpha_{1}\left(\mathrm{~g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\beta_{1}\right) \vee\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\alpha_{1}\right) \\
& =\left(\mathrm{g}_{1} \circ f_{1}\right)\left(\mathrm{A}_{1}\right)\left(\beta_{1} \alpha_{1}\right)
\end{aligned}
$$

Finally,
$\left(\mathrm{g}_{1}\right.$ o $\left.f_{1}\right) \mathrm{A}_{1} \quad \mathrm{~F}_{1}\left(\mathrm{G}_{1}{ }^{\prime \prime}\right)$ is an abelian anti fuzzy subgroup of $\mathrm{G}_{1}{ }^{\prime \prime}$.

IV. CHARACTERISTIC FUZZY SUBGROUP [13]

DEFINITION: 4.1:- Let A_{1} be a fuzzy subgroup of G_{1} and ϕ be a function from G_{1} into itself. Now define the fuzzy subset $A_{1}{ }^{\phi}$ of G_{1} by $A_{1}{ }^{\phi}\left(d_{1}\right)=A_{1}\left(d_{1}{ }^{\phi}\right)$, where $d_{1}{ }^{\phi}=\phi\left(d_{1}\right) A_{1}$ subgroup K of group G_{1} is called a characteristic subgroup if $K^{\phi}=K$ for every automorphism ϕ of G_{1}, where K^{ϕ} denote $\phi(k)$.
Definition 4.2 Characteristic fuzzy subgroup: A fuzzy subgroup A_{1} on a group K is called a fuzzy characteristic subgroup of G_{1} if $\mathrm{A}_{1}{ }^{\phi}\left(d_{1}\right)=\mathrm{A}_{1}\left(d_{1}\right)$ for every automorphism ϕ of G_{1} and for all $d_{1} \in \mathrm{G}_{1}$
Proposition 4.1 :- Let A_{1} is a fuzzy subgroup of a group G_{1} if
a. If ϕ is a homomorphism of G_{1} into itself, then $A_{1}{ }^{\phi}$ is a fuzzy subgroup of G_{1}
b. If A_{1} is a fuzzy characteristic subgroup of G_{1} then A_{1} is a normal.

PROOF: (i) $d_{1}, c_{1} \in \mathrm{G}_{1}$ then

$$
\begin{aligned}
\mathrm{A}_{1}^{\phi}\left(d_{1} c_{1}\right) & =\mathrm{A}_{1}\left(d_{1} c_{1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right)
\end{aligned}
$$

Subsequently ϕ is a homomorphism and A_{1} is a fuzzy subgroup of G_{1}.

$$
\begin{gathered}
\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right) \geq \mathrm{A}_{1}\left(d_{1}^{\phi}\right) \wedge \mathrm{A}_{1}\left(c_{1}^{\phi}\right) \\
\mathrm{A}_{1}^{\phi}\left(d_{1} c_{1}\right)=\mathrm{A}_{1}^{\phi}\left(d_{1}\right) \wedge \mathrm{A}_{1}^{\phi}\left(c_{1}\right)
\end{gathered}
$$

Also,

$$
\begin{aligned}
\mathrm{A}_{1}{ }^{\phi}\left(d_{1}{ }^{-1}\right) & =\mathrm{A}_{1}\left(d_{1}{ }^{-1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right)^{-1} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right) \\
& =\mathrm{A}_{1}{ }^{\phi}\left(d_{1}\right)
\end{aligned}
$$

Hence, $\quad A_{1}{ }^{\phi}$ is a fuzzy subgroup of G_{1}.
(ii) Let $d_{1}, c_{1} \in \mathrm{G}_{1}$ to prove that A_{1} is normal we have to show

$$
\mathrm{A}_{1}\left(d_{1} c_{1}\right)=\mathrm{A}_{1}\left(c_{1} d_{1}\right)
$$

