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Abstract: With ongoing urban development and modernization of industries, the risk of fire hazards is becoming more 
complicated and widespread. Traditional approaches to fire suppression systems have become obsolete in a world ever more 
complex, moving at the speed of modern industry and urban environments that change in seconds. Such systems tend to respond 
slowly and are ineffective in adaptive and responsive environments. On the other hand, IoT-based systems are promising because 
they can detect, suppress fires, and respond in real time through automated control and intelligent feedback. The purpose of this 
paper is to review IoT-based automated mist fire suppression systems. This is a review paper that integrates the automated mist 
fire suppression system with IoT technologies. This paper tells how speed, accuracy and detection improve on using advanced 
sensor data, microcontroller logic and network detection. Like Vasily Novozhilov's foundational work in spray dynamics and 
computational fluid dynamics (CFD) modeling [1], it also covers the theoretical framework of suppression mechanism - 
specifically including Eulerian-Lagrangian and Eulerian-Eulerian approaches. The challenges are also discussed related to mist 
optimization, system scalability with the implementation assumptions and preparatory requirements. In conclusion, this paper 
highlights the importance of transformative potential of merging fluid dynamic principles with IoT automation to create 
predictive, adaptive, and efficient fire suppression strategies in smart environments. 
Keywords: IoT, Fire Suppression, Water Mist, Smart Sensors, CFD, Spray Dynamics, Eulerian Modeling, Real-Time 
Automation 

I. INTRODUCTION 
The effective management of fire safety remains an important challenge in modern infrastructure. This is particularly relevant in the 
context advanced technologies integrated in structural systems and the level of complexity around buildings such as an office 
skyscraper or an industrial plant that houses sophisticated equipment to modernize sensitive gear that need upgrading. Modern 
structures like skyscrapers and large commercial complexes pose an entirely new set of fire safety problems that traditional fire 
safety systems are not equipped to tackle [2]. 
Modern buildings and structures continue to feature intricate designs, and several types of occupants and valuable assets which then 
require complicated protection schemes, as opposed to mere suppression methods. For many years, modern fire protective features 
like sprinkler systems and chemical suppressants have been staples of fire safety. They have changed from basic mechanical 
systems to more advanced automatic systems [3]. 
Despite these advances, suppression systems still face basic problems. These include delayed activation which permits fires to 
spread uncontrolled beyond the point of containment, uniform activation where portions of the structure underneath the sprinkler 
heads, do not match the fire dynamics of modern fires, extensive water damage or environmental harm due to chemicals which can 
sometimes exceed the damage caused by fire. With the implementation of IoT technology the construction industry has undergone 
incredible changes. There have never been such easy ways of altering complex shapes of modern buildings. The development of 
Internet of Things (IoT) technologies transforms fire detection as well as suppression by permitting real time monitoring and 
automated response systems that can adapt to changing conditions in a few milliseconds instead of minutes [4].  
With this technological advancement, it is now possible to build distributed sensor networks that provide higher situational 
awareness, advanced analytics that predict fire behaviour, and harness control systems for automatic real-time optimization of 
suppression strategies. When combined with water mist suppression technology, IoT systems offer unmatched options for flexible, 
effective, and eco-friendly fire safety measures. In order to reduce the damage, IoT systems can distinguish between different forms 
of fire, modify the strength of the response according to occupancy and asset value, and communicate with other building systems 
[5].  
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Water mist fire suppression systems have distinct advantages compared to traditional sprinkler systems. These systems utilize fine 
water droplets of less than 1000 micrometres in diameter which provides better heat absorption as well as oxygen displacement, and 
minimizes water damage through targeted application [6]. The physics of water mist suppression involves complex thermodynamic 
processes where the increased surface area-to-volume ratio of small droplets enables more efficient heat absorption, while the 
reduced droplet momentum allows for better penetration into fire plumes and improved coverage of complex three-dimensional 
spaces. 

 
Fig. 1 Automated mist fire suppression system. 

 
This comprehensive review examines the integration of IoT technologies with mist fire suppression systems, exploring both the 
theoretical foundations rooted in fluid dynamics and heat transfer principles, and practical implementations that demonstrate real-
world effectiveness across various building types and fire scenarios [7]. The analysis encompasses the full spectrum of system 
components, from advanced sensor technologies and communication protocols to intelligent control algorithms and suppression 
hardware optimization. The paper builds upon the seminal work of researchers like Vasily Novozhilov in computational fluid 
dynamics modeling of spray systems, while examining how modern IoT capabilities including machine learning, predictive 
analytics, and distributed computing can enhance these traditional approaches through more sophisticated modeling, real-time 
optimization, and adaptive control strategies. The significance of this research area extends beyond mere technological 
advancement, representing a fundamental shift in how we approach fire safety in an increasingly connected and complex-built 
environment [8]. As smart cities and Industry 4.0 initiatives continue to proliferate globally, driven by urbanization trends and the 
need for more efficient resource utilization, the integration of intelligent fire suppression systems becomes essential for protecting 
increasingly valuable and complex infrastructure including data centers, manufacturing facilities, cultural institutions, and high-
density residential developments [9]. 

