
 

13 V May 2025

https://doi.org/10.22214/ijraset.2025.70746



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2291 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

Intelligent Resume Parsing and Job 

Recommendation via Web-Based CV Analysis 

System 
 

Kaustav Sanyal
1
, Kinkini Gupta

2
, Susmita Kuiry

3
, Puspa Mahato

4
, Bristi Dutta

5
 

Department of BCA, Bengal Institute of Science and Technology 

 

Abstract: The process of matching job applicants to suitable job openings is typically inefficient due to unorganized resume 

formats and absence of customized job search facilities. This paper presents a light-weight web-based system that automatically 

extracts structured information from PDF resumes and recommends suitable job openings based on publicly available job 

search APIs. The system is based on natural language processing-based data extraction, stores the extracted information in a 

CSV database, and builds context-sensitive job queries. A basic web interface built on top of Flask supports PDF uploads and 

displays results in real-time. Our prototype is efficient for small to medium-sized datasets and recommends future work on 

incorporating intelligent ranking and resume optimization. 

Keywords: Resume Parsing, Job Recommendation System, Natural Language Processing, Web based Systems, Job Search API 

 

I. INTRODUCTION 

Both employers and applicants face an enormous quantity of difficulties in the current employment settings. Applicants might 

submit resumes that are too general or irrelevant to specific positions, and employers have to sift through a substantial amount of 

resumes to determine which applicants possess the skills and experience to fill vacancies [1]. Sorting out which resumes are suited 

to suitable vacancies can take a long period and is susceptible to human error if resume formats are unorganized, inconsistent, or 

hard to read. These inefficiencies are compounded by the reality that applicants tend to use diverse structures or schematics in 

creating, making it hard for applicant tracking systems to accurately read the critical information [2].  

Traditional job portals and ATS platforms often rely on keyword-based searches and predefined templates that lack flexibility, 

which can miss qualified candidates due to a mismatch between the keywords used in resumes and the system's search algorithms. 

Furthermore, these systems often prioritize resume templates over content relevance, making it harder for unconventional but 

qualified candidates to get noticed [3]. The need for a more efficient, flexible, and intelligent system is evident—one that can handle 

varied resume formats, extract relevant details automatically, and provide personalized job recommendations. 

This paper introduces a lightweight, open-source, web-based system designed to automate resume parsing and job matching. By 

employing natural language processing (NLP) techniques, the system extracts essential information from resumes in PDF format, 

such as the candidate's experience, education, and skill set [4]. The extracted data is then used to generate intelligent job search 

queries that are passed to a job search engine, such as SerpAPI, to retrieve relevant job listings. Unlike traditional resume screening 

tools that focus mainly on keyword matches, this system aims to create a more dynamic, context-aware job recommendation system 

that takes into account not just keywords but the overall profile and aspirations of the job seeker [5]. 

 

II. SYSTEM ARCHITECTURE 

The architecture of the proposed web-based system follows a modular and lightweight design, ensuring easy scalability and 

extendability. The system consists of several key components that work in unison to parse resumes, store structured data, and 

recommend job opportunities. Each component is designed to handle specific tasks, while also ensuring a seamless and efficient 

workflow from resume submission to job recommendation. 

The system can be broken down into the following major modules: 

1) Frontend Interface 

The frontend interface is built using HTML, CSS, and Bootstrap for responsive design. It allows users to easily upload their PDF 

resumes and view job recommendations in real-time. The interface is intuitive, with a simple form where users can upload their 

CVs, followed by a display area where job listings are shown. It provides an easy-to-use and interactive user experience, ensuring 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2292 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

that even non-technical users can benefit from the system. Bootstrap is used to make the design mobile-responsive, ensuring the 

system is accessible on various devices such as smartphones, tablets, and desktop computers [6] 

. 