Let ϕ be function from G_{1} into itself definition by
$\phi(\mathrm{z})=d_{1}^{-1} \mathrm{z} d_{1}, \quad \forall \mathrm{z} \in \mathrm{G}_{1}$
Since A_{1} is a fuzzy characteristic subgroup of G_{1},

$$
\therefore \mathrm{A}_{1}^{\phi}=\mathrm{A}_{1}
$$

Thus $\quad \mathrm{A}_{1}\left(d_{1} c_{1}\right)=\mathrm{A}_{1}{ }^{\phi}\left(d_{1} c_{1}\right)$

$$
\begin{aligned}
& =\mathrm{A}_{1}\left(d_{1} c_{1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(\phi\left(d_{1} c_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{A}_{1}\left(d_{1}^{-1}\left(d_{1} c_{1}\right) d_{1}\right) \\
& =\mathrm{A}_{1}\left(c_{1} d_{1}\right)
\end{aligned}
$$

Hence A_{1} is normal subgroup of G_{1}.

V. MAIN RESULT

Proposition 5.1 : Let A_{1}, C_{1} be the fuzzy subgroup of G_{1} if
(i) If ϕ is a homomorphism of G_{1} into itself, then $A_{1}{ }^{\phi}$ is a fuzzy subgroup of G_{1}
(ii) If A_{1} is a fuzzy characteristic subgroup of G_{1} then A_{1} is a normal.

PROOF: (i) $d_{1}, c_{1} \in \mathrm{G}_{1}$ then

$$
\begin{aligned}
\mathrm{A}_{1}^{\phi}\left(d_{1} c_{1}\right) & =\mathrm{A}_{1}\left(d_{1} c_{1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right)
\end{aligned}
$$

Subsequently ϕ is a homomorphism and A_{1} is a fuzzy subgroup of G_{1}.

$$
\begin{aligned}
\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right) & \geq \mathrm{A}_{1}\left(d_{1}^{\phi}\right) \wedge \mathrm{A}_{1}\left(c_{1}{ }^{\phi}\right) \\
\mathrm{A}_{1}^{\phi}\left(d_{1} c_{1}\right) & =\mathrm{A}_{1}^{\phi}\left(d_{1}\right) \wedge \mathrm{A}_{1}^{\phi}\left(c_{1}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathrm{A}_{1}{ }^{\phi}\left(d_{1}{ }^{-1}\right) & =\mathrm{A}_{1}\left(d_{1}^{-1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right)^{-1} \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right) \\
& =\mathrm{A}_{1}{ }^{\phi}\left(d_{1}\right)
\end{aligned}
$$

Hence, $\quad A_{1}{ }^{\phi}$ is a fuzzy subgroup of G_{1}.
Proposition 5.2 : Let A_{1}, C_{1} be the fuzzy subgroups of a group G_{1}. Then the following statement hold
(i) If ϕ is a homomorphism of G_{1} into itself. Then $\mathrm{A}_{1}{ }^{\phi} \quad \& \quad \mathrm{C}_{1}{ }^{\phi}$ are fuzzy subgroup of G_{1}. Then show that (a) $\left(A_{1} \cup C_{1}\right)^{\phi}$ and $(\mathbf{b})\left(A_{1} \cap C_{1}\right)^{\phi}$ are fuzzy subgroup of G_{1}.
(ii) If $\mathrm{A}_{1}, \mathrm{C}_{1}$ are fuzzy characteristic subgroup of G_{1}, so A_{1} and C_{1} are normal then we have to show that $A_{1} \cup C_{1}$ and $A_{1} \cap C_{1}$ are also normal.
Proof:(i) Let $\mathrm{A}_{1}, \mathrm{C}_{1} \in \mathrm{~F}_{1} \mathrm{P}_{1}\left(\mathrm{G}_{1}\right)$ and ϕ is a homomorphism of G_{1} into itself. Let $d_{1} c_{1} \in \mathrm{G}_{1}$, we have

