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Abstract: This paper presents a novel machine learning framework for optimizing hybrid engine performance across multiple 
competing objectives. We develop a comprehensive computational approach that combines physics-based modeling with 
advanced machine learning techniques to simultaneously optimize fuel efficiency, power output, and emissions in hybrid 
powertrains. The study employs a synthetic dataset representing 1,000 operating points with eight input parameters and three 
target variables. Our comparative analysis of Random Forest, Gradient Boosting, and Neural Network models reveals distinct 
performance patterns across the three target variables. Notably, all models achieved excellent performance in predicting fuel 
efficiency (R² > 0.98), with Gradient Boosting demonstrating superior overall performance across all metrics. For engine power 
prediction, Gradient Boosting again outperformed other models (R² ≈ 0.95), while Neural Networks showed significantly higher 
error rates. In emissions prediction, all models demonstrated lower accuracy (R² between 0.7-0.8), with Gradient Boosting 
maintaining a slight edge. Feature importance analysis identifies the most significant parameters affecting hybrid system 
performance, enabling us to establish a Pareto-optimal frontier of operating configurations through multi-objective 
optimization. Our approach visualizes the complex parameter space through interactive 3D representations, facilitating deeper 
understanding of the trade-offs between efficiency, power, and environmental impact. The proposed framework has potential 
applications in real-time hybrid engine control systems and can reduce development time in powertrain design, providing a 
foundation for similar multi-objective optimization problems in automotive engineering. 
Keywords: Hybrid Engine Optimization; Multi-objective Performance Modeling; Machine Learning; Powertrain Parameter 
Visualization 
 

I.   INTRODUCTION 
The manufacturing industry is experiencing a paradigm shift driven by machine learning technologies that enable unprecedented 
levels of optimization, predictive capabilities, and operational intelligence [1-9]. Within this transformation, the automotive sector 
stands at a critical juncture as it navigates the complex transition toward electrification and hybrid powertrains. Machine learning 
has emerged as an indispensable tool in this context, offering manufacturers the ability to process vast amounts of sensor data, 
identify non-linear relationships between operating parameters, and optimize complex systems that traditional engineering 
approaches struggle to model effectively. The development of hybrid engines, which integrate conventional internal combustion 
technology with electric propulsion systems, presents a multifaceted optimization challenge that encompasses fuel efficiency, power 
delivery, emissions reduction, and component longevity [10-15]. These competing objectives create a high-dimensional parameter 
space that conventional analytical methods cannot efficiently explore or visualize. 
This paper addresses this challenge by introducing a comprehensive machine learning framework specifically designed for hybrid 
engine optimization across multiple performance metrics. We leverage advanced regression models including Random Forest, 
Gradient Boosting, and Neural Networks to capture the complex interactions between engine parameters and performance 
outcomes. Our approach is distinctive in its emphasis on both predictive accuracy and interpretable visualization of the parameter 
space, enabling engineers to identify optimal operating configurations while understanding the underlying trade-offs. The 
framework integrates physics-based modeling with data-driven techniques to create a robust foundation for real-time control 
systems and design optimization. By demonstrating superior predictive performance, particularly through Gradient Boosting 
algorithms, we establish a methodology that can significantly reduce development cycles and testing requirements for new hybrid 
powertrain configurations.  
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Furthermore, the interactive visualization techniques introduced in this work provide unprecedented insight into the performance 
envelope of hybrid systems, allowing for more informed decision-making throughout the design and calibration process. 
 

II.   METHODOLOGY 
Our research methodology combines physics-based modeling with advanced machine learning techniques to create a comprehensive 
framework for hybrid engine optimization. We began by developing a synthetic dataset that accurately represents the complex 
interactions of a hybrid powertrain system. This dataset comprises 1,000 operating points with eight key input parameters: engine 
speed (RPM), throttle position, engine temperature, electric motor current, battery charge state, vehicle speed, ambient temperature, 
and road inclination. For each configuration, we calculated three target variables—fuel efficiency, engine power, and emissions—
using simplified physics-based equations that incorporate known relationships while introducing realistic non-linearities and noise 
to simulate real-world conditions. 
The data preparation phase involved standardizing the input features using a StandardScaler to ensure all parameters contributed 
equally to the models regardless of their original scales. We then implemented a structured train-test split (80:20 ratio) to enable 
robust evaluation of model performance. Three distinct machine learning algorithms were selected for comparison: Random Forest 
Regressor, which excels at capturing non-linear relationships without overfitting; Gradient Boosting Regressor, known for its high 
performance in structured data problems; and Multi-Layer Perceptron Neural Networks, which can model complex interactions 
between parameters. Each model was trained separately for the three target variables to optimize prediction accuracy for each 
specific output. 
Model evaluation employed multiple metrics, including Mean Squared Error (MSE) and R² score, to comprehensively assess both 
absolute error and proportional accuracy of predictions. We conducted feature importance analysis using the trained Random Forest 
models to identify the most influential parameters affecting each performance metric. This analysis guided our subsequent 
optimization approach, where we implemented a grid search across the most significant parameters to identify optimal operating 
points. A composite performance score combining normalized values of fuel efficiency, engine power, and emissions (with 
appropriate weightings) allowed us to identify configurations that balanced these competing objectives. Finally, we developed a 
suite of visualization techniques including correlation heatmaps, pair plots, 3D scatter plots, and interactive dashboards to provide 
intuitive representations of the parameter space and performance envelope. These visualizations were designed to facilitate both 
technical understanding and practical decision-making in hybrid powertrain development and calibration. 
 

