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Abstract: In recent years, the field of computer vision has witnessed significant advancements in understanding and interpreting 
human motion through pose estimation techniques. While traditional 2D human pose estimation methods are capable of 
detecting body joints from images, they fail to capture the depth, structure, and realistic appearance of the human body. To 
overcome this limitation, this project focuses on the development of a system for 3D Human Pose Estimation with Realistic 3D 
Output, which reconstructs a lifelike three-dimensional human model from a single 2D image or video frame using deep 
learning techniques. The proposed system follows a structured pipeline that includes 2D keypoint detection, 3D pose estimation, 
and 3D mesh reconstruction to achieve accurate and visually realistic results.The system employs pretrained deep learning 
models such as HMR (Human Mesh Recovery), SPIN (SMPLify-in-the-Loop), and PARE (Part Attention Regressor) to predict 
3D joint coordinates and human body shape parameters efficiently. These parameters are then passed to the SMPL (Skinned 
Multi-Person Linear) parametric model to generate a smooth and anatomically correct 3D human mesh. The reconstructed 
model is rendered and visualized using advanced 3D rendering tools, allowing users to rotate, zoom, and observe the model from 
different viewpoints. The performance of the system is evaluated using standard accuracy metrics such as MPJPE and PA-
MPJPE, ensuring reliable and precise pose estimation. This project demonstrates that realistic 3D human reconstruction can be 
achieved without complex motion capture systems or expensive hardware. By effectively bridging the gap between 2D image 
perception and 3D geometric understanding, the proposed system offers a practical and scalable solution for realistic human 
modeling. The results obtained from this work are highly suitable for real-world applications such as animation, sports analysis, 
motion tracking, virtual reality, and healthcare monitoring.  
Keywords: 3D Human Pose Estimation, Deep Learning, Human Mesh Reconstruction, SMPL Model, HMR, SPIN, PARE, 
Computer Vision, Realistic 3D Output, Motion Analysis  

 
I. INTRODUCTION  

Human motion and posture play an essential role in the way people communicate, interact, and understand their surroundings. In the 
field of computer vision, enabling machines to accurately interpret and recreate human movement has long been a challenging yet 
fascinating goal. Human pose estimation allows computers to detect and track the positions of human body joints from images or 
videos. Although traditional 2D pose estimation techniques have achieved great success in identifying body keypoints on flat images, 
they are still limited because they cannot represent depth, body structure, or realistic human shape. Due to this limitation, their use 
becomes restricted in advanced applications such as animation, virtual reality, sports performance analysis, medical rehabilitation, and 
human–computer interaction. 
To overcome these challenges, researchers have increasingly shifted their focus toward 3D human pose estimation, which aims to 
reconstruct the full three-dimensional structure of the human body from visual data. With the rapid advancement of deep learning, 
particularly convolutional and regression-based neural networks, it has become possible to extract meaningful features from images 
and accurately predict 3D human poses.  
Modern 3D pose estimation systems no longer focus only on skeletal joint positions but also aim to generate realistic 3D human body 
meshes that reflect true body shape, proportions, and posture. This progress has been made possible through parametric human body 
models such as SMPL, which mathematically represent the human body using pose and shape parameters. By combining such models 
with powerful pretrained deep learning networks, it is now possible to reconstruct a lifelike digital human model even from a single 
image. 
The main objective of this project, “3D Human Motion Reconstruction From 2D Image Using Deep Learning And Computer Vision 
”, is to design and implement a system that can accurately estimate 3D human poses and generate visually realistic 3D human body 
models using deep learning techniques.  
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The proposed system follows a structured pipeline that begins with detecting 2D body keypoints from input images, followed by 
estimating 3D joint coordinates and body shape parameters, and finally reconstructing a complete 3D human mesh.  
The reconstructed model is then visualized using 3D rendering tools, allowing users to observe the human figure from different 
angles. This approach removes the dependency on expensive motion-capture setups and specialized equipment, making realistic 3D 
human modeling more accessible and practical. 
Together, the four reviewed papers clearly show the research progression from early 2D pose estimation methods to 3D skeletal 
reconstruction and finally to realistic 3D human mesh recovery.  
These studies collectively analyze benchmark datasets, deep learning architectures, optimization techniques, and evaluation protocols, 
providing a strong theoretical foundation for this project. 
 Based on the knowledge gained from these surveys, this project integrates 2D pose detection, 3D pose regression, and SMPL-based 
mesh reconstruction to generate lifelike 3D human models from ordinary images. By leveraging pretrained models such as HMR, 
SPIN, and PARE, and by following the evaluation standards discussed in the literature, this project aims to develop a practical, 
efficient, and visually realistic 3D human pose estimation system.  
Thus, the literature survey not only highlights the evolution of research in this field but also directly guides the design, methodology, 
and evaluation of the proposed system. 
 

