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Abstract: Gait recognition is a critical biometric technique with applications in surveillance, healthcare, and security. This study 
proposes a hybrid deep learning framework combining Convolutional Neural Networks (CNN), Long Short-Term Memory 
(LSTM), and the Hippopotamus Optimization Algorithm (HOA) for robust gait recognition. By leveraging spatial feature 
extraction, temporal dynamics, and metaheuristic hyperparameter optimization, the proposed HOA-CNN-LSTM model achieves 
superior performance. Experimental results on the TUM-GAID dataset show that the hybrid model outperforms standalone 
CNN and CNN-LSTM approaches in accuracy, processing time, and error rates. The findings suggest that HOA-optimized 
architectures provide scalable and efficient solutions for gait recognition tasks in real-world settings. 
Keywords: Gait Recognition, Convolutional Neural Network, Long Short-Term Memory, Hippopotamus Optimization 
Algorithm, Deep Learning. 

I. INTRODUCTION 
Biometric recognition systems have become integral to modern security and authentication frameworks, leveraging unique 
physiological and behavioral traits to identify individuals with high accuracy. Among the various biometric modalities, such as 
fingerprints, facial features, iris patterns, and voice recognition; gait recognition has emerged as a compelling alternative due to its 
non-intrusive and remote identification capabilities. Gait recognition analyzes the walking patterns of individuals, enabling 
surveillance and access control in situations where direct cooperation or close-range biometric data capture is impractical [1]. 
The increasing applicability of gait recognition in diverse domains such as surveillance, smart healthcare, human-computer 
interaction, and robotics arose stems from its contactless nature and the ability to operate under non-cooperative conditions [2]. 
Unlike traditional biometric systems that require physical interaction or close-up images, gait can be captured unobtrusively from a 
distance, even in crowded or uncontrolled environments. However, the design of accurate gait recognition systems remains 
challenging due to the variability introduced by changes in clothing, footwear, carrying conditions, walking speed, and view angles 
[3]. Earlier methods in gait analysis relied heavily on handcrafted features and model-based techniques, which often performed 
inconsistently across varying environments [4]. With the advent of deep learning, Convolutional Neural Networks (CNNs) have 
demonstrated remarkable capabilities in capturing spatial information from gait silhouettes, such as body posture, limb movement, 
and silhouette contours [5]. Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, have 
been employed to capture temporal dependencies in gait sequences, modeling dynamic traits such as stride length, walking rhythm, 
and leg movement [6]. Hybrid models that combine CNNs and LSTMs have gained attention for their ability to simultaneously 
capture spatial and temporal features of gait. CNNs effectively extract frame-wise spatial representations, while LSTMs capture the 
sequential progression of gait patterns over time [7]. Such hybrid CNN-LSTM architectures have shown improved recognition 
accuracy compared to standalone CNN or LSTM models. However, their performance is often limited by suboptimal 
hyperparameter configurations and the complexity of the model training process [8]. Optimization algorithms play a pivotal role in 
tuning deep learning models. Traditional optimizers such as Stochastic Gradient Descent (SGD) and Adam, while widely used, may 
suffer from issues like slow convergence and susceptibility to local minima in complex loss landscapes [9].  Metaheuristic 
optimization techniques, inspired by natural behaviors, offer an alternative by enhancing global search capabilities and robustness. 
Algorithms such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony Optimization have been successfully applied 
to deep learning to improve performance and generalization [10]. 
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A relatively recent entrant in the family of metaheuristic algorithms is the Hippopotamus Optimization Algorithm (HOA), inspired 
by the social and territorial behaviors of hippopotamuses. HOA employs adaptive strategies to balance exploration and exploitation 
in high-dimensional search spaces and has shown promise in neural network optimization tasks [11]. Unlike traditional gradient-
based optimizers, HOA’s population-based search approach allows it to overcome non-convex optimization challenges, making it 
suitable for tuning complex deep learning architectures [12]. In the context of gait recognition, the application of HOA remains 
largely unexplored. This research investigates the integration of HOA with CNN-LSTM architectures to optimize hyperparameters 
such as learning rates, dropout rates, and layer configurations. The proposed approach aims to enhance convergence efficiency, 
increase recognition accuracy, and improve model robustness under varying gait conditions [13]. The model was trained in TUM-
GAID dataset, and evaluating using metrics such as recognition accuracy, False Acceptance Rate (FAR), False Rejection Rate 
(FRR), and Genuine Acceptance Rate (GAR), this study seeks to demonstrate the efficacy of HOA in boosting gait recognition 
performance [14]. Ultimately, this paper presents a comparative analysis of CNN, CNN-LSTM, and HOA-optimized CNN-LSTM 
models. The findings are to contribute to the development of robust, scalable, and high-performing gait recognition systems, 
applicable to real-world scenarios across surveillance, healthcare, and human-computer interaction domains. 
 

