Incidence Matrix and Some Its Graph Theory Applications

Sneha S^{1}, Sumitha ${ }^{2}$
${ }^{1,2}$ Dr. SNS Rajalakshmi College of Arts and Science

I. INTRODUCTION

A and B are two idle communities, and I is a relation between A and B.

Definition 1. [8] The ordered trinity $S=(A, B, I)$, where
$\mathbf{A} \cap \mathbf{B}=\phi, \mathbf{I} \subseteq \mathbf{A} \times \mathbf{B}$
is called the incidence structure.
If A and B are separate sets (disjuncts), and I is a double (binary) connection connecting A and B , then $\mathrm{S}=(\mathrm{A}, \mathrm{B}, \mathrm{I})$ is the structure of incidence. This relation is also known as the incidence relation. The two components of a A are referred to as community dots and are denoted by lowercase letters of the alphabet, whereas the community blocks (or straight lines) of a X are denoted by capital letters of the alphabet. We shall read: "The fact (X, Y)I can be denoted by p I Y as in any double bond." Block Y has incident point X , or point X has incident block Y .
The incidence bond I of a finite set, like any double bond between two finite sets.

II. INCIDENT MATRICES

Definition 1: Let S represent the incidence structure with v points and b blocks, where
$A=\{X 1, X 2, X 3, \ldots \ldots \ldots . X v\}$ and $B=\{Y 1, Y 2, Y 3, \ldots \ldots \ldots \mathrm{Yb}\}$.
Matrix

$$
\mathrm{A}=(\mathrm{aij})=\left\{\begin{array}{l}
1, \text { if } I Y i \\
0, \text { if } I Y j
\end{array}\right.
$$

the incidence matrix for the structure S is known as.
The incidence matrix A is a reflection from PB 0,1 , i.e., $(p, X) 1$ if $p I X$ and ($p, X) 0$ if $p X$ (p is not an incident with X), i.e., A $=(\mathrm{aij}) \mathrm{vxb}$.
The following is how to get this matrix:
On the left side of a rectangular table, the arrival set X with its k blocks is positioned above the starting set P with its v points. When $(\mathrm{Pi}, \mathrm{bj}) \mathrm{I}$ is marked as 1 , the empty rows and columns of the table are filled with 1 , and when $(\mathrm{Pi}, \mathrm{bj}) \mathrm{I}$ not element I is marked as 0 , they are filled with 0 , accordingly.
The resulting matrix, which has v k , is the incidence matrix. Through its incidence matrix, a finite structure's nature can be investigated. It is obvious that the power of the point Pi is equal to the sum of the 1 s in its ith row, whereas the power of the block bj is equal to the sum of the 1 s in its jth column.

Example 1

Let be $S=(A, B, E)$ a finite structure with:
$A=\{1,2,3,4,4,5,6,7\}$ and $B=\{b 1, b 2, b 3, b 4, b 5, b 6, b 7\}$ where
$\mathrm{b} 1=(1,3,4), \mathrm{b} 2=(1,4,7), \mathrm{b} 3=(4,5,7), \mathrm{b} 4=(3,4,6), \mathrm{b} 5=(2,4,7), \mathrm{b} 6=(1,5,3), \mathrm{b} 7=(2,4,6)$
The incidence matrix for this structure will be:

$$
\mathrm{M}=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

ts regular structure may be seen from the fact that each row has 3 units and all points have the same power $r=3$. But because there are three units in each column, it is also uniform. The setup is tactical as a result.

III. GRAPH AND RANK OF INCIDENCE MATRIX

Let G be a graph with n vertices, m edges and without self-loops.
The incidence matrix A of G is an $n \times m$ matrix $A=[a i j]$, whose n rows correspond to the n vertices and the m columns correspond to m edges such that:

$$
\mathrm{A}=(\mathrm{aij})=\left\{\begin{array}{l}
1, \text { if } p i I X j \\
0, \text { otherwise }
\end{array}\right.
$$

It is also called vertex-edges incidence matrix and is denoted by $\mathrm{A}(\mathrm{G})$.
Example 2: Consider the graph given the figures:
(i)

G1

The incidence matrix is G1 is

$$
\mathrm{A}(\mathrm{G} 1)=\mathrm{M} 1=\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right]
$$

(ii)

```
G2
```


The incidence of the matrix G2 is

$$
\mathrm{A}(\mathrm{G} 2)=\mathrm{M} 2=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

Let G be a graph and let (G) be its incidence matrix. Now each row in (G) is a vector over $G(2)$ in the vector space of graph G. Let the row vectors be denoted by $A 1, A 2, \ldots, A n$. Then,

$$
\mathrm{A}(\mathrm{G})=\left[\begin{array}{c}
A 1 \\
A 2 \\
\cdot \\
\cdot \\
A n
\end{array}\right]
$$