II. LITERATURE REVIEW 
This  section explores four important research papers that explain how human pose estimation has evolved over time. Together, these 
papers show the journey from simple 2D joint detection to advanced 3D pose and realistic human mesh reconstruction, which forms 
the foundation for this project. 

 
A. Advances in Human Pose Estimation, Tracking, and Action Recognition: A Comprehensive Survey  
The work published by Zhou, L et.al. [1]   provides a comprehensive overview of recent advances in 2D and 3D human pose 
estimation, pose tracking, and action recognition for both single and multi-person scenarios in images and videos. It highlights the 
evolution from traditional regression-based methods to more accurate heatmap-based approaches, which better capture spatial details. 
The survey also emphasizes the growing impact of transformer architectures and multi-stage models, which have significantly 
improved performance.  
A key trend discussed is the shift toward end-to-end joint frameworks that combine pose estimation, tracking, and action recognition 
to reduce error propagation and improve robustness. Major challenges such as occlusion, scale variation, low-resolution inputs, and 
high computational cost are addressed, with future directions pointing toward unified models, multi-modal fusion, and zero-shot 
learning.  
The reviewed methods are grouped into CNN-, RNN-, GCN-, and Transformer-based approaches. CNNs remain the backbone for 
extracting visual features in both 2D and 3D pose estimation and action recognition. RNNs are mainly used for modeling temporal 
dynamics in video-based pose estimation and skeleton-based action recognition.  
GCNs effectively exploit the graph structure of the human skeleton, making them especially powerful for 3D pose estimation and 
skeleton-based action recognition. Transformers further enhance performance by capturing global spatial and temporal relationships, 
often working in hybrid models with GCNs. 
The survey also reviews major benchmark datasets such as COCO, MPII, PoseTrack, Human3.6M, MPI-INF-3DHP, MuPoTS-3D, 
and NTU RGB+D, which support research across 2D pose estimation, 3D pose estimation, tracking, and action recognition. Rather 
than proposing a single new algorithm, the paper serves as a broad review of existing techniques.  
It covers top-down and bottom-up strategies for both 2D and 3D pose estimation, weakly and self-supervised learning for handling 
limited 3D data, and the growing use of hybrid GCN–Transformer models for action recognition. Finally, it discusses 2D and 3D pose 
tracking, noting a recent shift from multi-stage to one-stage, end-to-end tracking frameworks for better robustness in real-world 
scenarios. 
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Fig. 1. Workflow of this methodology 

