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Abstract: Breast cancer is a complex disease involving multiple genes and proteins. Identifying key proteins and their 
interactions is crucial for understanding the disease mechanisms and developing targeted therapies. This study employs a 
network-based approach to analyze protein-protein interaction (PPI) data related to breast cancer, utilizing the PageRank 
algorithm and random forest classifier. Breast cancer-related PPI 984data was obtained from the STRING database and 
processed using Python libraries such as pandas and networkx. Topological analysis was performed to identify central proteins 
based on degree, betweenness, closeness, and eigenvector centrality measures. The PageRank algorithm was applied to rank 
proteins by their importance in the network. A random forest classifier was trained using the PageRank scores and known 
cancer relevance labels to predict the cancer relevance of proteins. Additionally, molecular docking simulations were 
conducted using AutoDock Vina to evaluate the binding affinities of PARP inhibitors (Niraparib, Olaparib, Veliparib, and 
Rucaparib) to the PARP1 protein. The docking results were rescored using the DeltaVina RF scoring function, which combines 
the Vina scoring function with a random forest approach. The study identified key proteins involved in breast cancer, with the 
top-ranked proteins being ENSP00000418960, ENSP00000260947, and \ENSP00000278616. The random forest classifier 
achieved perfect accuracy in predicting cancer relevance based on PageRank scores. Molecular docking and rescoring 
revealed Niraparib and Veliparib as the most promising PARP inhibitors. This study demonstrates the utility of combining 
network analysis, machine learning, and molecular docking techniques to identify potential drug targets and evaluate drug 
candidates for breast cancer treatment.  
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I. INTRODUCTION 
The integration of computational algorithms into biological research has enabled the systematic exploration of complex biological 
networks and drug discovery processes. In this study, multiple algorithmic approaches are employed to prioritize key DNA repair 
proteins associated with cancer, evaluate their relevance using machine learning, and predict their druggability through molecular 
docking. The following algorithms are employed in the research. 
 
A. Page Rank Algorithm 
PageRank is a node ranking algorithm used to identify important nodes (e.g., genes or proteins) based on their LTW1vnetwork 
connectivity and influence. Rather than just counting the number of connections a node has (degree),PageRank considers the quality 
of those connections— giving higher importance to nodes connected to other highly ranked nodes. 

The PageRank score ܲ(݅)of a node i is given by:  

ܴܲ(݅) =
1 − ܿ
݊ + ܿ ෍

ܴܲ(݅)
(݆)ܮ

௝∈ெ(௜)

 

Where:  
ܰ =total number of nodes in the network  
  damping factor (typically 0.85), representing the probability of continuing a random walk = ܥ
(݅) =set of nodes linking to node i  
(݆)number of outbound links from node j [1],[2] 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

Volume 13 Issue VI June 2025- Available at www.ijraset.com 
     

 
1241 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

Functions 
1) Identifying key nodes 
PageRank can pinpoint central genes or proteins in gene expression or protein-protein interaction (PPI) networks. 
 
2) Functional Module Detection 
PageRank identifies densely connected sub-networks(modules) that likely participate in shared biological functions and useful in 
discovering mechanisms behind gene regulation, signaling pathways, or disease mechanisms. 
It has been successfully applied to: 
 Prioritize candidate disease genes 
 Identify regulatory modules 
 Analyze signal transduction pathways 
 Detect drug targetsin infectious diseases (e.g., ThyX in tuberculosis)[3],[4],[5],[6] 

 
B. Random Forest Algorithm [RF] 
A supervised learning technique for classification and regression problems .In order to generate forecasts, it builds several decision 
trees and combines their outputs. The RF algorithm gets around the drawbacks of individual decision trees, including low bias, large 
variation, and over-fitting.[7],[8],[9] 

Fig.1:Steps involved in Random Forest Algorithm 
 
C. Deltavina Rf Scoring Function 
The Delta vina along with RF is a new protein-ligand scoring function .It employs a RF approach to parameterize corrections to the 
Auto Dock.The RF (random forest) score is a machine learning-based protein-ligand scoring function This allows it to combine the 
excellent docking power of Vina with the improved scoring accuracy from random forest.The Deltavina and RF scoring function 
developed in this work is important because it can achieve superior performance compared to traditional scoring functions in all 
power tests, including scoring, ranking, docking and screening power tests, for both the CASF-2013 and CASF-2007 benchmarks. 
[10],[11] 
 