$$
\begin{aligned}
\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(\left(d_{1} c_{1}\right)\right) & =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(\left(d_{1} c_{1}\right)^{\phi}\right) \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right) \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1} \phi\right) \vee \mathrm{C}_{1}\left(d_{1}{ }^{\phi} c_{1} \phi\right) \\
& \geq\left(\mathrm{A}_{1}\left(d_{1}^{\phi}\right) \wedge \mathrm{A}_{1}\left(c_{1}^{\phi}\right)\right) \vee\left(\mathrm{C}_{1}\left(d_{1}^{\phi}\right) \wedge \mathrm{C}_{1}\left(c_{1}{ }^{\phi}\right)\right) \\
& =\left(\mathrm{A}_{1}\left(d_{1}^{\phi}\right) \vee \mathrm{C}_{1}\left(d_{1}^{\phi}\right)\right) \wedge\left(\mathrm{A}_{1}\left(c_{1} \phi\right) \vee \mathrm{C}_{1}\left(c_{1}{ }^{\phi}\right)\right) \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right) d_{1}^{\phi} \wedge\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right) c_{1}{ }^{\phi} \\
\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right. & \left.c_{1}\right) \geq\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right) \wedge\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(c_{1}{ }^{\phi}\right) \\
\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(d_{1}^{-1}\right) & =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(d_{1}^{-1}\right)^{\phi} \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(\left(d_{1}^{\phi}\right)^{-1}\right) \\
& =\mathrm{A}_{1}\left(d_{1}^{\phi}\right)^{-1} \wedge \mathrm{C}_{1}\left(d_{1}^{\phi}\right)^{-1} \text { since } \mathrm{A}_{1}, \mathrm{C}_{1} \in \mathrm{~F}_{1}\left(\mathrm{G}_{1}\right) \\
& =\mathrm{A}_{1}\left(d_{1}^{\phi}\right) \wedge \mathrm{C}_{1}\left(d_{1}^{\phi}\right) \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(d_{1}^{\phi}\right) \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right)
\end{aligned}
$$

Hence, $\quad\left(A_{1} \cup C_{1}\right) \in F_{1}\left(G_{1}\right)$
Similarly,
i (b) we have

$$
\begin{aligned}
\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1} c_{1}\right) & =\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(\left(d_{1} c_{1}\right)^{\phi}\right) \\
& =\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right) \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right) \wedge \mathrm{C}_{1}\left(d_{1}{ }^{\phi} c_{1}{ }^{\phi}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq\left(\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right) \wedge \mathrm{A}_{1}\left(c_{1}{ }^{\phi}\right)\right) \wedge\left(\mathrm{C}_{1}\left(d_{1}{ }^{\phi}\right) \wedge \mathrm{C}_{1}\left(c_{1}{ }^{\phi}\right)\right) \\
& =\left(\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right) \wedge \mathrm{C}_{1}\left(d_{1}{ }^{\phi}\right)\right) \wedge\left(\mathrm{A}_{1}\left(c_{1}^{\phi}\right) \wedge \mathrm{C}_{1}\left(c_{1}{ }^{\phi}\right)\right) \\
& =\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right) d_{1}{ }^{\phi} \wedge\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right) c_{1}^{\phi} \\
& =\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right) \wedge\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi} c_{1}
\end{aligned}
$$

i.e., $\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1} c_{1}\right) \geq\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right) \wedge\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(c_{1}\right)$

Also, $\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1}^{-1}\right)=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1}^{-1}\right)^{\phi}$
$=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(\left(d_{1}{ }^{\phi}\right)^{-1}\right)$
$=A_{1}\left(d_{1}{ }^{\phi}\right)^{-1} \wedge \mathrm{C}_{1}\left(d_{1}{ }^{\phi}\right)^{-1}$ since $A_{1}, C_{1} \in F_{1}\left(G_{1}\right)$
$=\mathrm{A}_{1}\left(d_{1}{ }^{\phi}\right) \wedge \mathrm{C}_{1}\left(d_{1}{ }^{\phi}\right)$
$=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1}{ }^{\phi}\right)$
$=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1}\right)$
Hence, $\quad\left(A_{1} \cap C_{1}\right) \in F_{1}\left(G_{1}\right)$
(ii) Let $d_{1}, c_{1} \in \mathrm{G}_{1}$ to prove that A_{1} is normal we have to show

$$
\mathrm{A}_{1}\left(d_{1} c_{1}\right)=\mathrm{A}_{1}\left(c_{1} d_{1}\right)
$$