II. LITERATURE REVIEW 
Gait recognition has evolved as a contactless biometric modality capable of identifying individuals based on walking patterns, 
making it highly suitable for surveillance, healthcare, and human-computer interaction applications. Traditional approaches, which 
relied on handcrafted features and statistical models, struggled with variations in walking conditions. Of recent, deep learning-based 
techniques, particularly those incorporating CNNs, LSTMs, and metaheuristic optimization have dominated the research landscape 
due to their robustness and adaptability. This section provides an in-depth review of the relevant literature, structured across major 
deep learning paradigms used for gait recognition. 
 
A. CNN-Based Gait Recognition Models 
CNNs have become foundational in gait recognition, mainly for their ability to extract spatial features from gait silhouettes. In a 
recent study, [15] proposed a lightweight CNN suitable for edge devices. It showed promising results on real-time surveillance 
datasets while maintaining computational efficiency. [16] enhanced CNN performance by integrating a multi-scale feature 
extraction mechanism, enabling the model to retain fine-grained spatial patterns across varying clothing and view conditions. 
Similarly, [17] utilized a Residual CNN architecture to learn hierarchical spatial features from gait energy images (GEIs), 
significantly improving performance on the CASIA-B dataset. However, while CNNs excel at modeling spatial cues such as body 
contour and posture, they fall short in capturing the sequential dependencies inherent in gait, necessitating the use of temporal 
models such as LSTMs. 
 
B. LSTM-Based Gait Recognition Models 
Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, have proven effective for capturing 
long-term temporal dependencies in gait data. LSTM networks are well-suited to model periodicity, stride cycles, and variations in 
walking patterns over time. In a 2022 study, [18] applied a standalone LSTM model on gait silhouette sequences to capture walking 
rhythm and speed variations. The model performed favorably on sequence-based recognition tasks but lacked the spatial extraction 
capacity of CNNs. [19] proposed an LSTM-based temporal encoder for gait cycle segmentation, which improved recognition 
accuracy in scenarios involving irregular walking speeds. Similarly, [20] investigated the use of bidirectional LSTMs (Bi-LSTMs), 
which process sequences in both forward and backward directions, enhancing the model's sensitivity to contextual temporal 
information. Despite these successes, LSTM-only models often underperform in conditions requiring detailed spatial reasoning, 
leading to increased interest in hybrid architectures that integrate both CNN and LSTM components. 
 
C. Hybrid CNN-LSTM Architectures 
Hybrid CNN-LSTM models have emerged as a powerful solution by combining the spatial learning capabilities of CNNs with the 
temporal modeling strengths of LSTMs. In this approach, CNNs are used to extract frame-level features from gait sequences, which 
are then passed to LSTMs for temporal analysis. [21] demonstrated the effectiveness of such hybrid models on the OU-ISIR and 
CASIA-B datasets, where the CNN layers learned silhouette features, and the LSTM layers captured sequence dynamics. Their 
model showed improved accuracy across varying conditions including view angle and clothing changes. 
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Further advancements were introduced by [22], who incorporated attention mechanisms into CNN-LSTM models. This allowed the 
network to focus on informative temporal segments, resulting in robust cross-view gait recognition. In a 2024 study, [23] extended 
the architecture with residual connections and dropout regularization, which reduced overfitting and improved generalization. These 
hybrid models have consistently outperformed traditional CNN or LSTM-only models; however, their performance remains 
sensitive to the choice of hyperparameters such as learning rate, dropout ratio, and number of LSTM units. 
 
D. Metaheuristic Optimization in Deep Learning 
Traditional optimizers like SGD and Adam are widely used for training deep neural networks but often struggle with issues such as 
slow convergence and suboptimal minima in complex loss landscapes. Recent research has explored metaheuristic optimization 
algorithms inspired by biological and natural processes as alternatives for hyperparameter tuning and model optimization. [24] 
utilized Genetic Algorithms (GA) to optimize CNN architectures for biometric classification, reporting improved convergence speed 
and accuracy. [25] employed Particle Swarm Optimization (PSO) to fine-tune gait recognition models, significantly improving 
robustness under noisy conditions. These approaches showcase the potential of metaheuristics to navigate non-convex solution 
spaces and enhance model training efficiency and generalization. 
 