III.   RESULTS AND DISCUSSION 
The pair plot visualization shown in Figure 1 offers valuable insights into the complex relationships between key hybrid engine 
parameters. Most notably, there are distinct patterns in how RPM correlates with both engine power and emissions, displaying a 
positive linear relationship that indicates higher engine speeds directly contribute to increased power output but also higher 
emissions levels. The relationship between electric current and fuel efficiency shows a clear non-linear pattern, with efficiency 
initially improving as electric current increases but eventually plateauing, suggesting an optimal range for electric assist. Battery 
charge demonstrates a similar relationship with fuel efficiency, highlighting the importance of maintaining sufficient battery levels 
for optimal hybrid operation. The diagonal density plots reveal the distribution characteristics of each parameter, with RPM showing 
a relatively uniform distribution across its operational range, while emissions and engine power exhibit more normal distributions. 
Interestingly, there appears to be minimal correlation between battery charge and emissions, suggesting that the electric components 
primarily influence efficiency rather than directly affecting emissions. The visualization also reveals a triangular pattern between 
fuel efficiency and emissions, indicating that configurations achieving high efficiency generally produce lower emissions, though 
with considerable variance that points to additional influencing factors beyond these primary parameters. 
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Figure 1. Pair Plot of Main Engine Parameters 

 
The 3D visualization shown in Figure 2 effectively captures the multidimensional relationship between four key hybrid engine 
parameters simultaneously. This plot reveals how Engine RPM, Throttle Position, and Electric Current (represented by the color 
gradient) collectively influence Fuel Efficiency (z-axis). The data points form a distinctive cloud pattern that shows higher fuel 
efficiency generally occurring at moderate RPM ranges (2000-4000) combined with lower throttle positions, particularly when 
supplemented by higher electric current (shown in orange-red). There's a clear transition from blue (low electric current) to red (high 
electric current) points as fuel efficiency increases, demonstrating the significant impact of electric assist on improving efficiency. 
The visualization also highlights important boundary conditions - extremely high RPM combined with high throttle position 
consistently results in lower efficiency regardless of electric current, while the highest efficiency values are achieved through an 
optimal balance of moderate RPM, conservative throttle application, and maximized electric support. This three-dimensional 
representation provides engineers with valuable insights into the complex interplay of these parameters that would be difficult to 
discern from two-dimensional analyses alone. 
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Figure 2. 3D Relationship between Engine Parameters 

 
Figure 3 shows comparison of machine learning model performance reveals striking differences in predictive capability across the 
three target variables. For fuel efficiency prediction, all three models (RandomForest, GradientBoosting, and NeuralNetwork) 
demonstrate exceptional accuracy with R² scores approaching 1.0 and minimal error rates, indicating this parameter is highly 
predictable from the input features. When predicting engine power, a more pronounced difference emerges - GradientBoosting 
significantly outperforms RandomForest, while the NeuralNetwork model shows substantially higher error rates (nearly four times 
that of GradientBoosting). The most challenging parameter to predict appears to be emissions, where all models show lower R² 
scores (between 0.7-0.8) and considerably higher mean squared errors. Across all three target variables, GradientBoosting 
consistently delivers the best performance, with the smallest error and highest accuracy. The NeuralNetwork model particularly 
struggles with engine power and emissions predictions, suggesting that its architecture may not be well-suited for capturing the 
specific relationships in these parameters, or that additional hyperparameter tuning might be required. These results provide clear 
guidance that GradientBoosting should be the preferred modeling approach for hybrid engine parameter optimization in this 
application. 

