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Annotation: This article is devoted to the integration of the loaded source Korteweg-de Vries equation in the class of rapidly
decreasing functions. In this work, the Cauchy problem imposed on the Korteweg-de Vries equation was solved using the inverse
problem method of the Sturm-Liouville operator scattering theory. Their Yost solutions are defined and integral Levin images
are obtained for them. The givens of the scattering theory were described and some of their necessary properties were given, the
Gelfand-Levitan-Marchenko integral equation, which is the main integral equation of the inverse problems of the scattering
theory, was derived.
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L. INTRODUCTION
In 1967, K. Gardner, J. Green, M. Kruskal, R. Miura, one of the main equations of modern mathematical physics

u —6uu, +u, =0, u(x,t)|_, =u,(x), xeR

They managed to find the solution of the Cauchy problem to the Korteweg-de Vries equation using the inverse problem of the
scattering theory for the Sturm-Liouville operator. This inverse problem was first introduced by L.D. studied by Faddeev. P. Laks
showed that the method of inverse problems has a universal character and introduced the concept of a high-order KdF equation. In
modern scientific literature, there is a growing interest in nonlinear evolutionary equations with adapted sources. Such evolutionary
equations occupy an important place in plasma physics, hydrodynamics, and solid state physics. In particular, the Korteweg-de
Vries equation with an integral source in the class of rapidly decreasing functions was studied by Leon, Latifilar. Such equations are
used to study the interaction of long and short capillary-gravitational waves. In modern literature, if the value of the solution or its
derivative at a point participates in the coefficients of the equation or on the right side of the equation, such equations are called
loaded equations. The study of such equations is considered important both from the point of view of building the general theory of
differential equations and from the point of view of their application.

1. MAIN PART
Consider the Sturm-Liouville equation

. " 2
LO)y =-y"+u,(X)y =ky, xeR (1)
where potential U, (X) satisfies condition (3). In this subsection, information necessary for further presentation concerning the

direct and inverse scattering problems for equation (1) will be given. Denote by f (X, k) and ( (X, k) the Jost solutions of
equation (1) with asymptotic

F(x,k) =€ 1 0(1), X —> o0, (Imk = 0):

()

g(x,k)=e™ +0(l), x> -0, (Imk =0).
Under condition (3), such solutions exist and are uniquely determined by asymptotic (2).
Solutions f(X, k), g(x, k) satisfy representations
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f(x,k)=e"™ + j K*(x,2)e"dz
" (®)
g(x,k)=e™+ J K~ (x,z)e ™dz,

kernels K™ (X, Z), K~ (X, Z) of which are real functions associated with the potential U, (X) relations:

U, (x) = ¢2i K* (X, X)

dx _ (9)
For real K pairs of functions { f (X, k), f (X, —k)} and {g(x, k), g(x,—k)} are pairs of linearly independent solutions of
equation (1), therefore

F(x,k) =b(k)g(x,k) +a(k)g(x,~k),

10

g(x,K) = —b(=k) f (x,K) + a(k) f (x, k). 4o

Functions r*(k):—M, r‘(k): b(k) are called reflection coefficients (right and left, respectively). The
a(k) a(k)

coefficients a(k), b(k) and ' (k) have the following properties (see [4] p. 121):

1) With real K # 0
a(—k) =a(k), b(-k)=b(k), [a(k)[" =1+|b(k)|"; eh

1 1
a(k) = ﬂw {9(x,k), f(x,k)}, b(k) = EW {F(x.k), g(x,—k)}, "

a(k):1+2(%j, b(k):g(%j, Kk — +oo;
where

W LT (x, k), g(x,k)} = f(x,K)g'(x,k) - T'(x,k)g(x,k);
2) The function a(k) continues analytically into the half-plane ImK >0 and there have a finite number of zero’s

kn = iZn, (Zn > 0)1 n :1,2131---1 N ’ these Zero,s are Simple’ and /ln :_%2

n Is an eigenvalue of the operator

L(O) . In addition, there is a relation
g(x,ix;)=B;f(xix;), i=12,..,N; (13)

3) Forreal K # O function r*(k) is continuous

r (k) =r"(=k),

kz[l—

r (k)| <1, (k) :o(%), k| — oo,

r (k)ﬂ1 =0Q), k|- 0;
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4) Function k(a(k) _l) , Where a(k) is defined by the formula

N ki » In|1l— r*(g?)2
a(k):gt+—:2exp _2i17r_'[0 ( = ‘)dg Imk >0,

is continuous and bounded at IMK >0 and
(ak))"=0(), |k| >0, Imk=>0,
lim ka(k)(r*(k)+1)=0, Imk =0;
5) Functions

R* (x) =$ [ r* (ke ak

for each @ > —o0 satisfy the condition

(1+\x\)‘Ri(J_rx)‘ e '(a,).