E. The Hippopotamus Optimization Algorithm (HOA) 
A novel and promising addition to the metaheuristic family is the Hippopotamus Optimization Algorithm (HOA), inspired by the 
social and territorial behavior of hippopotamuses. HOA has demonstrated strong performance in optimizing neural network 
parameters, offering improved balance between exploration and exploitation. [26] applied HOA to optimize CNNs for ECG-based 
classification tasks and found that it outperformed traditional optimizers in terms of accuracy and convergence. Additionally, [27] 
used HOA for optimizing attention weights in gait recognition systems, leading to improved contextual modeling in long gait 
sequences. These studies highlight HOA’s potential as an effective and adaptable optimizer for complex biometric recognition tasks. 
 
F. Dataset Evaluation 
Commonly used datasets include CASIA-B, OU-ISIR, and TUM-GAID, each offering varied gait sequences under multiple 
conditions. [28] conducted a comprehensive evaluation of CNN, LSTM, and hybrid models on the TUM-GAID dataset. Their 
analysis confirmed that hybrid CNN-LSTM models consistently outperform standalone architectures in recognition rate, especially 
in cross-view scenarios. The study also emphasized the need for robust optimizers to handle high-dimensional parameter spaces 
efficiently. 
 

III. METHODOLOGY 
The methodology for Hippopotamus Optimization Algorithm (HOA) for the Hybridized Convolutional Neural Network - Long 
Short-Term Memory (CNN-LSTM) model is a critical step in enhancing gait recognition efficiency. The video dataset is 
preprocessed in order to enhance the quality of input data and thereafter HOA is initialize and integrated into the model to optimize 
key hyperparameters, improve convergence, and maximize classification accuracy while minimizing computational overhead. The 
implementation begins with the initialization of hyperparameters, where the HOA is applied to fine-tune essential model parameters 
such as learning rate, batch size, number of CNN filters, kernel sizes, LSTM units, and dropout rates. These hyperparameters are 
initialized within predefined search spaces, ensuring optimal values are selected during the training process. The HOA iteratively 
refines these parameters using its adaptive exploration and exploitation mechanisms, which mimic the foraging behavior of 
hippopotamuses in natural environments. 
During the training phase, the CNN component extracts spatial features from gait sequences, while the LSTM processes temporal 
dependencies to learn the dynamic gait patterns. The HOA continuously evaluates model performance by measuring accuracy and 
loss at each iteration, dynamically adjusting hyperparameters to achieve optimal feature learning. The optimization process 
enhances generalization by preventing overfitting and ensuring robustness across different gait variations. The implementation of 
HOA also includes constraints to balance computational efficiency and model accuracy. To achieve this, the algorithm reduces 
redundant computations by selecting the most effective feature representations, thereby improving training speed and reducing 
resource consumption. Additionally, the HOA optimizes the number of epochs required for convergence, ensuring that the model 
attains peak performance without excessive computational costs. The final model, optimized using HOA, demonstrates superior 
recognition performance by improving accuracy, reducing false positives and false negatives, and ensuring reliable gait-based 
identity verification.  
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The integration of HOA with the hybrid CNN-LSTM model results in a highly efficient and scalable gait recognition system that 
can be deployed in real-world biometric authentication applications. The methodology comprises four core processes: data 
preprocessing, feature extraction, temporal sequence modeling, and hyperparameter optimization. Each phase plays a critical role in 
constructing a robust and efficient gait recognition model. 
 
A. Data Preprocessing 
The TUM-GAID dataset was used due to its diversity in walking speeds, clothing, and viewpoints. Initially, video sequences were 
decomposed into individual frames. Background subtraction was conducted using Gaussian Mixture Models (GMM) to isolate gait 
silhouettes, which were then normalized to a resolution of 128×88 pixels. To enhance generalization, data augmentation techniques 
such as horizontal flipping, rotation, brightness scaling, and noise injection were applied. Dynamic Time Warping (DTW) ensured 
alignment of gait cycles, thereby improving temporal coherence across samples [29]. 
 
B. Feature Extraction Using CNN (ResNet) 
Spatial features were extracted using a customized Residual Network (ResNet-50) architecture. ResNet addresses the vanishing 
gradient issue by introducing skip connections. The residual block is mathematically represented as:  

F(x) = W2(ReLU(W1x + b1)) + x (1) 
Where x is the input tensor, W1 and W2 are weight matrices, and is the bias term. ReLU serves as the activation function to 
introduce non-linearity [30]. The resulting feature maps represent body contours and limb movements critical to gait pattern 
recognition. 
 
