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I. INTRODUCTION 
It is observed that many real life problems, the cost of transporting a commodity from one place to another cannot be determined 
exactly. This may be attributed to many reasons such as variations in Crude oil ,fuel prices, Labour charges, power utilization, 
optimality utilization of man power, expenditure of utilities   etc. The inaccurate costs can be conveniently modeled by fuzzy 
numbers. Thus transportation problems with fuzzy costs are of a great importance and which are reliable too.   
An assignment problem with fuzzy costs has been considered by Lin and Wen [2004]. They have modeled the problem into a mixed 
integer programming problem, using the fuzzy decision of Bellman and Zadeh [1970] and then converted it into a linear fractional 
programming problem. They have developed a suitable labeling algorithm for the solution of the resultant linear fractional 
programming problem.  
A definition of an optimal solution of a transportation problem with fuzzy cost coefficients and an algorithm for determining this 
solution was given by Chanas and Kuchta [1996]. 
Also, there are situations where the commodities supplied by the origins contain certain number of units of impurities and each 
destination has it’s own limitations on the number of units of impurities it can receive. For example, some industries receiving coal 
may fix some limits on the quantity of sulphur in the coal supplied. A method of solution of a multi-objective time transportation 
problem with impurity restrictions was developed by Singh and Saxena [2003]. 
The present chapter is aimed at developing a solution methodology for a transportation problem involving both the above aspects i.e 
costs are fuzzy and also impurity restrictions are imposed. The demand and supply values are assumed to be crisp numbers  
This work ( chapter)  is divided into five sections. Section III.2 formulates the problem under consideration and also gives the basic 
notations and assumptions. Section III.3 develops the necessary theory and produces a linear fractional programming problem, 
which has the same optimal solution as of the problem under consideration. Section III.4 applies the developed method on a 
numerical example. Some concluding remarks are drawn in section III.5                                
 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 
The mathematical formulation of the fuzzy transportation problem with additional restrictions is 

   Minimize   Cijݔ௜௝                                                                                    (1)                                                                          

   Subject to 

           xij = ai, (i =1,2,…,m)                                                                                     

                xij = bj,   (j =1,2,…,n)                                                                                        

                fixij ≤ pj,   (j =1,2,…,n)    

            xij   0 and are integer, i =1,2,…,m, j =1,2,…,n                                                
Here ai is the amount of commodity available at the ith origin and bj is the requirement of the commodity at the jth destination. One 
unit of the commodity at the ith origin contains fi units of a certain impurity and jth destination cannot receive more than pj units of 
the impurity. xij is the amount of commodity transported from the ith origin  to the jth destination. 
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The costs Cij = (ij, ij) ( i =1,2,…,m, j =1,2,…,n) are subnormal fuzzy numbers having strictly increasing linear membership 
functions defined as follows: 
         
 
                         qij                                if   Cij = ij  and xij > 0 
 
    µij(Cij) =       qij(Cij-ij)/(ij-ij)      if    ij ≤ Cij ≤ ij and xij  0                                 ( 2 ) 
    

0 Otherwise 
 

 
The condition xij > 0 is  initiated and added  to ( 2 ) because there is no real expense if xij = 0 in any feasible solution x of (1). We 
use the notation  ij, ij   to denote the special type of fuzzy number Cij used in this.  Matrix [Cij] is written as [Cij]  = [ ij, ij  

]mn 
 
Matrix [qij] is defined by  [qij] = [qij]mn 

 
Let CT denote the total cost and a, b be the lower and upper bounds of the total cost respectively. We define the membership 
function of CT as linear decreasing function in ( 3 ) and use the notation  a, b  to denote fuzzy number CT. Numbers a and b are 
constants and subjectively chosen by the decision maker. We may take a as the minimum cost of the transportation problem with 
ij’s as costs and b as the maximum cost of the transportation problem with ij’s as costs, the demand and supply values in both 
cases being same as those of problem (3.1).                                                                                              
 
                                                               1, if CT ≤ a 
 

       µT(CT) = µT( Cijxij )  =       (b- Cijxij)/(b-a), if a ≤ cT ≤ b             ( 3 ) 

 
                                                                0, if CT ≥ b . 
 