Let ϕ be function from G_{1} into itself definition by

$$
\phi(\mathrm{z})=d_{1}^{-1} \mathrm{z} d_{1}, \quad \forall \mathrm{z} \in \mathrm{G}_{1}
$$

Since A_{1} is a fuzzy characteristic subgroup of G_{1},

$$
\begin{aligned}
\therefore \mathrm{A}_{1}{ }^{\phi} & =\mathrm{A}_{1} \\
\text { Thus } \quad \mathrm{A}_{1}\left(d_{1} c_{1}\right) & =\mathrm{A}_{1}{ }^{\phi}\left(d_{1} c_{1}\right) \\
& =\mathrm{A}_{1}\left(d_{1} c_{1}\right)^{\phi} \\
& =\mathrm{A}_{1}\left(\phi\left(d_{1} c_{1}\right)\right) \\
& =\mathrm{A}_{1}\left(d_{1}{ }^{-1}\left(d_{1} c_{1}\right) d_{1}\right) \\
& =\mathrm{A}_{1}\left(c_{1} d_{1}\right)
\end{aligned}
$$

Hence A_{1} is normal subgroup of G_{1}.
Again, Suppose $d_{1}, c_{1} \in \mathrm{~F}_{1}\left(\mathrm{G}_{1}\right)$ to prove that $\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)$ is a normal fuzzy subgroup of G_{1} it is necessary to show

$$
\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1} c_{1}\right)=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(c_{1} d_{1}\right)
$$

Let ϕ be the function of group G_{1} into itself defined by

$$
\phi(\mathrm{z})=d_{1}^{-1} \mathrm{z} d_{1} \quad \forall d_{1} \in \mathrm{G}_{1}
$$

Since A_{1} and C_{1} are fuzzy characteristic subgroup of G_{1}, hence be normal as we prove

$$
\begin{aligned}
&\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right) \\
&\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1} c_{1}\right)=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)^{\phi}\left(d_{1} c_{1}\right) \\
&=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1} c_{1}\right)^{\phi} \\
&=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1}^{-1}\left(d_{1} c_{1}\right) d_{1}\right) \\
&\left.=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(d_{1}^{-1} d_{1}\right)\left(c_{1} d_{1}\right)\right) \\
&=\left(\mathrm{A}_{1} \cap \mathrm{C}_{1}\right)\left(c_{1} d_{1}\right)
\end{aligned}
$$

Hence $\left(A_{1} \cap C_{1}\right) \in F_{1}\left(G_{1}\right)$ is normal.
Similarly,

$$
\begin{aligned}
& \left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}=\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right) \\
& \left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(c_{1} d_{1}\right)=\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)^{\phi}\left(c_{1} d_{1}\right) \\
& \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(c_{1} d_{1}\right)^{\phi} \\
& \\
& =\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(d_{1}^{-1}\left(c_{1} d_{1}\right) d_{1}\right) \\
& \\
& \left.=\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(d_{1}{ }^{-1} d_{1}\right)\left(c_{1} d_{1}\right)\right) \\
& \\
& \quad=\left(\mathrm{A}_{1} \cup \mathrm{C}_{1}\right)\left(c_{1} d_{1}\right)
\end{aligned}
$$