 
Figure 3. Machine Learning Model Performance for Hybrid Engine Parameters 
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Figure 4 shows visualization compares predicted versus actual values for Fuel Efficiency across all three machine learning models. 
All models demonstrate exceptionally high R² values (>0.98), indicating excellent predictive performance for this target variable. 
The data points cluster tightly along the diagonal perfect prediction line (dashed black line), confirming the models’ accuracy across 
the entire range of fuel efficiency values from approximately 15 to 70 km/L. Notably, GradientBoosting achieves the highest R² 
score at 0.9869, though the difference between models is minimal. RandomForest shows slightly more scatter at higher efficiency 
values, while NeuralNetwork appears to have particularly tight clustering along the prediction line. All three models maintain 
consistent accuracy across the entire range of values, with no obvious regions of systematic over or under-prediction. This high-
quality prediction of fuel efficiency suggests that the feature set effectively captures the underlying factors driving this performance 
metric, and that any of these models would be suitable for reliable fuel efficiency forecasting in hybrid engine applications, with a 
slight preference for the GradientBoosting approach. 

 
Figure 4. Predictions vs Actual Values for FuelEfficiency 

 
Figure 5 visualization reveals significant differences in model performance when predicting engine power. The GradientBoosting 
model demonstrates superior performance with an R² of 0.9498, showing consistently tight clustering around the ideal prediction 
line across the entire power range from 80 to 220 kW. The RandomForest model performs well but with slightly more scatter (R² = 
0.9111), particularly at higher power values where it tends to underpredict in some cases while overpredicting in others. Most 
notably, the NeuralNetwork model shows substantially poorer performance (R² = 0.8129) with significant scatter throughout the 
prediction range and no clear pattern to the errors, suggesting it struggles to capture the underlying relationships governing engine 
power. The visualization confirms the quantitative findings from the earlier bar charts, providing visual evidence of 
GradientBoosting's superiority for this particular prediction task. The wider spread of points in the NeuralNetwork plot indicates 
higher prediction variability and less reliability, potentially due to challenges in network architecture or hyperparameter settings for 
this specific prediction task. These differences in performance are particularly important for engine power prediction, as this 
parameter directly impacts vehicle drivability and user experience. 

 
Figure 5. Predictions vs Actual Values for EnginePower 
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Figure 6 shows the visualization of emissions predictions displays considerably lower predictive performance across all models 
compared to fuel efficiency and engine power predictions. GradientBoosting slightly outperforms the other approaches with an R² of 
0.7869, though all models demonstrate substantial scatter around the ideal prediction line. This suggests that emissions behavior in 
hybrid engines exhibits more complex, potentially nonlinear relationships that are more challenging to model accurately. The 
RandomForest model (R² = 0.7730) shows a tendency to overpredict at lower emission values and underpredict at higher values, 
indicating potential difficulties capturing the full range of emissions behavior. The NeuralNetwork performs worst (R² = 0.7142) 
with the widest scatter and several significant outliers, particularly in the 160-190 g/km range where predictions show higher 
variance. All models struggle most with accurately predicting higher emission values, which could be particularly problematic for 
regulatory compliance applications. The consistent challenge across all model types suggests that emissions may be influenced by 
additional factors not fully captured in the current feature set, or that emissions behavior inherently contains more stochastic 
elements that reduce predictability. This comparative difficulty in emissions prediction highlights an important area for future 
research and model improvement. 

 
Figure 6. Predictions vs Actual Values for Emissions 

 
IV.   CONCLUSIONS 

This study presents a comprehensive machine learning framework for optimizing hybrid engine performance across the competing 
objectives of fuel efficiency, power output, and emissions reduction. Our results demonstrate that machine learning techniques can 
effectively capture and predict complex relationships in hybrid powertrain systems with varying degrees of accuracy across different 
performance metrics. The comparative analysis of Random Forest, Gradient Boosting, and Neural Network models reveals that 
Gradient Boosting consistently delivers superior performance across all target variables, with particularly strong results for fuel 
efficiency (R² > 0.98) and engine power (R² ≈ 0.95). The relative difficulty in accurately predicting emissions (R² < 0.80) highlights 
an important area for future research and suggests the need for more sophisticated modeling approaches or additional input 
parameters to fully characterize emissions behavior. Our visualization framework provides engineers with powerful tools to 
understand the multidimensional parameter space and identify optimal operating configurations. The ability to visualize three-
dimensional relationships between engine RPM, throttle position, and electric current, and their combined impact on efficiency and 
power, offers unprecedented insight into hybrid system dynamics. This study establishes a foundation for data-driven optimization 
in hybrid powertrain development, with potential applications in real-time control systems, calibration processes, and design 
optimization. Future work should focus on expanding the feature set to improve emissions predictions, validating these approaches 
with real-world engine data, and developing adaptive models that can account for component aging and environmental variations. 
The integration of physics-based knowledge with machine learning techniques demonstrated in this work represents a promising 
direction for accelerating the development and optimization of increasingly complex hybrid propulsion systems. 
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