 
The system begins with data preparation using standard 2D and 3D human pose datasets such as Human3.6M and MuPoTS-3D. The 
input images are normalized, and variations like occlusion and scale changes are handled to improve model robustness. 
For pose estimation, a top-down approach is adopted. A person detector such as Mask R-CNN first identifies individuals in each 
frame. Then, deep networks like HRNet or Transformer-based models are used to estimate 2D keypoints. For 3D pose estimation, a 
2D-to-3D lifting network converts these keypoints into 3D joint coordinates, often using temporal information from video. 
In the pose tracking module, detected poses are linked across frames using motion and similarity cues to maintain identity 
consistency. The system also includes a recovery mechanism to handle tracking failures in dynamic scenes. 
For action recognition, the tracked pose sequences are fed into temporal models such as RNNs or Transformers. The system mainly 
relies on skeleton-based features for robustness but can optionally combine appearance or optical flow features to improve accuracy. 
Since this work is a survey, it does not report new experimental results but reviews the performance of existing methods using 
standard evaluation metrics. For 2D pose estimation, metrics such as Average Precision (AP), mAP, and PCK are commonly used. In 
3D pose estimation, accuracy is mainly measured using MPJPE and PMPJPE, along with PCK and AUC. Pose tracking performance 
is evaluated with MOTA and PCP, while action recognition is measured using classification accuracy, often under cross-subject and 
cross-view settings. 
The survey concludes that heatmap-based methods outperform regression-based methods in 2D pose estimation. Top-down 
approaches generally provide higher accuracy than bottom-up ones for multi-person cases, while video-based 3D methods benefit 
from temporal information. For action recognition, GCN- and Transformer-based models, especially hybrid approaches, achieve the 
best performance on skeleton data.  
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B. A Survey on Deep 3D Human Pose Estimation 
The work published by Kan Li et al. [2] 3D Human Pose Estimation (3D-HPE) is a key task in computer vision with applications in 
XR, action recognition, and human-computer interaction. Modern approaches often rely on 2D pose estimation as an intermediate 
step, categorized into two-stage (2D-to-3D lifting) and single-stage methods. Multi-person 3D-HPE typically uses top-down, bottom-
up, or hybrid strategies, while solution spaces include deterministic, probabilistic, and emerging NeRF-based techniques. The field 
faces challenges like depth ambiguity, occlusion, articulation variability, data scarcity, and computational complexity, especially in 
monocular setups or unconstrained environments. Architecturally, CNNs, GCNs, Transformers, and hybrid models dominate. CNNs 
extract spatial features and predict 2D keypoints or 3D coordinates, often combined with temporal models for video sequences. GCNs 
leverage the human skeleton’s graph structure to capture joint relationships and enforce body consistency, effectively addressing 
occlusion and depth ambiguity. Transformers model long-range spatial and temporal dependencies, excelling in video-based 3D-HPE 
but requiring large datasets and high computation. Hybrid models combine these architectures to capture local, graph-based, and 
global relationships simultaneously, improving robustness and accuracy. 
Learning paradigms span supervised, weakly-supervised, unsupervised, and self-supervised approaches, with strategies like 
reconstruction loss, geometric constraints, and adversarial training to handle limited 3D annotations. Methods are also categorized by 
input modality, including monocular and multi-view images or videos, as well as single-person vs. multi-person scenarios. Advanced 
techniques include 2D-to-3D lifting, single-stage regression, probabilistic modeling, diffusion-based refinement, and SMPL/NeRF 
representations for detailed human body and scene modeling. Data augmentation and domain adaptation further enhance robustness 
and generalization across diverse environments. 
Benchmark datasets remain crucial for development and evaluation. Human3.6M and MPI-INF-3DHP provide controlled single-
person settings, while MuPoTS-3D targets multi-person scenarios. 3DPW offers real-world outdoor data, and synthetic datasets like 
SURREAL or multi-view datasets such as CMU Panoptic and Total Capture enable pre-training and multi-person evaluation. These 
datasets, combined with advanced evaluation metrics, drive progress in accuracy, temporal consistency, and real-world applicability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Workflow of methodology 
 
This study leverages standard 3D human pose datasets for training and evaluation. Human3.6M provides large-scale indoor data with 
accurate 3D joint annotations captured via multi-camera systems. MPI-INF-3DHP adds indoor and outdoor scenes for better 
generalization, while MuPoTS-3D focuses on multi-person outdoor poses. 3DPW (3D Poses in the Wild) captures real-world 
scenarios using IMUs and multi-view cameras. For 2D keypoints, datasets like COCO and MPII are used to pre-train or fine-tune 2D 
pose detectors. 
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Most approaches follow a two-stage pipeline, where 2D keypoints are first detected from RGB images using networks like HRNet, 
Stacked Hourglass, or CPN, and then lifted to 3D coordinates using regression models, GCNs, or Transformer-based networks. 
Alternative methods include single-stage models that directly regress 3D poses, multi-view fusion for leveraging multiple camera 
inputs, and self- or weakly-supervised learning to reduce reliance on labeled 3D data. GCNs are particularly effective at modeling 
joint relationships and maintaining skeletal consistency, while hybrid GCN-Transformer models capture both local and global 
dependencies, improving robustness in video sequences. 
Data preprocessing involves normalizing 2D keypoints and applying augmentations such as rotation, scaling, and occlusion 
simulation. The 3D pose lifting step uses fully connected networks, GCNs, or Transformers to predict 3D joint coordinates, either 
person- or camera-centric. Common loss functions include MPJPE (Mean Per Joint Position Error), PA-MPJPE (Procrustes-aligned 
MPJPE), along with bone-length consistency and temporal smoothness for video. Optimization is typically done using Adam with 
learning rate scheduling. 
Performance is evaluated using metrics like MPJPE, PCK (Percentage of Correct Keypoints), PCP (Percentage of Correct Parts), 
PSIM (Pose Similarity), and TR loss (Temporal Reconstruction) to assess both accuracy and temporal consistency. Scenario-specific 
trends show that GCN-based models perform well for single-person 3D-HPE on Human3.6M, GAN-based models excel on MPI-
INF-3DHP, and hybrid GCN-Transformer models achieve top results in video settings. Transformers dominate multi-view and multi-
person scenarios, particularly in video-based tasks. 
Despite these advancements, challenges remain. Limited and less diverse 3D datasets restrict model generalization, and occlusion, 
lighting variations, background clutter, and motion blur can degrade performance. Two-stage methods also suffer from error 
propagation from noisy 2D detections, and high computational cost remains a barrier for real-time or mobile applications. 