                                                                       
                                                                                                                                     

III. FORMULATION AND  SOLUTION OF THE PROBLEM 
Applying the  Bellman-Zadeh’s fuzzy decision [1970], we maximize the minimum of the membership functions corresponding to 
that solution i.e 
Max - Min (µij(i =1,2,…,m, j =1,2,…,n),µT(CT))                                               ( 4 )              
 
Where xij is an element of a feasible solution x of problem (1). Then we can represent the problem ( 1 ) as follows 
        Max-Min (µij, µT(CT))                                                                                            ( 5 ) 
                 xij> 0           
 Subject to 

          xij = ai , (i =1,2,…,m)  ;           xij  = bj, (j =1,2,…,n)     

          fixij ≤ pj,  (j =1,2,…,n)   ;           xij ≥ 0 and are integer                                                           

                              for i =1,2,…,m, j =1,2,…,n 
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Applying the membership functions of the unit costs and the total transportation cost as defined in ( 2 ) and ( 3) respectively, we can 
further represent (5) as the following equivalent model. 
                            Maximize λ                                                                                     ( 6 ) 
              Subject to 
                λxij  ≤ (qij(Cij

λ - ij)xij)/ (ij - ij) for i =1,2,…,m, j =1,2,…,n 

                λ ≤  (b- Cij


 xij)/(b-a),       xij = ai ,  (i =1,2,…,m)  

                                xij = bj,   (j =1,2,…,n)                                                                                                                                                     

               fixij ≤ pj,  (j =1,2,…,n)   

                Cij
λxij ≤ ijxij for i =1,2,…,m, j =1,2,…,n                 

                xij ≥ 0 and integer for i =1,2,…,m, j =1,2,…,n 
 
Where Cij

λ denotes the λ-cut of Cij. In ( 6 ), since xij, Cij
λ, and λ are all decision variables, it can be treated as a mixed integer 

nonlinear programming model 
We define E as the set of all pairs (i, j) where xij is an element of the feasible solution x of (1) and confine our discussion based on 
E. Then, we can write ( 6 ) as follows:                       
           
           Maximize λ                                                                                                          ( 7 ) 
           Subject to 
           λ ≤ (qij(Cij

λ - ij)) / (ij - ij) for (i, j)  E 

           λ ≤ (b- Cij
λxij)/(b-a),   

           Cij
λ
  ≤ ij for (i, j)  E 

          Let dij = ij - Cij
λ  ≥ 0. Then (3.7) can be expressed as follows: 

           Maximize λ                                                                                                        ( 8a) 
          Subject to 
          λ ≤ qij(ij

 - ij -dij) / (ij - ij) for (i, j)  E                                                          ( 8b) 

          λ ≤ (b-  (ij – dij )xij)/(b-a),                                                                         (8c)               

          dij, λ ≥ 0 for  (i, j)  E                                                                                        ( 8d )         
Now, the necessary theory for the development of a linear fractional programming problem having the same optimal solution of 
problem ( 8a –  8d) is given by the following two theorems: 
 
1) Theorem 1  
        Let λx be the optimal value of the objective function of problem (3.8a – 3.8d). Suppose that 

        b < ( (ij – dij)xij – a min{qij/(i,j)  E}) / (1- min{qij/(i,j)  E}) 

        Then λx = qij(ij
 - ij -dij) / (ij - ij) for (i ,j)  E  

                     = (b-  (ij – dij )xij)/(b-a)   

Proof: 
The problem (3.8a – 3.8d) can be written into a linear programming model in variables λ, dij   as  
          Maximize λ                                                                                                             ( 9a )                                                                
           Subject to 
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           dij + ((ij - ij)/ qij)λ  ≤ (ij - ij)    for (i, j)  E                                                 ( 9b ) 

           - dijxij + (b-a)λ  ≤ b-  ijxij                                                                                              ( 9c) 

          λ, dij ≥ 0 for ( i, j)   E                                                                                       ( 9d ) 
           
          The dual of the above problem is:   

