Identical Product of Graphs

Parvathy Haridas
N S S Hindu College Changanacherry

Abstract: A new graph product called identical product is introduced in this paper.
 Keywords: Graph products, Identical Product

I. INTRODUCTION

A graph[1] is an ordered triple $G=\left(V(G), \boldsymbol{E}(G) I_{G}\right)$ where $\mathrm{V}(\mathrm{G})$ is a nonempty set $\mathrm{E}(\mathrm{G})$ is a set disjoint from $\mathrm{V}(\mathrm{G})$ and I_{G} is an "incidence" relation that associates with each element of $\mathrm{E}(\mathrm{G})$ an unordered pair of elements (same or distinct) of $\mathrm{V}(\mathrm{G})$. Elements of $V(G)$ are called the vertices (or nodes or points) of G; and elements of $E(G)$ are called the edges (or lines) of G : $V(G)$ and $E(G)$ are the vertex set and edge set of G, respectively. If, for the edge e of $G, I_{G}(e)=\{u, v\}$ Number of vertices and the number of edges in a graph G is called the order $n(G)$ and the size $m(G)$ of G respectively. Number of edges incident on a vertex v of a graph G is called degree of v in G and is denoted by $d_{G}(v)$. A graph G is regular if degree of all vertices in G are equal. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. Any product [1] $G_{1} * G_{2}$ has its vertex set $V_{1} \times V_{2}$. For any two vertices $\left(u_{1}, v_{1}\right)$ and (u_{2}, v_{2}) are adjacent in $G_{1} * G_{2}$, there are various possibilities:
u_{1} adjacent to v_{1} in G_{1} or u_{1} non-adjacent to v_{1} in $G_{1} ; u_{2}$ adjacent to v_{2} in G_{2} or u_{2} non-adjacent to v_{2} in G_{2} and $u_{1}=u_{2}$ and/or $v_{1}=v_{2}$. Two graph products

II. IDENTICAL PRODUCT

1) Definition

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two simple graphs. The identical product $G_{1} \boldsymbol{I} G_{2}$ has its vertex set $V_{1} \times V_{2}$. Any two vertices $\left(w_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} ■ G_{2}$ if and only if $u_{1}=u_{2}$ or $v_{1}=v_{2}$.

Example:

2) Theorem

The identical product of any two graphs G and H with n_{1} and n_{2} vertices respectively
Proof: From the definition of the identical product, it is clear that the adjacency of two vertices in $G \boldsymbol{m} H$ will not depend on the adjacency of vertices in G or $\mathrm{H}\left(\right.$ since $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} m G_{2}$ if and only if $u_{1}=w_{2}$ or $\left.v_{1}=v_{2}\right)$. Hence the theorem.
3) Theorem

The number of edges in the identical product of any two graphs G and H with n_{1} and n_{2} vertices respectively is $\frac{n_{1} n_{2}\left(n_{4}+n_{2}-2\right)}{2}$ Proof: Let u be any vertex in graph G . Then there are n_{2} vertices in $G \llbracket H$ in the form (u, x) where x is any vertex in H and these vertices are adjacent to each other. Therefore, there are $\frac{n_{1} n_{2}\left(n_{2}-1\right)}{2}$ edges in this case. Also if v be any vertex in graph H, there are n_{1} of the form (x, v) where y be any vertex in G and these vertices are adjacent to each other. Therefore, there are $\frac{n_{1} n_{2}\left(n_{1}-1\right)}{2}$ edges in this case.
Hence the total number of edges in $G \llbracket H=\frac{n_{1} n_{2}\left(n_{2}-1\right)}{2}++\frac{n_{1} n_{2}\left(n_{1}-1\right)}{2}=\frac{n_{1} n_{2}\left(n_{1}+n_{2}-2\right)}{2}$.
4) Theorem

Identical product of any two graphs is regular
Proof: Let G and H be two graphs with n_{1} and n_{2} vertices respectively. Let (u, v) be any vertex in $G \mathbb{\square} H$
$d\left(u_{s} v\right)=n_{2}-1+n_{1}-1=n_{2}+n_{1}-2$
Hence identical product is regular.

III. CONCLUSIONS

In this paper the identical product of two graphs is defined and proved some results relating to this

REFERENCES

[1] R Balakrishnan and K. Ranganathan, A text book of Graph Thoery, Second Edition, Springer[2012]
[2] Frank Harary, Graph Theory, Addison-Wesley, 1969.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