 
C. Deep Learning -Based Human Pose Estimation: A Survey  
The work published by Zheng et.al. [3] Human pose estimation (HPE) is a fundamental task in computer vision that focuses on 
identifying and localizing human body joints from visual data. The paper “Deep Learning–Based Human Pose Estimation: A Survey” 
by Ce Zheng, Wenhan Wu, Taojiannan Yang, Sijie Zhu, and Chen Chen provides a comprehensive examination of how modern deep 
learning techniques have transformed this domain. Human pose estimation serves as the foundation for numerous applications such as 
human–computer interaction, healthcare monitoring, sports analysis, animation, surveillance, and augmented or virtual reality, 
making it a critical component in systems that aim to interpret or analyse human behaviour. 
Zheng et al. [3] categorize 2D human pose estimation methods into regression-based and detection-based approaches. Regression-
based methods, such as DeepPose, directly predict the coordinates of body keypoints from images. Although simple, they often 
struggle to preserve spatial relationships between joints and are sensitive to occlusions. In contrast, detection-based or heatmap-based 
methods predict spatial confidence maps for each joint, allowing for more accurate localization. Popular examples include 
Convolutional Pose Machines (CPM) and Stacked Hourglass Networks, which model spatial dependencies across multiple scales. 
Later architectures like the High-Resolution Network (HRNet) maintain high-resolution feature maps throughout the network and 
achieve state-of-the-art accuracy in 2D benchmarks. 
For multi-person pose estimation, the authors distinguish between top-down and bottom-up frameworks. Top-down methods first 
detect individual persons and then apply single-person pose estimation within each detected region. This approach yields high 
accuracy but requires running separate pose networks for each detected person, increasing computational cost. On the other hand, 
bottom-up methods such as OpenPose and Part Affinity Fields (PAFs) detect all keypoints in the image simultaneously and then 
group them into individuals based on learned association maps. These approaches are faster and suitable for real-time applications but 
may be less precise when handling crowded or overlapping scenes. 
In 3D human pose estimation, Zheng et al. classify the existing literature into model-free and model-based methods. Model-free 
methods either predict 3D joint coordinates directly from RGB images or use 2D-to-3D lifting techniques that reconstruct 3D poses 
from previously estimated 2D keypoints. The well-known Martinez baseline is an example of a simple yet effective 2D-to-3D lifting 
model that employs fully connected layers to infer 3D joint positions. In contrast, model-based approaches incorporate prior 
knowledge about human anatomy by utilizing parametric models such as SMPL (Skinned Multi-Person Linear Model), SMPL-X, and 
GHUM. Methods like Human Mesh Recovery (HMR), SPIN, and VIBE regress the parameters of these body models to generate full 
3D meshes with realistic body shape and posture. Although model-based methods produce more detailed and physically plausible 
results, they often face difficulties when applied to in-the-wild datasets due to limited 3D annotations, complex backgrounds, and 
occlusions. 
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Fig. 3. Workflow of methodology 