The sum of these vectors is zero since there are precisely two 1 s in each of the columns of A . (this being a modulo 2 sum of the corresponding entries). As a result, the vectors A1, A2,..., and An are linearly dependent. Consequently, give A a n. Consequently, rank A n 1 [2]
Assume that H is a subgraph of graph G and that $A(H)$ and $A(G)$ are their respective incidence matrices. It is obvious that $A(H)$ is a submatrix of $A(G)$, maybe with permuted rows or columns. We find that each of the $n k$ submatrices of $A(G)$ corresponds to a subgraph of G with k edges, where k is a positive integer, $k \mathrm{~m}$, and n is the number of vertices in G .
Theorem 1. [4] Let (G) be the incidence matrix of a connected graph G with n vertices. A 团 $=(n-1) \times(n-1)$ submatrix of (G) is non-singular if and only if the $n-1$ edges corresponding to the $n-1$ columns of this matrix constitutes a spanning tree in G. The following is another form of incidence matrix.
Definition 4.[2] The matrix $F=[f i j]$ of the graph $G=(V, E)$ with $V=\{v 1, v 2, \ldots, v n\}$ and $E=\{e 1, e 2, \ldots, e m\}$, is the $n \times m$ matrix associated with a chosen orientation of the edges
of G in which for each $e=(v i, v j)$, one of $v i$ or $v j$ is taken as positive end and the other as negative end, and is defined by:

$$
\mathrm{fij}=\left\{\begin{array}{c}
1, \text { if } v 1 \text { is positive end of } e j, \\
-1, \text { if } v 1 \text { is the negative end of } e j, \\
0, \text { if } v 1 \text { is not incident with } e j .
\end{array}\right.
$$

This matrix F can also be obtained from the incidence matrix A by changing either of the two $1 s$ to -1 in each column.
The above arguments amount to arbitrarily orienting the edges of G, and F is then the incidence matrix of the oriented graph.
The matrix F is then the modified definition of the incidence matrix A.
EXAMPLE 3:

Consider the graph G shown in figure with $\mathrm{v}=\{\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3, \mathrm{v} 4\}$ and $\mathrm{E}=\{\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3, \mathrm{e} 4\}$.

SOLUTION:

The incidence matrix is given by:

$$
\begin{aligned}
& \mathrm{A}(\mathrm{G})=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \\
& \mathrm{F}=(\mathrm{fij})=\left[\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & -1 \\
0 & 0 & -1 & -1
\end{array}\right]
\end{aligned}
$$

Let the graph G have medges and let q be the number of different cycles in G.

Definition 5:

The cycle matrix $C=[c i j] \times m$ of G is a $(0,1)-$ matrix of order $q \times m$, with $c i j=1$, if the i th cycle includes j th edge and $c i j=0$, otherwise. The cycle matrix C of a graph G is denoted by (G).
Example 4: Consider the graph G given in figure .

The graph G has 4 different cycles: $\mathrm{X} 1=\{\mathrm{e} 1, \mathrm{e} 2\}, \mathrm{X} 2=\{\mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 5, \mathrm{e} 6\}, \mathrm{x} 3=\{\mathrm{e} 3, \mathrm{e} 4, \mathrm{e} 7\}$ and $\mathrm{x} 4=\{\mathrm{e} 5, \mathrm{e} 6, \mathrm{e} 7\}$. The cycle matrix is:

$$
\mathrm{C}(\mathrm{G})=\left[\begin{array}{llllllll}
0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem 2. If G is a graph without self-loops and has the incidence matrix A and cycle matrix C with the same order of edges for the columns, then every row of C is orthogonal to every row of A, i.e., AC T $=$ CA T $0(\bmod 2)$, where AT and C T are the transposes of A and C, respectively.
We use the following example to demonstrate the aforementioned theorem

Clearly,

$$
\begin{aligned}
\mathrm{A}(\mathrm{G}) & =\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \text { and } \mathrm{C}(\mathrm{G})=\left[\begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \\
\text { A. } C^{T} & =\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 \\
0 & 2 & 0 & 2 \\
0 & 2 & 2 & 2 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& =2\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \equiv(\bmod 2)
\end{aligned}
$$

$$
\text { C. } A^{T}=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]^{T}
$$

$$
=\left[\begin{array}{llllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{llllll}
2 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 2 & 2 & 2 & 0 \\
0 & 2 & 2 & 2 & 2 & 0 \\
0 & 2 & 2 & 2 & 2 & 0
\end{array}\right]
$$

$$
=2\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{equation*}
\equiv 0(\bmod 2) \tag{2}
\end{equation*}
$$

From (1) and (2) drives: A. $C^{T}=$ C $\cdot A^{T} \equiv 0(\bmod 2)$.
Definition 4. [1] Let G be a graph with m edges and p cutsets. The cut-set matrix $Q=[q i j] \times m$ of G is a $(0,1)-$ matrix with $q i j=\{1$, if i th cut - set contrains j th edge, 0 , othewise.

Example 6. Consider the graphs shown in figure

From the procedure, the fundamental cut-sets of the above graph are,
C1: $\{1,2,6\}$
C2: $\{2,3,5,6\}$
$\mathrm{C} 3=\{4,5,6\}$
$[\mathrm{Qij}]=\left[\begin{array}{llllll}1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1\end{array}\right]$

IV. CONCLUSION

The incidence matrix represents the relation of an incidence I of a finite structure $S=(P, B$, . The incidence matrix graph is easily constructed, based only on its definition. Incidence matrices are applied in many scientific fields such as: telecommunications, graph theory, coding theory, computer science, statistics, etc. The matrix A has been defined over a field, Galois field modulo 2 or $\mathrm{GF}(2)$, that is, the set $\{0,1\}$ with operation addition modulo 2 .

REFERENCES

[1] Narsingh Deo, Graph theory with applications to engineering \&computer science, Universitet Central Florida, 2016.
[2] Frank Harary, graphs and matrices, Vol.9, No.1, Jan.,1967, pp.83-90.
[3] Graph theory, https://docplayer.net/24606361-10-graph-matrices-incidence-matrix.html.
[4] L.R Foulds, Graph theory application, New York 1992-puplisher springer,
[5] Veerendra Vikram Awasthi, Mohanpur, West Bengal, 741 252, INDIA.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