C. Temporal Modeling with LSTM 
To capture the sequential dependencies in gait motion, output feature maps from ResNet were reshaped into time series and passed 
through a Bidirectional Long Short-Term Memory (Bi-LSTM) layer. The Bi-LSTM reads sequences in both forward and reverse 
directions, enriching the temporal context. The LSTM unit is governed by: 

it = σ(Wixt + Uiht + bi) (2) 
ft = σ(Wfxt + Ufht + bf) (3) 

ct = ft ʘ ct-1 + ʘ tanh((Wcxt + Uch t-1 + bc) (4) 
where it, ft, and ct represent the input gate, forget gate, and cell state at time, respectively [27]. 
 
D. Hyperparameter Optimization using HOA 
Hyperparameter selection significantly influences the model's performance. The Hippopotamus Optimization Algorithm (HOA) was 
used to optimize key parameters such as learning rate, batch size, number of filters, kernel size, LSTM units, and dropout rate. HOA 
balances exploration and exploitation in the search space by simulating the foraging behavior of hippos. The fitness function is: 

ݏݏ݁݊ݐ݅ܨ =  ்௉ା்ே
்௉ା்ேାி௉ାிே

         (5) 
where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. HOA iteratively 
tunes hyperparameters by minimizing the cross-entropy loss function:  

ℒ =  −  ∑ log (ŷ݅)஼ ݅ݕ
௜ୀଵ  (6) 

where yi and ŷi are the true and predicted labels for class i, and is the number of classes [32] 

 
Figure 1: Proposed HOA-CNN-LSTM Architecture. (Diagram showing flow from input video frames to silhouette preprocessing, 

CNN feature extraction, Bi-LSTM sequence modeling, and HOA-based hyperparameter tuning). 
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IV. RESULTS AND DISCUSSIONS 
This study used a secondary video dataset [33] comprising of individuals in AVI format (1280x700p) with a stable background, 
capturing each walking left to right and back three times. Gait variations stem from body structure, limb proportions, culture, 
footwear, and environment, essential for unbiased gait analysis and accurate recognition. TUM-GAID dataset was used for training 
and validation using a 10-fold cross-validation approach, ensuring robust evaluation and minimizing biases. Metrics such as False 
Acceptance Rate, False Rejection Rate, Equal Error Rate, and Genuine Acceptance Rate were used to assess system performance, 
creating a reliable framework for gait-based recognition systems. MATLAB 2024b, the latest high-level programming environment, 
was utilized in this study for its advanced capabilities in algorithm development, data analysis, and numerical computation. The 
results are as represented in the table below. Models were evaluated based on Accuracy, Genuine Acceptance Rate (GAR), False 
Acceptance Rate (FAR), False Rejection Rate (FRR), and Processing Time.  

 
Table 1: Performance metrics result of Video 1 

Technique Used CNN CNN-LSTM HOA-CNN-LSTM 

Video Type AVI AVI AVI 

Total Moving Gait 1190 1190 1190 

Gait Detected 1445 1445 1445 

Correct Gait (TP) 1142 1162 1170 

Misclassified Correct Gait (FN) 48 28 20 

False Non-Gait (TN) 205 232 237 

Misclassified Non-Gait (FP) 50 23 18 

Accuracy (%) 93.22 96.47 97.37 

GAR (%) 95.97 97.65 98.32 

FAR (%) 19.61 9.02 7.06 

FRR (%) 4.03 2.35 1.68 

Processing Time (s) 74.01 66.78 57.42 
 

Table 2: Performance metrics result of Video 2 
Technique Used CNN CNN-LSTM HOA-CNN-LSTM 

Video Type AVI AVI AVI 

Total Moving Gait 715 715 715 

Gait Detected 1751 1751 1751 

Correct Gait (TP) 662 677 683 

Misclassified Correct Gait (FN) 53 38 32 

False Non-Gait (TN) 966 996 1000 

Misclassified Non-Gait (FP) 70 40 36 

Accuracy (%) 92.98 95.55 96.12 

GAR (%) 90.44 94.42 94.99 

FAR (%) 6.76 3.86 3.47 

FRR (%) 92.59 94.69 95.52 

Processing Time (s) 85.02 76.23 68.12 
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Table 3: Performance metrics result of Video 3 
Technique Used CNN CNN-LSTM HOA-CNN-LSTM 
Video Type AVI AVI AVI 
Total Moving Gait 1019 1019 1019 
Gait Detected 1484 1484 1484 
Correct Gait (TP) 952 976 982 
Misclassified Correct Gait (FN) 67 43 37 
False Non-Gait (TN) 419 440 444 
Misclassified Non-Gait (FP) 46 25 21 
Accuracy (%) 92.39 95.42 96.09 
GAR (%) 95.39 97.5 97.91 
FAR (%) 9.89 5.38 4.52 
FRR (%) 93.42 95.78 96.37 
Processing Time (s) 73.24 67.01 61.56 