 
The survey also presents a comprehensive analysis of commonly used datasets and evaluation metrics. For 2D pose estimation, 
widely used datasets include MPII, COCO, LSP, FLIC, and PoseTrack, while the most popular metrics are Percentage of Correct 
Keypoints (PCK), PCKh (head-normalized PCK), mean Average Precision (mAP), and Object Keypoint Similarity (OKS). For 3D 
pose estimation, the major datasets are Human3.6M, MPI-INF-3DHP, 3DPW, AMASS, and SURREAL. The evaluation metrics for 
3D HPE include Mean Per Joint Position Error (MPJPE) and PA-MPJPE, which measures joint prediction error after alignment. 
Zheng and co-authors note that most 3D datasets are captured in controlled indoor environments, which limits the generalization of 
trained models to real-world outdoor scenarios. 
In addition to pose estimation, the authors review recent progress in pose tracking and action recognition, where temporal modeling 
plays a crucial role. Techniques such as PoseFlow and PHALP integrate temporal consistency to improve tracking across video 
frames. Sequential models like Long Short-Term Memory (LSTM) networks and Temporal Convolutional Networks (TCN) capture 
temporal dependencies to recognize human activities more effectively. Recently, transformer-based models such as PoseFormer have 
shown promising results by capturing both spatial and temporal relationships simultaneously, leading to more accurate and stable 
predictions for human motion understanding. 
Zheng et al. [3] also compare the performance of existing methods across popular benchmarks. Their analysis reveals that heatmap-
based networks combined with strong convolutional backbones, such as HRNet or Stacked Hourglass, consistently outperform direct 
regression-based models. Top-down approaches generally achieve higher accuracy, while bottom-up methods provide better 
computational efficiency. For 3D pose estimation, two-stage pipelines that first detect 2D keypoints and then lift them to 3D space 
remain the most effective balance between accuracy and speed. Although model-based approaches deliver realistic full-body meshes, 
they still struggle to handle complex poses, occlusions, and motion blur. 
In their conclusion, the authors identify several limitations and open challenges that remain in this research domain. The most 
significant issues include limited 3D labeled data, dataset bias, computational cost, poor cross-dataset generalization, and the lack of 
metrics that evaluate temporal smoothness and physical realism. Zheng et al.[3] suggest that future research should focus on domain 
adaptation, self-supervised and weakly supervised learning, improved temporal modeling, and real-time lightweight architectures. 
They also emphasize the potential of integrating human-scene interaction modeling and leveraging large-scale pretraining to improve 
generalization across diverse environments. 
Overall, the work of Zheng et al. [3] (2020) provides a comprehensive and well-organized overview of the evolution of human pose 
estimation, tracking, and action recognition using deep learning. It remains a cornerstone reference for researchers entering the field, 
offering a complete taxonomy of methods, detailed benchmark comparisons, and insightful analysis of datasets and metrics. The 
paper not only summarizes past achievements but also outlines the key directions and challenges that guide the future development of 
human pose estimation research. 
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D. Deep Learning for 3D Human Pose Estimation and Mesh Recovery: A Survey  
The work published by Liu et al. [4]  looks at how deep learning models can address some tough problems in computer vision, 
particularly those involving humans, like recognizing body poses or understanding actions. The main aim is to improve the accuracy 
and efficiency of recognition systems by combining various types of neural network architectures and using large, diverse datasets. 
The authors highlight how modern deep learning methods have transformed areas like image classification, object detection, and 
human pose estimation. This transformation is due to their ability to learn complex patterns from raw data without needing manual 
feature design.The paper starts by explaining the motivation for this work. Traditional computer vision systems often struggle to 
generalize across different people, environments, and lighting conditions. In contrast, deep neural networks can learn to handle 
complex and diverse data when trained on large-scale datasets. The research demonstrates how careful model design and training 
strategies can help tackle common challenges like occlusion, viewpoint changes, and image noise. The ultimate goal is to create 
models that perform consistently well in real-world situations, setting a strong standard for future visual understanding systems. 
The proposed approach includes several deep learning techniques. Convolutional Neural Networks (CNNs) extract detailed visual 
features from images, while graph-based architectures model the relationships between different data points, such as how various 
body joints relate to each other. Additionally, attention mechanisms are added to help the model concentrate on the most important 
parts of the image, which improves both performance and understanding. This mix of methods allows the model to capture both local 
details and the overall context, making it effective for tasks such as image recognition, pose estimation, and segmentation.  
Step-by-Step Process:   
Input Preprocessing:  Image/Video Input: Raw RGB images or video frames are fed into the system. For single-person estimation, a 
pre-trained 2D human detector (for example, YOLOv3, Faster R-CNN) identifies and crops bounding boxes around each person.   
Normalization: Cropped images are resized to a fixed resolution (for example, 256x256 or 224x224) and normalized using ImageNet 
statistics.   
Data Augmentation: This occurs online during training as described in Section 1.   
Feature Extraction (Encoder): The preprocessed input goes through a deep convolutional backbone (for example, ResNet-50, HRNet-
W32) or a Vision Transformer to extract high-level features.   
3D Pose/Mesh Regression (Decoder):   
For 3D Pose Estimation: The extracted features go into a regression head (for example, a series of fully connected layers or a GNN) 
to predict 3D joint coordinates. Alternatively, for 2D-to-3D lifting, a 2D pose estimator first predicts 2D keypoints, and then a 
separate network lifts these to 3D.   
For 3D Mesh Recovery (Template-based): The features are regressed to SMPL model parameters (body shape coefficients, 3D joint 
rotations, and camera parameters). The SMPL model is then posed and shaped with these parameters to create the 3D mesh.   
For 3D Mesh Recovery (Template-free): Features inform an implicit function network (for example, an MLP) that predicts occupancy 
or signed distance fields for 3D points, which can then be meshed using marching cubes.   
Temporal Integration (for video): In video-based methods, features from sequential frames are processed by temporal modules (for 
example, LSTMs, GRUs, or Temporal Transformers) to take advantage of motion cues and ensure consistency in the predicted poses 
and meshes.   
Output Generation: The final output includes 3D joint coordinates, SMPL parameters, or dense 3D mesh vertices, based on the 
specific task. 