2) Resume Parsing Engine 

At the core of the system is the Resume Parsing Engine, which extracts structured data from resumes in PDF format [7]. We 

use pdfplumber, a Python library, to extract raw text from the uploaded PDF. This data is pre-processed to handle inconsistencies 

such as varying font sizes, multiple column layouts, and other formatting issues. The system then applies regular expressions 

(regex) to identify sections such as “Experience,” “Education,” and “Skills.” Each identified section is classified and stored into 

specific categories. To increase accuracy, advanced techniques like Named Entity Recognition (NER) and context-based parsing 

could be applied in future versions. This engine will handle resumes with diverse formats, making it adaptable to various user 

inputs. Once the resume is parsed, the extracted data (such as job titles, companies, time periods, and education degrees) is stored in 

a structured format for later use. 

 

3) CSV Storage System 

The CSV Storage component stores all the parsed data in a centralized CSV database [8]. This database contains rows for each 

resume, with columns representing the extracted fields such as Name, Experience, Education, and Skills. Each new parsed resume is 

appended to the existing dataset, ensuring that the CSV file continues to grow and reflect the increasing number of resumes 

processed by the system. The CSV format allows easy access and manipulation of the data, which can be utilized for querying, 

further analysis, or exporting. 

Future implementations could involve transitioning to more advanced data storage systems like relational databases (MySQL, 

PostgreSQL) or NoSQL databases (MongoDB) to handle a larger volume of data more efficiently. 

 

4) Query Generator 

The Query Generator is responsible for transforming the parsed resume data into meaningful job search queries [9]. The generator 

uses information from the Experience and Skills sections of the resume to create contextually relevant search queries. For example, 

if the resume includes the experience of working as a "Software Engineer" with "Python" as a skill, the query might be something 

like "Software Engineer Python Hyderabad". 

This module ensures that the job search queries are tailored to the individual, providing a personalized and accurate search that 

reflects their qualifications [10]. By analyzing multiple resume fields (such as previous job titles, key skills, and education 

background), the query generator improves the relevance of job search results. This approach avoids generic keyword-based 

searches, which may not fully capture the user's experience. 

 

5) Job Search Engine (SerpAPI Integration) 

The Job Search Engine interfaces with the SerpAPI, a third-party job search API that retrieves job listings from Google Jobs. By 

passing the generated query to the SerpAPI, the system is able to obtain job listings related to the candidate's skills and experience. 

The API provides relevant job posts, including job titles, company names, job descriptions, and application links. 

The integration of SerpAPI enables real-time job retrieval, ensuring that job seekers receive up-to-date and accurate listings [11]. 

This module also incorporates filtering mechanisms to narrow down search results based on location, job type (full-time, part-time, 

remote), and industry. 

 

6) Job Display and Results Rendering 

Once the job search results are retrieved from the job search engine, they are displayed to the user on the frontend. The Display 

Module is responsible for presenting the results in an organized and user-friendly format. Each job listing is shown with key details 

such as job title, company, job description, and a link to apply. The system also includes sorting and filtering options that allow 

users to refine the results based on location, company type, and other factors [12]. 

Additionally, the results can be enriched with details such as the candidate’s skill set and past job titles to give users more context 

about the match between their profile and the job. Future versions of the system may allow users to save job listings or directly 

apply via the website, enhancing the user experience. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2293 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

7) Backend Server and Flask Framework 

The Backend Server is built using Flask, a lightweight Python web framework. Flask handles routing, forms, and the integration 

between the frontend and backend components. It receives uploaded PDF resumes from users, processes them through the parsing 

engine, and stores the extracted data in the CSV database. Flask also handles user interactions by querying the job search API and 

returning the search results to the frontend. 

The flexibility of Flask ensures that the system can be easily deployed on various web servers, and its integration with other 

components is seamless. It also enables easy expansion of the system by adding features like user authentication, job application 

tracking, or integration with other external APIs. 

 

8) Security and Data Privacy 

Although this system is designed to handle anonymized data, ensuring data privacy is of paramount importance. All uploaded 

resumes are temporarily stored in a server directory and processed locally. The parsed data, including personal details, is saved in 

CSV format, but sensitive personal information such as addresses, phone numbers, or email IDs is masked or excluded unless 

explicitly required by the user. 