II. METHODOLOGY 
The methodology for breast cancer-related target analysis can be given as follows: 
Data collection involved retrieving protein-protein interaction data from the STRING database, focusing on breast cancer-related 
genes in humans. The data was downloaded in TSV format and processed using Python libraries such as pandas and networks. Key 
steps included data cleaning, handling missing values, and exploratory analysis of gene interactions. 
Network analysis was performed using various topological metrics, including degree centrality, betweenness centrality, closeness 
centrality, and eigenvector centrality. These measures helped to identify influential proteins within the network. Visualization 
techniques were employed to represent centrality measures, aiding in the interpretation of results. 
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The PageRank algorithm was applied to the protein-protein interaction network to prioritize potential breast cancer targets. This 
involved creating a graph representation of the network, computing PageRank scores for each protein, and ranking them based on 
their importance within the network. 
Finally, a machine learning approach using Random Forest was implemented to classify proteins as cancer-relevant or not. This 
involved preprocessing the data, combining PageRank scores with known cancer relevance labels, splitting the data into training 
and testing sets, and training the Random Forest model to predict cancer relevance based on network features. 

 
Molecular Docking and Machine Learning Rescoring Workflow by DeltaVina RF scoring approach for PARP1 and PARP 

inhibitors 

Fig.2: PARP1-Centric Protein–Protein Interaction Network Illustrating Its Connectivity with 10 Key Genes involved in breast cancer 
 

The computational workflow for evaluating the binding affinities of PARP1 inhibitors through molecular docking, Random Forest 
(RF) score prediction, and deltaVina rescoring encompasses a structured, multi-stage process. Protein The three-dimensional crystal 
structure of human PARP1 (Poly (ADP-ribose) polymerase 1)(PDB ID:7KK4| pdb_00007kk4) was obtained from the Protein Data 
Bank, representing the catalytic domain essential for inhibitor binding.preparation involved the removal of crystallographic water 
molecules and co-crystallized ligands, the addition of hydrogen atoms, the assignment of partial atomic charges, and energy 
minimization to optimize the structural conformation for docking simulations. A set of clinically approved PARP1 inhibitors, 
including Olaparib, Rucaparib, Niraparib, and Veliparib, were selected for docking based on their therapeutic relevance, and their 
structures were geometry-optimized prior to molecular docking. 
The binding site for docking was defined by identifying the catalytic active site of PARP1, followed by the construction of a grid 
box encompassing the relevant region to restrict docking simulations to the biologically significant domain. Molecular docking was 
subsequently performed using AutoDock or a comparable software package. For each inhibitor, multiple binding poses were 
generated, and initial scoring and ranking were conducted based on the software's internal scoring functions. 
Post-docking analysis involved the extraction of key protein-ligand interaction features from the docked complexes, which were 
utilized as input to a pre-trained Random Forest (RF) regression model to predict binding affinities, producing the RF score for each 
pose. In parallel, deltaVina rescoring was performed by re-evaluating the docking poses to derive alternative binding affinity 
estimates, enabling a comparative assessment against the original docking scores. 
Finally, detailed visualization and interpretation were performed by analyzing the binding conformations of top- ranked inhibitors 
and comparing their autodock,Rf and Deltavina scores. Collectively, this integrated computational approach synergizes molecular 
docking with advanced machine learning-based scoring techniques to facilitate a more reliable and comprehensive evaluation of 
PARP1 inhibitors, thereby strengthening predictive drug discovery pipelines. 
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III. RESULTS AND DISCUSSION 
This section presents the detailed analysis of the network biology-based prioritization of key DNA repair proteins implicated in 
breast cancer. A combination of centrality metrics, machine learning models and molecular docking simulations was employed to 
systematically evaluate the biological importance and druggability of the identified proteins and the results are follows: 

 
A. Node Centrality Scores 
1) Degree Centrality 

Fig 3:Top 10 Proteins by Degree Centrality in the Protein–Protein Interaction Network 
 

2) Visualising Degree Centrality 

Fig.4:Visualisation of top 10 proteins by Degree Centrality in the Protein–Protein Interaction Network 
 
B. Betweenness Centrality 
Betweenness centrality identifies the most important nodes for communication in the network. 

Fig.5:Top 10 Proteins by Betweenness Centrality in the Protein–Protein Interaction Network 
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Visualising Betweenness Centrality 

 
Fig.6:Top 10 Proteins by Betweenness Centrality in the Protein–Protein Interaction Network 

 
C. Closeness Centrality 

Fig.7:Top 10 Proteins by Closeness Centrality in the Protein–Protein Interaction Network 
 
D. Eigenvector Centrality 
Eigenvector centrality takes into account not just the number of connections, but also the quality of those connections. 