 
Fig. 4. Workflow of methodology 
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To test the model’s performance, the authors used several well-known benchmark datasets commonly used in computer vision 
research. These datasets include large collections of labeled images and videos with variations in pose, lighting, and backgrounds. 
Each dataset provides detailed annotations that help the model learn the connection between visual features and semantic meanings. 
By training on these diverse datasets, the proposed system demonstrated strong generalization ability, achieving high accuracy on 
unseen data and outperforming many existing methods. 
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The experimental results show that the proposed model not only improves accuracy but also boosts computational efficiency and 
flexibility. Through optimization and fine-tuning techniques, the model achieves faster training while maintaining high precision. The 
results clearly demonstrate how combining deep feature extraction with attention and graph-based modeling helps the system make 
more informed and reliable predictions. Comparisons with baseline models confirm that this approach consistently delivers better 
results across multiple evaluation scenarios.One of the most impressive aspects of the study is its ability to handle complex data 
variations without extensive preprocessing. The model’s flexibility and scalability make it suitable for applications in surveillance, 
robotics, and healthcare. The use of attention mechanisms also makes the system more understandable and trustworthy, which is an 
important step toward clear AI. Additionally, the model’s modular design allows researchers to easily modify or extend it for specific 
applications. 
Despite its strengths, the paper also points out some limitations. The model’s performance still relies heavily on the quality and 
variety of training data, so any biases in the data can affect how well the model generalizes. Another challenge is the computational 
cost; training deep networks requires significant time and high-end hardware. Nonetheless, the research makes an important 
contribution to the field by improving the capabilities of deep learning in visual understanding and providing a solid foundation for 
future work focused on enhancing efficiency, fairness, and real-world performance in AI systems. 

 
III.  COMPARATIVE ANALYSIS: ADVANTAGES AND DISADVANTAGES OF STUDIED PAPERS 

A. Paper 1 – “Advances in Human Pose Estimation, Tracking, and Action Recognition: A Comprehensive Survey ” 
The paper Advances in Human Pose Estimation, Tracking, and Action Recognition provides a modern and wide-ranging overview of 
human pose estimation by integrating it with tracking and action recognition. One of its greatest strengths is that it reflects the latest 
research trends, including the use of transformer-based architectures such as HRFormer and ViTPose. The paper also places strong 
emphasis on multi-person pose estimation and video-based pose tracking, making it highly suitable for real-time and real-world 
applications.  
It introduces advanced datasets like PoseTrack and NTU RGB+D, which are used for tracking and human activity recognition. By 
combining pose estimation with motion tracking and action understanding, this paper highlights how pose estimation is no longer a 
standalone task but part of a larger intelligent vision system. 
Despite its modern approach and broad coverage, this paper does not focus deeply on realistic 3D human body reconstruction. The 
primary emphasis is on pose estimation, tracking, and action recognition rather than on generating full 3D human meshes. While it 
discusses 3D pose estimation to some extent, it does not provide detailed coverage of SMPL-based mesh recovery methods such as 
PARE, ICON, or ECON. As a result, this paper is more suitable for projects related to surveillance, sports analysis, and activity 
recognition than for projects focused specifically on realistic 3D human modeling. For surface-level 3D reconstruction and 
photorealistic output, its contribution is limited. 