Hence $\left(A_{1} \cup C_{1}\right) \in F_{1}\left(G_{1}\right)$ is also normal.
PROPOSITION 5.3: Let A_{1} is a normal fuzzy subgroup of G_{1} and let ϕ be a homomorphism of G_{1} into itself. Then ϕ induces a homomorphism $\bar{\phi}$ of $\frac{\mathrm{G}_{1}}{\mathrm{~A}_{1}}$ into itself defined by

$$
\bar{\phi}\left(d_{1} \mathrm{~A}_{1}\right)=\phi\left(d_{1}\right) \mathrm{A}_{1} \quad \text { For all } d_{1} \in\left(\mathrm{G}_{1}\right)
$$

Proof: Let $d_{1}, c_{1} \in \mathrm{G}_{1}$ we have

$$
d_{1} \mathrm{~A}_{1}=c_{1} \mathrm{~A}_{1}
$$

Then we have to show that

$$
\phi\left(d_{1}\right) \mathrm{A}_{1}=\phi\left(c_{1}\right) \mathrm{A}_{1}
$$

Since

$$
d_{1} \mathrm{~A}_{1}=c_{1} \mathrm{~A}_{1}
$$

we have

$$
\begin{aligned}
d_{1} \mathrm{~A}_{1}\left(d_{1}\right) & =c_{1} \mathrm{~A}_{1}\left(d_{1}\right) \\
\Rightarrow \mathrm{A}_{1}(\mathrm{e}) & =\mathrm{A}_{1}\left(c_{1}-1 d_{1}\right) \\
d_{1} \mathrm{~A}_{1}\left(c_{1}\right) & =c_{1} \mathrm{~A}_{1}\left(c_{1}\right) \\
\Rightarrow \mathrm{A}_{1}\left(d_{1}-1\right. & \left.c_{1}\right)
\end{aligned}=\mathrm{A}_{1}(\mathrm{e}) .
$$

Implies that

$$
\left(c_{1}^{-1} d_{1}\right),\left(d_{1}^{-1} c_{1}\right) \in \mathrm{A}_{1_{*}}
$$

Since we have

$$
\phi\left(\mathrm{A}_{1_{*}}\right)=\mathrm{A}_{1_{*}}
$$

Therefore $\phi\left(c_{1}{ }^{-1} d_{1}\right)$ and $\phi\left(d_{1}{ }^{-1} c_{1}\right)$ also belong to $\mathrm{A}_{1_{*}}$
Which implies that

$$
\mathrm{A}_{1}\left(\phi\left(c_{1}^{-1} d_{1}\right)\right)=\mathrm{A}_{1}\left(\phi\left(d_{1}^{-1} c_{1}\right)\right)=\mathrm{A}_{1}
$$

Let $g \in G$, Then

$$
\begin{aligned}
\phi\left(d_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) & =\mathrm{A}_{1}\left(\phi\left(d_{1}^{-1}\right) \mathrm{g}_{1}\right) \\
& =\mathrm{A}_{1}\left(\phi\left(d_{1}^{-1}\right) \phi\left(c_{1}\right) \phi\left(c_{1}^{-1}\right) \mathrm{g}_{1}\right) \\
& \geq \mathrm{A}_{1}\left(\phi\left(d_{1}^{-1}\right) \phi\left(c_{1}\right) \wedge \mathrm{A}_{1}\left(\phi\left(c_{1}^{-1}\right) \mathrm{g}_{1}\right)\right. \\
& \left.=\mathrm{A}_{1}\left(\phi\left(d_{1}^{-1} c_{1}\right)\right) \wedge\right) \phi\left(c_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) \\
& =\mathrm{A}_{1}(\mathrm{e}) \wedge \phi\left(c_{1}\right) \wedge \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) \\
& =\phi\left(c_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right)
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\phi\left(d_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) \geq \phi\left(c_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) \tag{i}
\end{equation*}
$$

Similarly, we can prove that

$$
\phi\left(d_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right) \leq \phi\left(c_{1}\right) \mathrm{A}_{1}\left(\mathrm{~g}_{1}\right)
$$

Since $g_{1} \in \mathrm{G}_{1}$ is arbitrary
Hence,

$$
\phi\left(d_{1}\right) \mathrm{A}_{1}=\phi\left(c_{1}\right) \mathrm{A}_{1}
$$