To ensure data protection, all user interactions with the system are conducted via secure HTTPS connections. Additionally, the 

system provides basic safeguards to prevent unauthorized access to uploaded resumes and job search results. 

 

TABLE I 

SYSTEM ARCHITECTURE OVERVIEW 

Component Technology 

Frontend 

Framework 

HTML, Bootstrap 

Backend Server Flask 

Text Extraction pdfplumber 

Data Storage pandas, CSV 

Job Search API SerpAPI 

Component Function 

Frontend Interface Allows users to upload CVs and view job recommendations via a web 

interface. 

Resume Parsing 

Engine 

Extracts structured data from PDF resumes using text extraction and 

regex techniques. 

CSV Storage 

System 

Stores parsed data from resumes in a CSV format for future retrieval 

and querying. 

Query Generator Creates job search queries based on parsed data (Experience, Skills). 

Job Search Engine Retrieves relevant job listings via the SerpAPI job search API. 

Job Display 

Module 

Displays job recommendations in a user-friendly manner with options 

for filtering results. 

Backend Server 

(Flask) 

Manages all backend processing, including resume upload, parsing, 

data storage, and job query execution. 

Security and 

Privacy 

Implements security measures to protect user data and uploaded 

resumes. 

 

III. METHODOLOGY 

The methodology for this paper involves a series of steps designed to automate the parsing of resumes, store the parsed data 

efficiently, and generate relevant job search queries. These steps are structured to ensure the system's reliability and accuracy in 

providing job recommendations. Below, we outline each of the key processes in the workflow, from the initial resume upload to job 

retrieval. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2294 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

A. PDF Parsing 

The parsing process begins with the PDF file extraction. Since resumes are often provided as PDF files, extracting readable content 

from these documents is a critical first step. The system employs pdfplumber, a Python library that allows for the extraction of text 

from PDF files. After extracting the text, the system preprocesses the content to normalize it for further processing. This 

preprocessing includes tasks like: 

 Removing non-text elements (such as tables, images, and special formatting). 

 Cleaning up extra spaces and broken sentences. 

 Normalizing the text, such as standardizing the representation of dates or location names. 

Once the raw text is cleaned, the next step is to detect resume sections. We use regular expressions (regex) to identify headings like 

“Experience,” “Education,” and “Skills.” This allows the system to categorize the text into structured fields, which are then parsed 

and stored separately. The parsing engine also identifies keywords and job titles, which are mapped to predefined categories to 

help in generating relevant job queries. 

 

B. Data Storage 

After parsing the resume, the structured data is stored in a CSV file for future use. The system appends each resume's data to a 

growing CSV database that contains the following fields: 

 Name (optional) 

 Experience (roles, companies, dates) 

 Education (degrees, institutions, CGPA) 

 Skills (programming languages, tools, soft skills) 

The CSV format is chosen for its simplicity and easy integration with future data processing tasks. The CSV file is periodically 

updated to ensure all parsed resumes are stored in an organized manner. This system allows for quick access to a dataset of resumes 

for generating queries and retrieving job matches. For larger datasets, we plan to migrate to relational databases or NoSQL 

solutions. 

 

C. Query Generation 

The Query Generator is responsible for converting the extracted resume data into contextually relevant job search queries. Using 

data from the Experience and Skills sections, the system formulates search strings that are then used to retrieve job listings from 

external sources. For example: 

 Experience: The system extracts details such as job titles and durations (e.g., “Software Developer” from 2018–2022). 

 Skills: Relevant skills such as Python, Java, or data analysis are extracted from the Skills section. 

The system combines these two data points to generate queries that reflect the candidate's profile. For example, if the resume 

contains “Software Developer” as the job title and “Python” as a skill, the generated query might be: 

"Software Developer Python Bangalore". 