 
B. Paper 2 – “A Survey on Deep 3D Human Pose Estimation” 
The paper A Survey on Deep 3D Human Pose Estimation provides a highly focused and updated review of deep learning techniques 
used specifically for 3D human pose estimation.  
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One of its major strengths is its clear categorization of methods into single-frame approaches, temporal sequence-based methods, and 
graph-based neural networks.  
It explains powerful modern models such as PoseFormer, VIBE, and several graph convolutional networks in a well-structured 
manner.  
The paper also gives detailed discussion about widely used datasets such as Human3.6M, MPI-INF-3DHP, and 3DPW. In addition, it 
provides a strong explanation of important evaluation metrics like MPJPE, PA-MPJPE, and 3DPCK. This makes the paper extremely 
valuable for understanding accurate 3D skeletal motion reconstruction and pose regression pipelines. 
Although this paper provides excellent depth in 3D pose estimation, its main focus remains on skeleton-based joint reconstruction. It 
does not go deeply into full-body surface reconstruction or realistic mesh recovery. Advanced mesh-based methods such as ICON, 
ECON, and SMPL-X based surface recovery are only lightly mentioned or not discussed in detail. Therefore, while the paper is 
highly suitable for projects related to 3D joint-level pose estimation, motion tracking, and biomechanics, it is not fully sufficient for 
applications that require realistic 3D body shape modeling or photorealistic avatar generation.  

 
C. Paper 3- “Deep Learning -Based Human Pose Estimation: A Survey” 
The paper Deep Learning-based Human Pose Estimation: A Survey serves as a strong introductory reference for understanding the 
fundamentals of human pose estimation. One of its biggest strengths is the clarity with which it explains early deep learning 
approaches based on convolutional neural networks (CNNs). The paper systematically discusses both 2D and early 3D pose 
estimation techniques and introduces widely used benchmark datasets such as COCO, MPII, and Human3.6M. It also clearly explains 
important evaluation metrics like PCK, PCKh, and MPJPE, which are essential for measuring pose estimation accuracy. Because of 
its simple explanations and structured layout, this paper is highly useful for beginners and students who are entering the field of pose 
estimation for the first time. It builds a strong conceptual foundation and helps readers understand how modern pose estimation 
systems evolved 
However, the main limitation of this paper is that it was published in 2018, which makes it outdated in terms of recent technological 
progress. It does not include modern transformer-based models, temporal learning techniques, or current state-of-the-art 3D pose 
estimation networks. More importantly, it does not cover realistic 3D human mesh reconstruction using parametric body models like 
SMPL. The paper focuses mainly on 2D pose estimation and only introduces basic skeletal 3D pose estimation. As a result, it is not 
sufficient for projects that aim at generating realistic 3D human models or surface-level body reconstruction. While it is excellent as a 
beginner-level reference, it lacks depth in advanced 3D modeling techniques.  

 
D. Paper 4- “Deep Learning for 3D Human Pose Estimation and Mesh Recovery: A Survey” 
The paper Deep Learning for 3D Human Pose Estimation and Mesh Recovery: A Survey is the most advanced and comprehensive 
among all four surveyed papers.  
Its greatest strength lies in the fact that it bridges the gap between traditional 3D pose estimation and full realistic human mesh 
recovery. The paper provides detailed explanations of state-of-the-art models such as HMR, SPIN, PARE, METRO, ICON, and 
ECON.  
It also gives strong emphasis on parametric human body models like SMPL and SMPL-X, which are essential for generating realistic 
3D human shapes. In addition to joint-level evaluation metrics like MPJPE and PA-MPJPE, the paper introduces mesh-specific 
evaluation metrics such as MPVPE and Mesh IoU, which are crucial for assessing the quality of 3D surface reconstruction. This 
makes the paper extremely relevant for projects aiming to generate lifelike 3D humans from single images. 

 The only major drawback of this paper is its high technical complexity. Because it discusses advanced deep learning architectures, 3D 
geometry, and mesh-based optimization techniques, it can be difficult for beginners to understand without prior knowledge of neural 
networks and 3D modeling. Moreover, many of the methods covered in the paper require large-scale datasets and high computational 
resources for training, which may not be feasible for small academic projects without access to powerful GPUs. However, despite 
these  challenges, the paper remains the most valuable reference for realistic 3D human pose and mesh reconstruction. 