        Minimize   (ij - ij )wk + (b-  ijxij)wm+n                                                            ( 10a )           Subject to            

          wk – xijwm+n   ≥ 0 for( i, j)  E                                                                                                              (10b )        

                                                                                                                                                                                                                                                                                                                          

          ((ij - ij ) /qij)wk + (b-a)wm+n ≥ 1                                                           (10c) 

           wk ≥ 0 for k =1,2,…, m+n                                                                               ( 10d )  
Let s1,s2,…sm+n  be the slack variables of ( 9b ) and ( 9c ) respectively. Similarly, let u1,u2,…,um+n be the surplus variables of (10b) 
and (10c) respectively. 

Since b < ( (ij – dij)xij – a min{qij/(i, j)  E}) / (1- min{qij/(i, j)  E}), 

we have min{qij/(i, j)  E} > (b-   (ij – dij )xij)/(b-a) 

By comparing (c) and the above inequality, 
we have λ < min{qij/(i, j)  E}  
so that λ < qij for all (i, j)  E 
so that Cij

λ
  < ij for all (i, j)  E ( Since the membership functions are increasing) 

i.e ij - Cij
λ > 0 for all (i, j)  E 

i.e dij > 0 for all (i, j)  E. 
Applying the complementary slackness theorem, we obtain using (10b) 
u1 = u2 =….= um+n-1 = 0 
Hence wi – xijwm+n = 0 for i =1,2,…,m+n-1 
Now, if wm+n = 0 then w1 = w2  = …=  wm+n-1 = 0. 
This is a contradiction to ( 10c ) 
Hence wm+n > 0 
Assuming that the solution is non-degenerate 
wi = wm+nxij > 0 for i =1,2,…,m+n-1 

i.e w1 > 0,w2 > 0,…,wm+n > 0 
Now by complementary slackness theorem, we obtain from ( 9b ) and ( 9c) 
s1 = s2 =….= sm+n = 0                                                                      

Therefore λx  =  qij(ij
 - ij -dij) / (ij - ij) for (i, j)  E   

                      =  (b-   (ij – dij )xij) / (b-a)   

2) Theorem 2  
           Let λx be the optimal value of the objective function of problem (3.8a – 3.8d) and  

b < ( (ij – dij)xij – a min{qij/(i,j)  E}) / (1- min{qij/(i,j)  E}).  

Also let ij = (ij - ij)/qij for i =1,2,…,m, j =1,2,…,n.  
 

Then λx = (b- ijxij) / (b-a + ijxij)     
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Proof: 
         By theorem  1, we have 
         λx =  ((ij

 - ij -dij)xij) / (ijxij) for (i,j)  E                       

             = (b-   (ij – dij )xij) / (b-a)   

Hence, by Componendo and Dividendo principle   we have    
 

λx =  (b- 
 

  (ij – dij )xij +  (ij
 - ij -dij)xij) / (b-a + ijxij) 

  

     = (b- ijxij) / (b-a + ijxij)                                                                    (11) 

 
 
A. The Fractional Programming Model 
By theorem 2, problem (6 ) can be restated as  
 

Maximize    (b- ijxij) / (b-a + ijxij)                                                     (12) 

 
Subject to  

           xij = ai ,  (i =1,2,…,m)   :            xij = bj,   (j =1,2,…,n)                                                                                  

           fixij ≤ pj,  (j =1,2,…,n)   ;                 xij ≥ 0 and integer for i =1,2,…,m, j =1,2,…,n 

 
Problem (12) is a linear fractional programming problem and its optimal solution may be obtained by the algorithm by Kantiswarup 
[1965]. The optimal value of the objective function of problem (12) is λx. ,dij  for (i, j)  E can be obtained from  
λx = (ij

 - ij -dij)/ij for (i, j)  E                                                                                  (13) 
 
Then the fuzzy costs corresponding to the maximal value of λ are given by 
Cij

λ = ij - dij for (i, j)E                                                                                                                                              (14)  
 

IV. ILLUSTRATED PROBLEMS  
Let us consider the following example: 

           Minimize Cijxij                                                                                                                                 ( 15 ) 