The query is designed to be broad enough to capture all relevant job opportunities but also precise enough to filter out irrelevant 

results. The Query Generator uses a list of predefined search terms and intelligently combines them based on the resume content. 

 

D. Job Retrieval 

Once the job search query is generated, the system interfaces with SerpAPI, a third-party service that aggregates job listings from 

Google Jobs. The system sends the generated query to SerpAPI, which then returns a set of relevant job listings. The results are 

filtered based on parameters such as: 

 Location: To ensure that the jobs are relevant to the user's geographic location. 

 Job type: Full-time, part-time, remote, etc. 

 Industry: Tailoring the job search to specific industries (e.g., IT, marketing, etc.). 

The job listings retrieved from SerpAPI are displayed to the user in an organized format, including the job title, company name, 

location, and a link to apply for the job. The results are updated in real-time, ensuring that job seekers always have access to the 

most current opportunities. 

 

 

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2295 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

E. Web Interface 

The web interface provides users with an interactive platform to upload their CVs and receive job recommendations in real-time. 

Built using Flask, the interface is simple and user-friendly. Users can upload their resumes in PDF format, and the system handles 

the parsing and job search process automatically. 

The interface also includes functionality to display the results of the job search, showing job titles, companies, and application links. 

Additionally, the system is designed to allow users to download their parsed resume data, offering a way to track progress and view 

previously retrieved job matches. 

 

TABLE II 

SAMPLE DATA FIELDS EXTRACTED FROM RESUMES 

Field Description 

Name Candidate's full name (optional). 

Experience Detailed work history (job titles, companies, years). 

Education Academic qualifications (degree, institution, year). 

Skills Relevant technical and soft skills (e.g., programming). 

Location Geographic location (optional). 

 

IV. IMPLEMENTATION 

The implementation of the system was carried out with the goal of developing a lightweight, efficient, and user-friendly web 

application that automates the process of resume parsing and job recommendation. Below, we detail the core aspects of the system’s 

implementation, focusing on the technical stack, each module, and their integration to ensure a seamless user experience. 

 

A. Technology Stack 

The system was developed using a combination of technologies to ensure both robustness and scalability. The key components of 

the stack include: 

 Backend Framework: Flask, a lightweight Python web framework, was chosen for its simplicity and flexibility in handling 

HTTP requests and rendering dynamic content. Flask allows rapid prototyping and is well-suited for small to medium-scale 

applications like ours. 

 Text Parsing Library: pdfplumber was used for text extraction from PDFs. This library allows us to extract the textual content 

from PDF files, even those with complex layouts, by detecting and cleaning up text blocks. 

 Job Search API: SerpAPI was chosen for its ability to scrape job listings from various sources, primarily Google Jobs. SerpAPI 

provides an easy-to-use API interface, which simplifies the process of integrating job search capabilities into the system. 

 Data Storage: For data persistence, we use CSV files to store parsed resume information. While CSV files are simple and easily 

readable, this can later be transitioned to a database for handling larger datasets. 

 Frontend Interface: The web interface was built using HTML, CSS, and Bootstrap for styling. This ensures that the user 

interface is responsive and works well on both desktop and mobile devices. The frontend allows users to upload their resumes 

and view the generated job recommendations. 

 Job Matching Algorithm: The system uses a simple query generation algorithm that extracts relevant keywords (e.g., job title, 

skills, location) from the resume and then performs job searches using these terms. 

 

B. Flask Web Application 

The core of the application is a Flask-based web server that manages user interactions. When users upload their resume PDFs 

through the frontend, the following sequence of actions occurs: 

 Resume Upload: The user selects a PDF file from their local device. The file is uploaded to the server through a form built 

with HTML. Flask handles the file upload and stores it in the server’s uploads directory. 

 Text Extraction: The uploaded resume file is passed to the pdfplumber module, which extracts the text from the PDF. Once the 

text is extracted, it is cleaned and processed to detect the resume sections, such as Experience, Education, and Skills. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2296 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

 Data Parsing: The extracted text is then parsed using regular expressions (regex) to identify and categorize key information. For 

instance, job titles, companies, education institutions, and skills are extracted from the raw text. 

 CSV Storage: The parsed information is stored in a CSV file (cv_data.csv). This file is updated each time a new resume is 

uploaded and parsed. The CSV acts as a database that is periodically updated with new data. 

 Job Query Generation: The system uses the extracted information to generate a job search query. 

The Experienceand Skills sections of the resume are used to form a search string that captures the essence of the user’s 

qualifications. For example, if a user has “Software Developer” in their experience section and “Python” in their skills, the 

query might be “Software Developer Python Mumbai”. 

 Job Search: The query is then sent to SerpAPI, which performs a job search on Google Jobs. The API returns a list of job 

openings that match the query, which are then displayed to the user on the web interface. 

 Display Results: The results returned by SerpAPI are displayed in a user-friendly format. The display shows the job title, 

company name, location, and a link to the job listing. The user can then click on the link to apply directly. 

 

C. Handling Resume Uploads 

For the system to handle multiple resume uploads efficiently, the Flask app ensures that each uploaded file is stored in a directory 

called “uploads”. Once the file is uploaded, the following actions are triggered: 

 File Storage: The uploaded file is saved to the server. The Flask backend uses request.files to save the file to a directory on the 

server. 

 File Validation: The file is validated to ensure that it is indeed a PDF. The application checks the file extension, and if it is not a 

valid PDF, the user is notified. 

 Error Handling: If an error occurs during the upload process, a user-friendly error message is shown to guide the user in 

resolving the issue. The system also includes logging to track any issues related to file uploads or parsing. 

 

D. CSV Database Management 

The system maintains a CSV file (cv_data.csv) that acts as a lightweight database to store the parsed resume data. Each time a 

resume is uploaded and parsed, the information is appended to this file. The following fields are stored in the CSV: 

 Name (optional) 

 Experience (job titles, companies, dates) 

 Education (degrees, institutions, CGPA) 

 Skills (programming languages, tools, soft skills) 

 Location (optional) 

In this prototype, CSV files are used for simplicity. However, for larger datasets, it is recommended to move to a more scalable 

solution like SQLite or MongoDB, which can handle larger volumes of data more efficiently. 

 

E. Job Search Query Generator 

Once the resume data is parsed, the query generator extracts the relevant details to create a job search query. This query is then used 

to fetch job listings from SerpAPI. The key steps for query generation are: 

 Extract Keywords: The system identifies keywords from the Experience and Skills sections of the resume. 

 Formulate Search Strings: The system combines the extracted keywords into search-friendly queries. For example, the system 

can generate a query like "Software Developer Python Bangalore" based on the extracted experience and skills. 

 Generate Location Filter: The system also considers the location information from the resume, if available, and adds it to the 

query string to filter jobs based on geographical relevance. 

 Job Retrieval: The query is sent to SerpAPI, which returns a list of relevant job openings. 

 

F. Job Matching and Display 

The retrieved job listings are presented to the user through a dynamic HTML page rendered by Flask. Each listing shows the job 

title, company, location, and a link to apply for the job. The user interface is designed to be simple and clean, allowing the user to 

view the job details quickly. 

 Pagination: For job search results that span multiple pages, the system includes pagination to navigate through the results. 

 Dynamic Content: The page content updates automatically based on the job listings fetched by the query generator. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2297 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

G. Web Interface 

The web interface is the front-facing aspect of the system. It allows users to upload their resumes and view the job 

recommendations. The interface is built using HTML, CSS, and Bootstrap to ensure responsiveness across devices. 

 File Upload Form: The form allows users to upload a PDF resume, triggering the parsing and job search functions. 

 Job Listing Display: Once the job search results are retrieved, they are displayed on the webpage along with essential job 

information such as title, company, and location. 

The Flask application serves as the middle layer, handling both the backend processing and the frontend rendering of results. 