 
E. Performance comparison table  
The following table summarizes the key results, evaluation metrics, and insights from the four survey papers on human pose 
estimation. It highlights the best-performing models, the benchmarks they used, and their corresponding quantitative achievements. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue XII Dec 2025- Available at www.ijraset.com 
     

 
1075 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Paper Title Best 
performing 
Methods 

Dataset used Main 
Evaluation 
Metrics 

Performance 
Highlights 

Key 
observations 

Advances in Human 
Pose Estimation, 
Tracking, and Action 
Recognition (Zhou, 
2023) 

HRNet, 
ViTPose, 

HRFormer 
 

COCO, 
PoseTrack, 

NTU 
RGB+D 

 

OKS, AP, 
AUC 

 

COCO AP 
≈ 81.1%, 
MOTA ≈ 

80+ 
 

Strong focus 
on 
Transformer 
and multi-
task learning. 

A Survey on Deep 3D 
Human Pose 
Estimation (Neupane, 
2024) 

PoseFormer, 
METRO, 

VIBE 

Human3.6M, 
MPI-INF-

3DHP, 
3DPW 

MPJPE, 
PA-

MPJPE, 
3DPCK, 

AUC 
 

MPJPE ≈ 
41.1 mm, 

PA-MPJPE 
≈ 32 mm 

 

Best 3D 
temporal 
accuracy; 
GCN + 
Transformer 
synergy 

Deep Learning-based 
Human Pose 
Estimation: A Survey 
(Zheng, 2018) 

CPN, 
Hourglass, 

SimpleBaseline 
 

COCO, 
MPII, 
Human3.6M 

PCK, 
PCKh, 
MPJPE 

COCO AP 
≈ 73%,  
MPJPE ≈ 65 
mm 

Early CNN 
models; 
foundation 
for modern 
methods. 

Deep Learning for 3D 
Human Pose 
Estimation and Mesh 
Recovery (Liu, 2024) 

ICON, PARE, 
METRO 

 

3DPW, 
AMASS, 
Human3.6M 

MPJPE, 
MPVPE, 
PA-
MPJPE, 
IoU 

MPVPE ≈ 
73.3 mm, 

Mesh IoU ≈ 
86% 

 

First to unify 
pose & mesh 
evaluation; 
near 
photorealistic 
results. 

Table. 1.  Performance Matrix of All Papers 
 

III.  CONCLUSION 
This literature survey has provided a clear understanding of the rapid progress made in the field of human pose estimation, starting 
from basic 2D joint detection to advanced 3D skeletal reconstruction and finally to realistic 3D human mesh generation. From the 
analyzed studies, it is evident that deep learning has completely transformed the way human pose estimation is performed, making it 
possible to reconstruct accurate and lifelike 3D human models from ordinary 2D images and videos. The use of large-scale 
benchmark datasets, powerful neural network architectures, and standardized evaluation metrics has significantly improved the 
accuracy, robustness, and practical applicability of modern pose estimation systems. 
The survey also highlights the importance of parametric human body models such as SMPL, which play a crucial role in generating 
realistic 3D human shapes by representing both pose and body structure mathematically. Together, the findings from the literature 
form a strong theoretical and technical foundation for the proposed project, “3D Human Motion Reconstruction From 2D image  
Using Deep Learning  and Computer Vision.” By integrating 2D pose detection, 3D pose regression, and mesh reconstruction 
techniques, this project aims to develop a practical system capable of producing visually realistic 3D human models. Thus, the 
literature study not only validates the relevance of this project but also directly guides its system design, methodology, and evaluation 
strategy. 

IV. FUTURE WORK 
Although significant progress has been made in 3D human pose estimation and realistic mesh reconstruction, there are still many 
opportunities for future improvement and research. One important direction is improving the system’s performance in challenging 
real-world conditions such as poor lighting, severe occlusion, complex backgrounds, and crowded scenes. Future work can also focus 
on enhancing temporal consistency in video-based pose estimation so that smooth and stable 3D motion can be achieved without 
sudden distortions. Another promising direction is real-time 3D pose estimation and mesh reconstruction, which would make the 
system more suitable for applications such as virtual reality, gaming, sports analytics, and human-computer interaction. The 
integration of multi-view inputs and depth information can further improve accuracy and realism. In addition, future research can 
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explore lightweight and energy-efficient models so that realistic 3D pose estimation can run effectively on mobile and edge devices. 
Finally, extending the system to include clothing dynamics, facial expressions, and full-body motion animation can make the 
generated 3D humans even more natural and lifelike. 
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