 
Table 4: Performance metrics result of Video 4 

Technique Used CNN CNN-LSTM HOA-CNN-LSTM 
Video Type AVI AVI AVI 
Total Moving Gait 1386 1386 1386 
Gait Detected 1386 1386 1386 
Correct Gait (TP) 921 940 945 
Misclassified Correct Gait (FN) 59 40 35 
False Non-Gait (TN) 362 385 389 
Misclassified Non-Gait (FP) 44 21 17 
Accuracy (%) 92.57 95.6 96.25 
GAR (%) 95.44 97.81 98.23 
FAR (%) 10.84 5.17 4.19 
FRR (%) 90.66 94.67 95.87 
Processing Time (s) 79.45 70.72 51.15 

 
Table 5: Performance metrics result of Video 5 

Technique Used CNN CNN-LSTM HOA-CNN-LSTM 
Video Type AVI AVI AVI 
Total Moving Gait 940 940 940 
Gait Detected 1378 1378 1378 
Correct Gait (TP) 885 905 918 
Misclassified Correct Gait (FN) 55 35 22 
False Non-Gait (TN) 396 418 424 
Misclassified Non-Gait (FP) 42 20 14 
Accuracy (%) 92.96 96.01 97.39 
GAR (%) 95.47 97.84 98.5 
FAR (%) 9.59 4.57 3.2 
FRR (%) 94.15 96.28 97.66 
Processing Time (s) 51.96 43.54 39.17 
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A. Discussions of Results 
The performance of the three evaluated models: CNN, CNN-LSTM, and HOA-CNN-LSTM and was compared across several key 
metrics, revealing significant differences in their effectiveness. HOA-CNN-LSTM demonstrated superior performance across all 
evaluation criteria. It consistently achieved the highest accuracy, lowest error rates, and the fastest processing time, indicating the 
substantial impact of hyperparameter optimization. CNN-LSTM outperformed the baseline CNN by effectively utilizing temporal 
dependencies, though it did not reach the optimized performance level of HOA-CNN-LSTM. 
1) Accuracy: HOA-CNN-LSTM achieved the highest accuracy across all video samples, highlighting the effectiveness of the 

applied hyperparameter optimization techniques. CNN-LSTM followed, while CNN recorded the lowest accuracy among the 
three models. 

2) Genuine Acceptance Rate (GAR): The GAR was highest in the HOA-CNN-LSTM model, confirming its reliability in 
recognizing gait patterns. CNN-LSTM showed improved performance over CNN, which recorded the lowest GAR. 

3) False Acceptance Rate (FAR): As a lower FAR is preferable, HOA-CNN-LSTM's performance in maintaining the lowest FAR 
further underscores its robustness. CNN-LSTM demonstrated a moderate improvement over CNN, which exhibited the highest 
FAR. 

4) False Rejection Rate (FRR): HOA-CNN-LSTM minimized FRR, ensuring a reduced number of incorrectly rejected gait 
instances. CNN-LSTM again outperformed CNN, which had the highest FRR among the models. 

5) Processing Time: HOA-CNN-LSTM recorded the lowest processing time, indicating its superior computational efficiency. 
CNN-LSTM processed data faster than CNN but remained less efficient than HOA-CNN-LSTM. 

 
Figure 2: The overall bar chart with orange for CNN, blue for CNN-LSTM, and green for HOA-CNN-LSTM 

 
The results show that HOA-CNN-LSTM emerged as the best-performing model, offering a balanced combination of high accuracy 
and processing efficiency. These qualities make it the most suitable model for gait recognition applications. 

 
V. CONCLUSION 

This study introduced an advanced hybrid gait recognition framework that combines ResNet-based CNN for spatial feature 
extraction, Bi-LSTM for capturing temporal dynamics, and the Hippopotamus Optimization Algorithm for hyperparameter tuning. 
The HOA-CNN-LSTM model outperformed standalone CNN and CNN-LSTM models in accuracy, efficiency, and error rates 
across diverse gait scenarios. The results validate the effectiveness of HOA in enhancing deep learning models' robustness and 
scalability. Future work will explore integrating attention mechanisms, deploying models on edge devices, and extending to 
multimodal biometric systems for enhanced accuracy and security. 
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