II.  THEORETICAL FOUNDATIONS 
A. Conventional Fire Suppression Systems and Their Limitations 
Traditional fire suppression systems have relied primarily on water-based sprinkler systems, chemical suppressants, and foam-based 
solutions. Water sprinkler systems, while widely adopted, suffer from several critical limitations that have driven the search for 
more advanced alternatives [10]. These systems typically operate through simple thermal activation mechanisms that respond to 
ambient temperature increases, resulting in delayed response times that can allow fires to spread significantly before suppression 
begins. The uniform distribution pattern of conventional sprinklers often leads to excessive water application in areas where fire 
suppression is not needed, causing unnecessary water damage to property and equipment [11]. This is especially an issue in places 
with sensitive electronic devices, data centers, or other assets sensitive to water damage. Chemical suppression systems, such as 
carbon dioxide and halon replacements, clean agents, and water-based systems all have their own unique challenges [12]. Such 
systems are expensive to install and maintain, especially in sensitive environments because of their protective storage requirements, 
expensive chemical agents and resulting high maintenance, safety concerns and health risks to occupation, and harmful 
environmental impacts. 
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Effective at handling fires started by flammable liquids, foam-based suppression systems are limited in their use to only a few fire 
types [13]. Ever since the formulation of certain toxic foam formulations, there has been concern to pursue these systems, 
additionally, there is the added problem of excessive foam cleanup after deployment. 
Water mist systems combine effectiveness of water-based systems with minimal toxic to the environment characteristics along with 
reduced collateral damages, motivating the shift from traditional methods. 
 
B. Water Mist Technology and Suppression Mechanisms 
Water mist suppression system is a notable development in significant advancement of fire suppression technology. It operates 
through multiple physical mechanisms that provide much better suppression effectiveness as compared to the conventional 
traditional approaches [14]. It generates fine water droplets, typically with diameters usually less than 1000 micrometres, which 
provide enhanced heat absorption and suppression capabilities through increased surface area-to-volume ratios [15]. 
The three main suppression mechanisms are thermal radiation attenuation, oxygen displacement through steam generation, and heat 
absorption through evaporation [16]. As water droplets evaporate, heat is absorbed, cooling flammable materials below their 
ignition temperatures and eliminating thermal energy from the fire environment. The large surface area that fine droplets provide 
makes the evaporation process extremely efficient and allows for quick heat removal. In the immediate fire environment, oxygen is 
displaced by steam created when water vapor expands as droplets evaporate [17]. In enclosed spaces where a buildup of steam can 
reduce oxygen levels, this mist fire suppression system performs admirably. 
Concentrations that are less than what is required to sustain combustion. The effectiveness of oxygen displacement depends on the 
ventilation characteristics of the protected space and the rate at which steam is produced. Thermal radiation attenuation takes place 
when water droplets come into contact with thermal radiation from hot surfaces and flames. The droplets delay the advance of fire 
and reduce heat absorption and dispersion of radiation result into their transfer to unburned materials [18]. This system is 
particularly important in the prevention of the propagation of fire in big areas where convective that there can be limitation on 
transfer of heat. 
Vasily Novozhilov is one of the pioneers in the field of spray dynamics who has helped us in optimization of water mist systems by 
understanding them, at least in part, with the help of computational fluid dynamics modeling. His contribution has been of benefit to 
the theory on the dynamics of the droplet in a fire environment in a sense that the influence of the environment of smoke, 
momentum of the spray, and the responsibilities of the distribution of droplets of different sizes are of interest in the efficiency of 
suppression. It is through these theoretical foundations that maintenance to form systems and designs of nozzles that have high 
suppression performance and low consumption of water have become possible. Computational fluid dynamics modeling of the 
water mist systems has allowed the design of systems configurations and nozzle designs that optimizes the efficiency of suppression 
but with minimum water use. 
 
C. Computational Fluid Dynamics Modeling Approaches 
Systems for fire suppression using water mists require the underlying theory calculus of fluid dynamics, specifically for modeling 
water mist fire extinguishing systems. