

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 12 Issue: III Month of publication: March 2024

DOI: https://doi.org/10.22214/ijraset.2024.58885

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

Intrinsic Solution on Quadratic Diophantine Equation $z^2 = 170x^2 + y^2$

S. Vidhya¹, S. Sivaranjani²

Assistant Professor¹, PG Student², PG and Research Department of Mathematics, Cauvery College for Women (Autonomous), (Affiliated to Bharathidasan University), Trichy – 620018

Abstract: The non-zero unique integer solutions of the Quadratic Diophantine Equation with three unknowns $z^2 = 170x^2 + y^2$ are examined. There are several absorbing relationships between the answers and a few unique numbers of rank n that are special Polygonal numbers, Star number and Gnomonic numbers.

Keywords: Three-variable quadratic equation, integral solutions, Polygonal numbers, Star number and Gnomonic number.

I. INTRODUCTION

There are various distinct kinds of quadratic Diophantine equations. Anyone can look at [1,7] for an in-depth review of a broad spectrum of concerns and a substantial survey of the body of literature. The non-trivial integral solutions to the quadratic Diophantine problem of the form $lxy + m(x, y) = z^2$ have been examined in [8]. The integral solutions of an distinct Pythagorean triangular problem have been investigated in [9,10]. Two parametric non-trivial integral solutions to the quadratic homogeneity Diophantine problem $X^2 + PXY + Y^2 = Z^2$, for which P constitutes a non-zero constant, are given in [11]. The non-trivial integral solutions of the quadratic homogeneity equation, $l\alpha(x^2 + y^2) + bxy = 4l\alpha^2 z^2$ have been analysed in [12]. This formof quadratic Diophantine equation, $(x - y)(x - z) + y^2 = 0$ is examined in [13] for its integral solutions at various angles, and their parameterized representations are identified.

we examine an additional fascinating quadratic equation, $z^2 = 170x^2 + y^2$, and derive distinct patterns of integral solutions that are non-trivial. Furthermore, a few fascinating relationships between the solutions special Polygonal number and Gnomonic numbers are illustrated.

II. NOTATIONS

$$T_{m,n} = \left[1 + \frac{(n-1)(m-2)}{2}\right]$$
 = Polygonal Number with rank n and sides m.

 $Star_n = 6n(n-1) + 1 = Star$ number of rank n.

 $Gno_n = (2n-1)$ = Gnomonic number of rank n.

III. METHOD OF ANALYSIS

The Diophantine equation of quadratic has to be computed for its non-zero integral solution is

$$z^2 = 170x^2 + y^2(1)$$

Assuming,

$$z = z(a,b) = a^2 + 170b^2$$
 (2)

where a and b are non-zero integers.

A. Pattern: 1

Equation (1) can be written as

$$z^2 - 170x^2 = y^2(3)$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

Assuming $y = y(a, b) = a^2 - 170b^2$ (4)

$$(a^2 + 170b^2)^2 = (170x^2 + y^2)$$

Using the factorization method, we have

$$z + \sqrt{170}x = \left(a + \sqrt{170}b\right)^2$$
 (5)

$$z - \sqrt{170}x = \left(a - \sqrt{170}b\right)^2 \tag{6}$$

Comparing the rational and irrational factors,

$$z = z(a,b) = a^2 + 170b^2$$

$$x = x(a,b) = 2ab$$

The corresponding non-zero distinct solutions are

$$x = x(a,b) = 2ab$$

$$y = y(a,b) = a^2 - 170b^2$$

$$z = z(a,b) = a^2 + 170b^2$$

Observations:

- 1. If a = b and a is even, then a is divisible by 2.
- 2. If a is odd and b is even, then z is divisible by 3.

3.
$$x(b,b) + y(b,b) + z(b,b)T_{10,b} \equiv 0 \pmod{3}$$

4.
$$x(1,a) - y(1,a) + z(1,a) - 68T_{12,a} - 137GnO_a \equiv 0 \pmod{137}$$

5.
$$y(1,1) + z(1,1) + x(1,1)$$
 is a perfect square.

6.
$$y(2,2)+z(2,2)$$
 is a Deficient number.

7.
$$11x(b,b) + y(b,b) + z(b,b)$$
 which represents a Nasty number.

8. For any values of a and b,
$$z - x - y$$
 is divisible by 2.

B. Pattern: 2

Equation (1) can be written as

$$170x^2 + y^2 = z^2 * 1 (7)$$

Assuming

$$z = z(a,b) = a^2 + 170b^2$$

and write

$$1 = \frac{\left(13 + i12\sqrt{170}\right)\left(13 - i12\sqrt{170}\right)}{24649} (8)$$

Using factorization method, equation (7) can be written as

$$(y + i\sqrt{170}x)(y - i\sqrt{170}x) = \left[\frac{13 + i12\sqrt{170}}{157}\right] \left[\frac{13 - i12\sqrt{170}}{157}\right] \left[(a + i\sqrt{170}b)^2(a - i\sqrt{170}b)^2\right]$$

$$\left(y + i\sqrt{170}x\right) = \frac{1}{157} \left(13 + i12\sqrt{170}\right) \left(a - i\sqrt{170}b\right)^{2} (9)$$

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

$$(y-i\sqrt{170}x)=\frac{1}{157}(13+i12\sqrt{170})(a+i\sqrt{170}b)^2$$
 (10)

Comparing real and imaginary parts, we get

$$x = \frac{1}{157} \left[12a^2 - 2040b^2 + 26ab \right]$$

$$y = \frac{1}{157} \left[13a^2 - 2210b^2 - 4080ab \right]$$

Since finding integer solutions is what we specialize in, we have chosen and appropriately such that and are integers.

Consider a = 157A and b = 157B

The integer solutions are

$$x = 1884A^2 - 320280B^2 + 4082AB$$

$$y = 2041A^2 - 346970B^2 - 640560AB$$

$$z = 24649A^2 + 4190330B^2$$

Observations

1. If A=B, then x-y-z is divisible by 2.

2.
$$x(A, A) - y(A, A) - 134235T_{12, A} - 268470GnO_A \equiv 0 \pmod{268470}$$

3.
$$z(B,B) - y(B,B) - x(B,B) - 393913T_{30,A} \equiv 0 \pmod{5120869}$$

4.
$$z(A,1) + x(A,1) - 2041T_{28,A} - 14287GnO_A \equiv 0 \pmod{3884337}$$

5.
$$y(B,B) + z(B,B) - 293590T_{24,A} \equiv 0 \pmod{2935900}$$

C. Pattern: 3

Equation (1) can be written as

$$z^2 - y^2 = 170x^2$$

and we get

$$(z+y)(z-y) = 170x \cdot x \tag{11}$$

a) Case 1

Equation (1) can be written as

$$\frac{z+y}{170x} = \frac{x}{z-y} = \frac{P}{Q}$$
 (12)

From equation (12), we get two equations

$$-170Px + Qy + Qz = 0$$

$$Qx + Py - Pz = 0$$

Applying cross ratio method, we get the integer solutions are

$$x = x(P,Q) = -2PQ$$

$$y = y(P, O) = O^2 - 170P^2$$

$$z = z(P,Q) = -Q^2 - 170P^2$$

Observations

1. For all values of P and Q, x + y - z is divisible by 2.

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

$$2.2y(1,P)-x(1,P)-2z(1,P)-2T_{6,P}-2GnO_P \equiv 0 \pmod{2}$$

3.
$$x(P,1) - 4y(P,1) - 4z(P,1) - 170T_{18,P} - 594GnO_P \equiv 0 \pmod{594}$$

4. Each of the following expressions

(i)
$$z(Q,Q) + 2x(Q,Q) - y(Q,Q)$$

(ii)
$$T_{30P} - 3x(Q,1) + T_{18P}$$

represents a nasty number.

b) Case 2

Equation (11) can be written as

$$\frac{z+y}{x} = \frac{170x}{z-y} = \frac{P}{Q}$$
 (13)

From equation (13), we have two equations

$$-Px + Qy + Qz = 0$$

$$170Qx + Py - Pz = 0$$

Applying cross ratio method, we get the integer solutions are

$$x = x(P,Q) = -2QP$$

$$y = y(P,Q) = 170Q^2 - P^2$$

$$z = z(P,Q) = -P^2 - 170Q^2$$

Observations

1.
$$y(1,Q)-x(1,Q)-9z(1,Q)-680T_{7,Q}-511GnO_Q \equiv 0 \pmod{519}$$

2.
$$10x(1,Q) + 3y(1,Q) - 85 Star_Q - 245 GnO_Q \equiv 0 \pmod{257}$$

3.
$$y(Q,Q) - 6x(Q,Q) - z(Q,Q) - 44T_{18,Q} - 154GnO_Q \equiv 0 \pmod{154}$$

4.
$$3T_{16,P} - 3x(P,1)$$
 represents a Nasty number.

5.
$$y(1,1) - x(1,1)$$
 represents a Palindromic number.