The set {r+(k),)(l,)(2,...;(N ,B,,B,,..., BN} is called the scatter data for the L(O) operator. The direct scattering

problem is to determine the scattering data from the potential U, (X) , and the inverse problem is to restore the potential scattering
data U, (X) of equation (1).

The kernel K™ (X, y) in representation (8) is the solution of the Gelfand-Levitan- Marchenco integral equation

KX, y)+F " (x+y)+ I K*'(x,2)F"(z+y)dz=0, (y>X) (14)
where
N © )
Fr(0=Yare ™ +— [ (ke dk. -
=1 27 =,
+ Bj
%= da@)[
dZ z=iy;

and a(z) is the analytic continuation of the function a(k) to the upper half-plane Imk > 0.
Lemma 1. Let the functions y(x, l) and Z(X, ,u) respectively be solutions of
Ly(x,A) = Ay(x,A) , Lz(X, 1) = uz(x, 1).

In that case

%w (Y(6A),2(x, )} = (4 — 1) Y (X, 2)2(x, 1)

equality will be fair.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 10 Issue VII July 2022- Available at www.ijraset.com

The proof of this lemma starts from simple calculations.
The following theorem holds true (see [4], p. 231)

Theorem 1. Specifying the scattering data uniquely determines the potential Uy, (X) .

Consider the following equation

U, +U(Xy, 1) (Uy, —6UU, ) = G(X,1), (16)
where
N 0 2
Gx.t) =7 (U, ~43 & (o) @
For equation (16), we will look for the Lax pair [5] in the form "
—¢m+(u(x,t)—k2)¢:0, (18)

g, =u(X,,t) (U, +4ik®)p +u(x,,t) (2u +4k*)g, + F(x,t).  (19)
Using the identity ¢th = ¢txx , and taking into account equalities (16)-(19), we obtain
—F, +(u(x,t) —k*)F =-G(x,t)¢. (20)
Putting ¢(X,t) =0 (X, K, 1') , we are looking for a solution to equation (20) in the form
F(x,t) =B(X)g(x,k,t) +C(x)g(x,—k,t).
Then to determine B(X) and C(X) we obtain the following system of equations
B'(X)g(x,k,t)+C'(x)g(x,—k,t) =0,
B'(x)g'(x,k,t) + C'(x)g'(x,—k,t) = G(x,t)g(x,k,t)

Solution

BX) = [ 9(s K O3,k DG, 0ds

1 X
C(x)=— | g°(s,k,t)G(s,t)ds.
()= j 9%(s,k,1)G(s,t)
Therefore, using expression (17), equation (19) can be rewritten as follows

w:u(xo,t)(—uX +4ik3)g(X,k,t)+U(X07t)(2u + kz)

o9 (x,k,t) N
OX

N y(t)U(&,ztiLg(X’k’t) j g(s.k,t)g(s,k, (s, t)ds —

CyMueGtgxk.t) |
s j g2(s,k,t)u, (s, t)ds +

LAk | [ 6k DBERD 2 (o (5.0 s~
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CAg(x kit
9( )I (S,k,t)25 —(|(pm(S t)| )d (21)
Passing in equality (21) to the limit X — o0, due to (11), (12) and the asymptotic of the Jost solution, we derive

da(k,t) _ y(®u(x,Dak,t) 7 -
dt 2ik _L9(3’k,t)g(s,k,t)us(s,t)ds+

N V(t)u(lei,li)b(k’t) T 9°(s,k,t)u,(s,t)ds —

4a(k t) ¢

j g(s.k,t)g(s.k t>z¢ —(|¢m(s b )ds -

B ok 038 2 lon(s0f oo 2

db(—k, 1)
dt

N y(t)U(Xlz,itlzb(—k’t) T 9(s,k,1)g (5. K,Du, (s,1)ds +

. y(t)u(&z,itza(—k’t) j g2 (s, k. t)u, (5, t)ds —

= 8ik*B(t)u(x,,t)b(=k,t) +

4b( k 1) %

j g(s.k.1)g(s.k t)Zé —(\q)m(s b s -

e LG Yo (XL @

Now consider the following lemma:
Lemma 2. The following equalities hold

0

J &0l (x0f )7 (x K D=0 o

—00

Ioim%ﬂ@m(xi)r)g(x,k,t)g(x,k,t)dx:0 (25)