Therefore,
we find that $\bar{\phi}$ is well defined
Now we have only to show that $\bar{\phi}$ is a homomorphism
Let $d_{1}, c_{1} \in \mathrm{G}_{1}$.
Since ϕ is homomorphism

$$
\begin{aligned}
\phi\left(d_{1} c_{1}\right) & =\phi\left(d_{1}\right) \phi\left(c_{1}\right) \\
\phi\left(d_{1} c_{1}\right) \mathrm{A}_{1} & =\phi\left(d_{1}\right) \phi\left(c_{1}\right) \mathrm{A}_{1} \\
\bar{\phi}\left(d_{1} c_{1}\right) \mathrm{A}_{1} & =\phi\left(d_{1}\right) \mathrm{A}_{1} \cdot \phi\left(c_{1}\right) \mathrm{A}_{1} \\
& =\bar{\phi}\left(d_{1} \mathrm{~A}_{1} \cdot c_{1} \mathrm{~A}_{1}\right) \\
& =\bar{\phi}\left(d_{1} \mathrm{~A}_{1}\right) \cdot \bar{\phi}\left(c_{1} \mathrm{~A}_{1}\right)
\end{aligned}
$$

Hence $\bar{\phi}$ is a homomorphism.

REFERENCES

[1] A.Rosenfeld.: Fuzzy group. J.Math.Anal.Appl.35,512-517 (1971).
[2] S.Sebastian and S.Babunder. Fuzzy groups and group homomorphism.Fuzzy sets and systems.8,397-401 (1996).
[3] S. Abou-zaid, On fuzzy subgroup, Fuzzy sets and systems,55. 1993, pp. 237-240.
[4] N.Ajmal and A.S.Prajapati,Fuzzy cosets and fuzzy normal subgroup, Inform.Sci, 64 (1992) 17-25.
[5] R.Biswas,Fuzzy subgroup and anti fuzzy subgroup.Fuzzy sets and systems.35,121-124 (1990).
[6] D.S.Malik,and J.N.Mordeson,Fuzzy subgroup and abelian group.Chinese.J.Math(Taipei).19,129-145 (1991).
[7] J.M.Anthony,and H.Sherwood,Fuzzy subgroup redefined,J.Math.Anal.Appl.69,124-130 (1979).
[8] J.M.Anthony,and H.Sherwood,A characterization of fuzzy subgroup, J.Math.Anal.Appl,69 (1979) 297-305.
[9] P.S.Das,Fuzzy groups and level subgroups J.Math.Anal.Appl.,84 (1981) 264-269.
[10] V.N.Dixit,R.kumar,and N.Ajmal,Level subgroups and union of fuzzy subgroups. Fuzzy Sets and Systems, 37 (1990) 359-371. and Technology, 1994, Vol. 2, pp. 87-98.
[11] M.S.Eroglu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, Fuzzy Sets and Systems, 33 (1989) 255-256.
[12] I.J.Kumar,P.K.Saxena,and P.Yadav,Fuzzy normal subgroups and fuzzy quotients, Fuzzy sets and systems, 46 (1992) 121-132.
[13] N.P.Mukherjee, and P.Bhattacharya,Fuzzy normal subgroups and fuzzy cosets: Information Science, 34 (1984) 225-239.
[14] M.T.A.Osman, On the direct product of fuzzy subgroups, Fuzzy sets and sysems, 12 (1984) 87-91.
[15] L.A.Zadeh. Fuzzy sets, Inform.Control, 8 (1965) 338-353.
[16] S.M.A.Zaidi, and Q.A.Ansari,: Some results of categories of L-fuzzy subgroups.Fuzzy sets and systems, 64 (1994) 249-256. Information Technology, 2012, Vol. 2, pp. 527-531. automata. Soft Computing, 2013 (Communicated).
[17] Y.Yu, A theory of isomorphism of fuzzy groups, Fuzzy system and Math.2,(1988),57-68.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