6.
$$z(1,1) + y(1,1) - 5x(1,1)$$
 is a Dudeney number.

D. Pattern: 4

Equation (1) can be written as

$$z^2 - 170x^2 = y^2 * 1 (14)$$

and write

$$1 = \left(\sqrt{170} + 13\right)\left(\sqrt{170} - 13\right)$$

Assuming

$$y = y(a,b) = a^2 - 170b^2$$
 (15)

We have

$$z^{2}-170x^{2} = (a^{2}-170b^{2}) \left[(\sqrt{170}+13)(\sqrt{170}-13) \right]$$

Using factorization method, we get

$$z + \sqrt{170}x = (a + \sqrt{170}b)^2 [(\sqrt{170} + 13)]$$
(16)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 12 Issue III Mar 2024- Available at www.ijraset.com

$$z - \sqrt{170}x = \left(a + \sqrt{170}b\right)^2 \left[\left(\sqrt{170} + 13\right)\right] \tag{17}$$

From equation (16), we get

Thus, the corresponding non-zero distinct integer solutions are

$$x = x(a,b) = a^2 + 170b^2 + 26ab$$

$$y = y(a,b) = a^2 - 170b^2$$

$$z = z(a,b) = 13a^2 + 2210b^2 + 340ab$$

Observations

1.
$$z(b,b)-x(b,b)-169T_{30,b} \equiv 0 \pmod{2197}$$

2.
$$z(a,1) - y(a,1) + x(a,1) - T_{28,a} - 189GnO_a \equiv 0 \pmod{2739}$$

3.
$$z(b,b) - y(b,b) - x(b,b) - 507T_{12,b} - 1014GnO_b \equiv 0 \pmod{1014}$$

- 4. x(1,1) + y(1,1) represents a perfect number.
- 5. x(1,1) y(1,1) represents a even composite number.

IV. CONCLUSION

The Diophantine quadratic equation using special polygonal numbers has been presented. Futhermore, one can look for integer solutions of the quadratic diophantine equations with other special numbers.

REFERENCES

- [1] Batta.B and Singh.A.N, History of Hindu Mathematics, Asia Publishing House 1938.
- [2] Carmichael, R.D., "The Theory of Numbers and Diophantine Analysis", Dover Publications, New York, 1959.
- [3] Dickson, L.E., "History of the theory of numbers", Chelsia Publishing Co., Vol.II, New York, 1952.
- [4] Mollin.R.A., "All solutions of the Diophantine equation $x^2 Dy^2 = n$,", For East J.Math.Sci., Social Volume, 1998, Part III, page-257-293.
- [5] Mordell.L.J., "Diophantine Equations", Academic Press, London 1969.
- [6] Telang.S.G., "Number Theory", Tata McGraw-Hill Publishing Company, New Delhi 1996.
- [7] Nigel.P.Smart,"The Algorithmic Resolutions of Diophantine Equations", Cambridege University Press, London 1999.
- [8] Gopalan.M.A., Manju Somanath, and Vanitha.N., "Integral Solutions of $lxy + m(x + y) = z^3$ ", ActaCienciaIndica, Volume 33;number 4, pages 1287-1290, 2007.
- [9] Gopalan.M.A., and Anbuselvi.R., "A special Pythagorean triangle", Acta Ciencia Indica, Volume 31, number 1, pages 53-54, 2005.
- [10] Gopalan.M.A., and Devibala.S., "A special Pythagorean triangle", Acta Ciencia Indica, Volume 31, number 1, pages 39-40, 2005.
- [11] Gopalan.M.A., and Anbuselvi.R, "On Ternary Quadratic Homogeneous Diophantine Equation $X^2 + PXY + Y^2 = Z^2$ ", Bulletin of Pure and Applied Science, Vol.25E, No.2, Pp.405-408, 2005.
- [12] Gopalan.M.A., Vidyalakshmi.S and Devibala.S "Integral Solutions of $l\alpha(x^2 + y^2) + bxy = 4l\alpha^2z^2$ ", Bulletin of Pure and Applied Science, Vol.25E, No.2, Pp.401-406, 2006.
- [13] Gopalan.M.A., and Devibala.S., "OnTernary Quadratic Homogeneous Equation $(x-y)(x-z)+y^2=0$, Bulletin of Pure and Applied Science, Vol.24E, No.1, Pp.25-28, 2005.
- [14] Janaki.G., and Vidhya.S., "Observations on Ternary Quadratic Diophantine Equation $z^2 = 82x^2 + y^2$ ", International Research Journal of Engineering and Technology, Vol.04, No.3, Pp.1239-1245, 2017.

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)