Proof: We will prove equation (24), for this we first divide equation (24) into two parts, that is, as follows

j o (w00 ) 0 D = ‘52 < {w(x:0F )% x k.t +
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2 0 2\ o e
+%’“:[O&(\(Pm(x,t)\ )g (x,k,t)dx:%g (X,k,t)‘(pm(x,t)‘ _w_

[ee}

—%m f I(Pm(x,t)I2 29(x,k,t)g'(x,k,t)dx +%m£§|¢m(x,t)|z 92 (x.k,{)dx =

0

_Sn I( (\q)m(x t)| )g (%, k, ) = o (.0 29(x, k, 1) g (%, kt)]dx_

—00

:%I{((p;f\&m_i_(pm jg _Zgg (pm(pm:|dx_

-2 I(gcom (0.0} +0,0W {0,0,} ) dx.

Where we generate the following expression using Lemma 1

52 _].;(Q(Dm {9, (Dm}+(pmgW{g (Pm})d
:%mz L(c?x 9 (Pm}] (9.0} + - 1/1 (diw{g qom}jw{g,gm}}dxz

X=+00

X=—00

:ﬁ%;’x{ (9.0, W {g,%}}dx=ﬁw{g,im}W{g,wm}

Equation (25) is proved similarly.

Multiplying (23) by a(k,t) and subtracting from it equality (22) multiplied by b(—k t) according to (15), we obtain
dr(k, u(x
% = 8ik3u(x,, t)r* (k, t) — };(Li)az((;tt))f g%(s, k, t)u(s, t)ds.

Let's calculate the integral on the right side of the previous equality. To do this, we use formula (11), and we have

[ 93(s.k,0u, (5,00 = (s, k,Dus.bf " -

—2T (9"(s k,t) +k*g(s,k, 1)) g'(s, k,t)ds =

= —ZJ' 9'(s,k,t)g”"(s,k,t)ds — 2k? I g(s,k,t)g’(s,k,t)ds =

0

=—[(g%s.kt)) ds—kZT(gZ(s,k,t))' ds =

—00

=—g"”(s,k,)[_ —K*g’(s.k,0) =ka’(k,t)e ™ + 2k’a(k,t)b(-k,t) +
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+k2b? (—k, 1)e?™ — k220 _k2a2(k,t)e 2 + 2k2a(k, t)b(—k,t) -
kb2 (—k, 1)e?* + k22 = 4k?a(k,t)b(—k,t).

According to this and equality (22), we have

da(k,t
kb _o
dt
Therefore, we deduce that
d2;(t) _ o5
dt
dr(k,t
;t ) = (8ik°u(x,,t) - 2iky (tu(x,t) )r (k.1). 27)
Now let's move on to finding the evolution of normalization numbers Bn, n =1, 2, ey N corresponding to the eigenvalues
ﬂ.n, n= 1, 2 3 N To do this, we rewrite equality (21) in the following form

w- (Xo,t)( UX+4ik3)g+U(X0’t)(2u(X,t)+4k2)%+

+V(t)U(X1’2tiLg(X’k’t)[g(x,k,t)mu(xi)_

—'X[ u(s,t)(g’(s,k,t)g(s,k,t) + g(s,k,t)ﬁl(x,k,t)jds} -

_V(I)U(Xl,ztilm g°(x,k,u(x,t) - j 29’(5’k,t)g(S,k,t)u(s,t)ds}+
49(x,k,t) X_ Y 3 2
| Q(S,k,t)g(S,k,t)ng&(‘(pm(x,t)‘ Jds -

A0k | [ 96k D% 8 2 {0 os-

= u(x,)(-u, +4ik3)g(x,k,t) U, D)(2u +4k2)w_

~7 (U0 DG 0k, 1) =k (U0, DG (% k1) =20 (5 K DE, [ (1) ds.

Using equality (13), setting k= kn, taking into account the asymptotics of the Jost solution at X —» +00 and equating the

coefficients at e_Z”X we find an analogue of the Gardner-Green-Kruskal-Miura equations

dBdt(t) (8Z”U(X0’t)+21n7(t)u( t)_zinph(t))Bn(t),n:1,2,3,...,N (28)
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Thus, the following theorem has been proved.