 

TABLE III 

SAMPLE JOB SEARCH QUERY RESULTS 

Job Title Company Name Location Job URL 

Software Developer XYZ Solutions Bangalore Apply here 

Data Analyst ABC Corp Hyderabad Apply here 

Project Manager PQR Inc. Mumbai Apply here 

Business Analyst LMN Group Pune Apply here 

 

TABLE IV 

EXAMPLE OF THE DATA FLOW IN THE WEB APPLICATION 

Step Action 

1. Resume Upload User uploads a PDF resume via the Flask web form. 

2. Text Extraction pdfplumber extracts text from the uploaded PDF file. 

3. Data Parsing Regex identifies key sections (experience, education). 

4. Data Storage Parsed data is appended to a CSV file. 

5. Query Generation System generates a job search query based on the resume. 

6. Job Search SerpAPI performs a Google Jobs search using the query. 

7. Display Results Job listings are shown on the web interface. 

 

V. RESULT AND DISCUSSION 

To assess the performance of our resume parsing and job recommendation system, we conducted a formal evaluation using a real-

world dataset comprising 100 anonymized resumes sourced from Kaggle’s public resume datasets and simulated PDF files. The 

following metrics were used to evaluate the performance of the system across three key modules: Resume Parsing Accuracy, Query 

Generation Relevance, and Job Match Precision. 

We utilized 100 resumes in PDF format, representing candidates from software engineering, project management, data science, and 

business analysis domains. These CVs varied in structure, length, formatting, and content. 

 

A. Evaluation Metrics 

The performance was measured using the following quantitative metrics: 

 Parsing Accuracy: Percentage of correctly extracted entities (Experience, Education, Skills) compared to a manually annotated 

ground truth. 

 Query Relevance Score: A 5-point Likert-scale manual rating by three reviewers assessing how well the generated job query 

reflects the candidate’s actual profile. 

 Job Match Precision@5: The proportion of top 5 retrieved job listings relevant to the resume's extracted skills and experience. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2298 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

TABLE V 

EVALUATION METRICS WITH 100 RESUMES 

Metric Average Score Standard Deviation 

Resume Parsing Accuracy 88.3% ±4.5% 

Query Relevance (1–5 scale) 4.2 ±0.6 

Job Match Precision@5 72% ±8.1% 

Average Response Time (seconds) 7.8 ±1.2 

 

Figure 1: Histogram showing the distribution of parsing accuracy scores across the 100 resumes. 

 

Figure 2: Average query relevance rating per job role, with error bars indicating standard deviation. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2299 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

 
Figure 3: Job Match Precision vs Years of Experience 

 

These visualizations further support the quantitative findings. The confusion matrix demonstrates the system's strong ability to 

correctly classify extracted segments, with minimal confusion between skills and experience sections. 

The system effectively parses and processes resumes to generate contextual job search results. It is especially suitable for small 

organizations or individual use. Limitations include: 

 Dependence on structured section headers 

 Lack of ranking mechanism for job matches 

 Reliance on third-party APIs (e.g., SerpAPI) 

TABLE VI 

LIMITATIONS AND POSSIBLE ENHANCEMENTS 

Limitation Proposed Enhancement 

No ML-based ranking Add learning-to-rank model 

Dependency on SerpAPI Add alternative search engine APIs 

Inability to handle image CVs Integrate OCR module 

 

Future enhancements may include OCR support for scanned CVs, a skill gap analysis module, and ML-based job ranking. Adding a 

feedback loop to improve query generation based on job click-through rates can further personalize results. 

 

VI. CONCLUSION 

This paper presented a lightweight, modular system for intelligent resume parsing and job recommendation using a web-based 

interface. The system effectively bridges the gap between unstructured resume formats and structured job search by extracting key 

candidate information such as experience, skills, and education, then using that information to formulate relevant job search queries. 

Our approach prioritizes simplicity and transparency while ensuring the system remains functional across various CV formats and 

job roles.  



