INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY Volume: 11 Issue: X Month of publication: October 2023 DOI: https://doi.org/10.22214/ijraset.2023.55962 www.ijraset.com Call: © 08813907089 E-mail ID: ijraset@gmail.com ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue X Oct 2023- Available at www.ijraset.com ### **Identical Product of Graphs** Parvathy Haridas N S S Hindu College Changanacherry Abstract: A new graph product called identical product is introduced in this paper. Keywords: Graph products, Identical Product #### I. INTRODUCTION A graph[1] is an ordered triple $G = (V(G), E(G), I_G)$ where V(G) is a nonempty set E(G) is a set disjoint from V(G) and I_G is an "incidence" relation that associates with each element of E(G) an unordered pair of elements (same or distinct) of V(G). Elements of V(G) are called the vertices (or nodes or points) of G; and elements of E(G) are called the edges (or lines) of G: V(G) and E(G) are the vertex set and edge set of G, respectively. If, for the edge G of G respectively. Number of vertices and the number of edges in a graph G is called the order G and the size G of G respectively. Number of edges incident on a vertex G of a graph G is called degree of G in G and is denoted by G of G respectively. Number of edges incident on a vertex G of a graph G is called degree of G in G and is denoted by G of G respectively. For any two vertices G are equal. Let G of G is G and G is two simple graphs. Any product G has its vertex set G is G. For any two vertices G and G is a set disjoint from G in G and G is G, there are various possibilities: u_1 adjacent to v_1 in G_1 or u_1 non-adjacent to v_1 in G_1 ; u_2 adjacent to v_2 in G_2 or u_2 non-adjacent to v_2 in G_2 and $u_1 = u_2$ and/or $u_1 = v_2$. Two graph products #### II. IDENTICAL PRODUCT #### 1) Definition Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two simple graphs. The identical product $G_1 \blacksquare G_2$ has its vertex set $V_1 \times V_2$. Any two vertices (u_1, v_1) and (u_2, v_2) are adjacent in $G_1 \blacksquare G_2$ if and only if $u_1 = u_2$ or $v_1 = v_2$. #### Example: #### 2) Theorem The identical product of any two graphs G and H with n_1 and n_2 vertices respectively *Proof:* From the definition of the identical product, it is clear that the adjacency of two vertices in $G \blacksquare H$ will not depend on the adjacency of vertices in G or $H(\text{since }(u_1, v_1) \text{ and } (u_2, v_2)$ are adjacent in $G_1 \blacksquare G_2$ if and only if $u_1 = u_2$ or $v_1 = v_2$). Hence the theorem. #### International Journal for Research in Applied Science & Engineering Technology (IJRASET) ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 11 Issue X Oct 2023- Available at www.ijraset.com #### 3) Theorem The number of edges in the identical product of any two graphs G and H with n_1 and n_2 vertices respectively is $\frac{n_1 \, n_2 \, (n_1 + n_2 - 2)}{2}$. Proof: Let u be any vertex in graph G. Then there are n_2 vertices in $G \blacksquare H$ in the form (u,x) where x is any vertex in H and these vertices are adjacent to each other. Therefore, there are $\frac{n_1 \, n_2 \, (n_2 - 1)}{2}$ edges in this case. Also if v be any vertex in graph H, there are n_1 of the form (x,y) where y be any vertex in G and these vertices are adjacent to each other. Therefore, there are $\frac{n_1 \, n_2 \, (n_1 - 1)}{2}$ edges in this case. Hence the total number of edges in $$G \blacksquare H = \frac{n_1 n_2 (n_2 - 1)}{2} + + \frac{n_1 n_2 (n_1 - 1)}{2} = \frac{n_1 n_2 (n_1 + n_2 - 2)}{2}$$ #### 4) Theorem Identical product of any two graphs is regular *Proof:* Let G and H be two graphs with n_1 and n_2 vertices respectively. Let (u,v) be any vertex in $G \blacksquare H$ $$d(u, v) = n_2 - 1 + n_1 - 1 = n_2 + n_1 - 2$$ Hence identical product is regular. #### III. CONCLUSIONS In this paper the identical product of two graphs is defined and proved some results relating to this #### **REFERENCES** - [1] R Balakrishnan and K. Ranganathan, A text book of Graph Thoery, Second Edition, Springer[2012] - [2] Frank Harary, Graph Theory, Addison-Wesley, 1969. 10.22214/IJRASET 45.98 IMPACT FACTOR: 7.129 IMPACT FACTOR: 7.429 ## INTERNATIONAL JOURNAL FOR RESEARCH IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY Call: 08813907089 🕓 (24*7 Support on Whatsapp)