Theorem 2. If function U(X,t), o8 (x,t), m=1L N, xeR, t>0 isasolution to problem (1)-(5), then scattering data

{r* (k,t), 4, (t), B, (t), n =1,_N} of operator L(t) with potential U(X,1) satisfy differential equations (26), (27) and

(28).
Remark 1. Consider the kernel of the Gelfand-Levitan-Marchenko integral equation

N o 1°° )
F*(x,t)= T+ — | rr(k,t)e™dk
(x,) ;a,o Zx_jw (k,t)

with scattering data from Theorem 2. Then the data {r* (k,t), x (), ..., xy (1), B(1),..., B, (t)} satisfies conditions A-E.

Therefore, according to Theorem 1, the potential U(X, t) in the operator L(t) is uniquely determined.

Remark 2. The obtained relations (26)-(28) completely determine the evolution of the scattering data for the operator L(t) and
thus make it possible to apply the method of the inverse scattering problem to solve problem (1)-(5). Let function

U, (X) (1+ |X|) € Ll(R) be given. Then the solution of problem (1)-(5) is found using the following algorithm. We solve the
direct scattering problem with the initial function U0 (X) and obtain scattering data {r*(k),;(n, Bn,n =1,_N} for the
operator L(O).

« Using theorem 2, we find the scattering data for >0 {r* (k,t), x,(),B,(t),n= ].,_N} Using the method based on

the Gelfand-Levitan-Marchenco integral equation, we solve the inverse scattering problem, i.e. find U(X, t) from the scattering

data for t > Oobtained in the previous step. After that, it is easy to find the solution @ (X,t) of equation

L{t)p, (X, t) =—¢ (X,1) +u(X,t)o, (X,t) =1 @, (X,t), m=12,..,N

Let us give an example illustrating the stated algorithm.
Consider the following problem:

u +u, —6uu +ytudn2,t)u, = 4§1§\¢1\2
X
(% 1) +u(x,)e, (x,t) = A(t)p,(x,1)

u(x’o):_ch%’ Xe R, (30)

(29)

there are
T 2 1 ~10t
o0l dx= A ) =5e™,
42e"™ + 9™ +16
y(t) = 6402 gn =1

It is not difficult to find the scattering data of the operator L(O) :

2(0)=-1, r*(k,0)=0, B,(0)=1.
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By virtue of Theorem 2, we have
A= 2(0) ==L, r*(k,t) =0, B,(t) =", Al(t):%e‘“(‘),
where
t t t
u(t) =8[dr +2[y(r)u(in2,7)dr - 2[ A (t)dt.
0 0 0

Substituting these data in formula (15), we find the kernel

N o 1 © .
F'()=) ae ¥ +— | r'(k)e™dk
() Z , 2n£ (k)

F (x,t) =20

Next, solving the integral equation Gelfand-Levitan-Marchenco
u(t) | a=(x+y) u(t) o=y “SHe —
K, (X, y,t) +2e*" -e +2e"" -e JK+(x,s,t)e ds=0,
X

u(t) = (x+y)
K, (xyt)=—22_¢

1+ e*Wg=2x

Where do we find the solution of the Cauchy problem:

efx + Se—3x+10t

_— X,t) =
ch?(x—5t) A 1+ g 2ot

u(x,t) = —2i K, (X, x,t)=—
dx

1. CONCLUSION
This article is devoted to the integration of the Korteweg-de Vries equation with an adapted source load in the class of rapidly
decreasing functions. This article provides the necessary information on the exact and inverse problems of the scattering theory for
the Sturm-Liouville operator, which are necessary for the following statements. First, the Yost solutions of the Sturum-Liouville
operator on the entire axis are defined and integral images are obtained for them, the givens of the scattering theory are described
and some of their necessary properties are given, the Gelfand-Levitan equation, which is the main integral equation of the inverse
problems of the scattering theory, The Marchenco integral equation was derived. The problem of finding the solution of the Cauchy
problem in the class of rapidly decreasing functions, which is applied to the Korteweg-de Vries equation with an adapted source
load, is studied. In this case, the method of inverse problems of the scattering theory was used to determine the solution of the
Cauchy problem imposed on the Korteweg-de Vries equation with an adapted source load in the class of rapidly decreasing

functions. Equations for { > 0 calculating the evolution of the Sturm-Liouville operator given by the scattering theory have been
derived. The algorithm of applying the method of inverse problems of scattering theory is given. An example is shown in order to
show the correctness of the obtained results.
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