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 

                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 

     

 
2300 © IJRASET: All Rights are Reserved |  SJ Impact Factor 7.538 |  ISRA Journal Impact Factor 7.894 |  

 

Through the integration of pdfplumber for text extraction, pandas for CSV-based storage, and SerpAPI for dynamic job retrieval, we 

have demonstrated the potential for a real-time, interactive job recommendation engine that is cost-effective and easy to deploy. 

Evaluation metrics including parsing accuracy, query relevance, and job match precision reveal that the system performs reliably 

across diverse resumes, making it a promising tool for individuals, career counselors, and small HR departments. 

Looking forward, there are several directions for enhancing the system's functionality and scalability. Integrating a learning-to-rank 

model or a recommendation engine based on user feedback would significantly improve the relevance of suggested job listings. 

Additionally, supporting image-based resumes through OCR integration would allow the system to process a wider range of CV 

formats. Transitioning from CSV to a robust database such as PostgreSQL or MongoDB would improve performance with larger 

datasets and support user accounts for personalized dashboards. Another promising area is the implementation of a feedback loop 

where user interactions with job results (clicks, applications) are used to retrain the query generation module. Lastly, enabling 

resume optimization suggestions based on market trends and job descriptions could add further value, turning the platform into not 

just a search tool, but a comprehensive career enhancement assistant. These future improvements will further solidify the system’s 

applicability in real-world job-matching scenarios. 

 

REFERENCES 
[1] Professor, V.V., Sushma, V., U.Deepak, Sai, P., & T.Mallikarjuna (2023). Improved Resume Parsing based on Contextual Meaning Extraction using 

BERT. 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), 1702-1708. 

[2] Mohanty, S., Behera, A., Mishra, S., Alkhayyat, A., Gupta, D., & Sharma, V. (2023). Resumate: A Prototype to Enhance Recruitment Process with NLP based 

Resume Parsing. 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), 1-6. 

[3] Liang, H. (2023). A study on the application of named entity recognition in resume parsing. Conference on Intelligent Computing and Human-Computer 

Interaction. 

[4] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP Natural Language Processing 

Toolkit. Annual Meeting of the Association for Computational Linguistics. 

[5] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2021). Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural 

Language Processing. ACM Computing Surveys, 55, 1 - 35. 

[6] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.P. (2011). Natural Language Processing (Almost) from Scratch. ArXiv, 

abs/1103.0398. 

[7] Prasad, B.L., Srividya, K., Kumar, K.N., Chandra, L.K., Dil, N.S., & Krishna, G.V. (2023). An Advanced Real-Time Job Recommendation System and 

Resume Analyser. 2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS), 1039-1045. 

[8] Gadegaonkar, S., Lakhwani, D., Marwaha, S., & Salunke, P.A. (2023). Job Recommendation System using Machine Learning. 2023 Third International 

Conference on Artificial Intelligence and Smart Energy (ICAIS), 596-603. 

[9] Shaikym, A., Zhalgassova, Z., & Sadyk, U. (2023). Design and Evaluation of a Personalized Job Recommendation System for Computer Science Students 

Using Hybrid Approach. 2023 17th International Conference on Electronics Computer and Computation (ICECCO), 1-7. 

[10] Yao, K., Pádua, G.B., Shang, W., Sporea, S., Toma, A., & Sajedi, S. (2018). Log4Perf: Suggesting Logging Locations for Web-based Systems' Performance 

Monitoring. Proceedings of the 2018 ACM/SPEC International Conference on Performance Engineering. 

[11] Ismail, N.N., & Lokman, A.M. (2020). Kansei Engineering Implementation in Web-Based Systems: A Review Study. 

[12] Yao, K., de Pádua, G.B., Shang, W., Sporea, C., Toma, A., & Sajedi, S. (2019). Log4Perf: suggesting and updating logging locations for web-based systems’ 

performance monitoring. Empirical Software Engineering, 25, 488 - 531. 

 

 



 