               Subject to               
x11 + x12 + x13 =  4 ;             x21 + x22 + x23 = 5 ;            x31 + x32 + x33 = 6 ;            x11 + x21 + x31  = 5 ;            x12 + x22 + x32 = 5   ;                                
           x13  + x23 + x33 =  5 
           2x11 + x21 + 0.x31 ≤ 4 
           2x12 + x22 + 0.x32 ≤ 1 
           2x13 + x23 + 0.x33 ≤ 9 
           xij ≥ 0 and are integers for i, j = 1,2,3  
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                                4,13     3,12       2,6    
    Where [Cij] =      4,13      6,14      7,15  
                                7,10       4,8       6,12  
 
 
                               0.9       0.6      0.8   
   and        [qij] =     0.9       0.8      0.8 
                               0.6       0.8      0.6 
Then we have 
 
 
                          4    3   2                   13    12    6                     10    15    5  
         [ij] =       4    6   7      [ij] =     13    14   15      [ij] =    10    10   10 
                          7    4   6                   10     8    12                    5      5    10   
 
 
a is taken as the minimum cost of the transportation problem with costs as ij’s (a = 54) and  b is taken as the maximum cost of the 
transportation problem with costs as ij’s (b =192). Now, using (12), the following fractional programming problem is developed 
corresponding to problem (15)   
 
Maximize      (192 - 4x11 - 3x12 - 2x13 - 4x21   - 6x22 - 7x23 - 7x31 - 4x32 - 6x33)   /                 ( 16 ) 

                      

                     (138 + 10x11 + 15x12 + 5x13 + 10x21 + 10x22   10x23 + 5x31 + 5x32 + 10x33)                                   

 Subject to  
 
     x11 + x12 + x13  = 4 ;            x21  + x22 + x23 = 5 ;            x31 + x32 + x33 = 6 ;            x11 + x21 + x31 = 5 ;            x12 + x22 + x32 = 5  
;     x13 + x23 + x33 = 5 ;            2x11 + x21 + 0.x31 ≤ 4 ;                
       2x12 + x22 + 0.x32 ≤ 1 ;  2x13 + x23 + 0.x33 ≤ 9 ;            xij ≥ 0    integers for i, j = 1,2,3         

 
The optimal solution of problem (16) is obtained by using the method by Kantiswarup [1965] as follows 
x13 = 4, x21 = 4, x23 = 1, x31 = 1, x32 = 5 with max λx = 0.563 
for (i, j)  E, we have 
λx = (ij - ij – dij)/ij so that dij = ij - ij – λxij 

We have 
d13 = 4 – (0.563)(5) = 1.185 ; d21 = 9 – (0.563)(10) = 3.37 ; d23 = 8 – ( 0.563)(10) = 2.37 
d31 = 3 – (0.563)(5) = 0.185 ; d32 = 4 – (0.563)(5) = 1.185 ;  
 
The fuzzy costs corresponding to λ = 0.563 are 
 
Cij

λ = ij – dij for (i,j)  E  
We have 

 
 
C13

0.563 = 6-1.185 = 4.815 ; C21
0.563 = 13 – 3.37 = 9.63 ; C23

0.563 = 15 – 2.37 = 12.63 
C31

0.563 = 10 – 0.185 = 9.815 ;   C32
0.563 = 8 – 1.185 = 6.815  

Total transportation cost =  Cij
0.563xij = 114.3 
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V. DISCUSSION AND CONCLUSIONS  
The developed procedure for obtaining an optimal solution of a transportation problem with fuzzy costs and involving impurity 
restrictions is computationally efficient. The optimal values of xij’s can be obtained by the method by Kantiswarup [1965]. A 
computer program can be developed with ease in any programming language for this purpose. The optimal values of dij’s and hence 
the unit costs can be obtained using expressions given in the method.   
The fuzzy transportation problem considered in this   work  may not possess an optimal solution, in some cases. This may be 
attributed to the presence of the impurity restrictions. In such cases, a feasible solution and therefore an optimal solution may be 
obtained by relaxing the impurity restrictions of the destinations to some extent.   
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