Fig.8: Top 10 Proteins by Eigenvector Centrality in the Protein–Protein Interaction Network 
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 PageRank Algorithm Scores 
 

Fig.9: PageRank-Based Prioritization of DNA Repair Proteins and Their Cancer Relevance 
 

 Cancer Relevance Scores by Random Forest Algorithm 

Fig.10: Top Five Genes Identified by PageRank Algorithm with Confirmed Cancer Relevance by Random Forest algorithm 
 
 Accuracy and Classification Report 
 
 

 
Fig.11: Classification Report for Random Forest-Based Cancer Relevance Prediction 

 
The Random Forest model performed perfectly on this small dataset, with an accuracy of 1.0 (100%) and all the classification 
metrics (precision, recall, and F1-score) being 1.0 for both classes. 
 

 Autodock Scores 

Fig.12: Binding Affinity of PARP Inhibitors Predicted by AutoDock Vina 
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 Rf Scores and DeltaVina Scores 

Fig.13: Comparative Scoring of PARP Inhibitors Using AutoDock Vina, RF-Score, and DeltaVina 
 
 Visualisation of Autodock,Rf and Deltavina score: 

Fig.14: Visual Comparison of Binding Scores from AutoDock Vina, RF-Score, and DeltaVina for Four PARP Inhibitors 
 
 Evaluation of Results 

 
Table 1: Evaluation of Molecular Docking and Machine Learning Scoring for PARP1 Inhibitors 

Inhibitor Vina Score RF Score DeltaVina Score Key Observations Conclusion 

Niraparib -6.798 11.719 4.921 Strong ML and good 
docking balance 

Highly promising 
candidate with high 
predicted binding 
affinity 

Olaparib -7.808 10.821 3.013 Best Vina score but 
moderate ML support 

Strong docking binder; 
ML flags potential 
limitations 

Veliparib -7.469 11.949 4.480 Highest RF score, 
strong docking 

Standout candidate with 
excellent ML features 

Rucaparib -5.581 10.494 4.913 Poor docking but good 
ML score 

Chemically promising 
despite weak docking 
pose 
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Among the four PARP1 inhibitors evaluated, Niraparib and Veliparib showed the most promising profiles. Niraparib demonstrated a 
balanced performance with a Vina score of -6.798, a high RF score of 11.719, and the highest deltaVina score of 4.921, indicating 
both favorable binding energy and strong machine learning-based potential. Veliparib achieved the highest RF score (11.949) and a 
strong Vina score (-7.469), supported by a deltaVina score of 4.480, suggesting excellent chemical features and docking 
compatibility.Olaparib recorded the best Vina score (-7.808), indicating strong raw binding affinity. However, its lower RF score 
(10.821) and a significantly reduced deltaVina score (3.013) suggest possible structural limitations, despite its clinical relevance. 
Rucaparib had the weakest Vina score (-5.581) but a respectable RF score (10.494) and a high deltaVina score (4.913).The strong RF 
and deltaVina scores indicate that, despite a poorer docking pose, Rucaparib possesses favorable chemical and structural features 
such as key atom types and interaction patterns that are recognized by the machine learning model. 
In summary, Niraparib and Veliparib appear as the most compelling inhibitors, combining favorable docking energies and machine 
learning-based affinity predictions. Olaparib remains strong due to its clinical validation, while Rucaparib shows potential that may 
not be fully captured by traditional scoring alone. 

 
IV. CONCLUSION 

The research integrated network biology algorithms and molecular docking techniques to identify and evaluate potential drug targets 
for breast cancer. The study applied the PageRank algorithm to a protein-protein interaction network derived from breast cancer-
related genes, identifying top-ranked proteins as potential drug targets. A Random Forest classifier trained on PageRank scores 
achieved 100% accuracy in predicting cancer relevance of proteins. Molecular docking using AutoDock Vina was performed with 
four PARP inhibitors (Niraparib, Olaparib, Veliparib, Rucaparib) on the PARP1 receptor(7KK4 | pdb_00007kk4) revealing 
favorable binding for all ligands, with Olaparib showing the best binding affinity. A Random Forest regression model (RF-Score) 
was applied to rescore the docked ligands, and DeltaVina scores were calculated by combining Vina and RF-Score results. Niraparib 
emerged as the most promising candidate with a high RF-Score and the highest DeltaVina score, while Olaparib showed a lower 
DeltaVina score when compared to traditional docking results.This comprehensive approach combining network analysis, molecular 
docking, and machine learning rescoring provides a robust framework for identifying and evaluating potential drug targets and 
ligands for breast cancer treatment. 

V. FUTURE SCOPE 
The research integrates multiple approaches, identifies novel drug targets using network biology, and combines molecular docking 
with machine learning for improved predictions. This comprehensive approach provides a solid foundation for further investigations 
in breast  cancer drug discovery and personalized treatment strategies. 
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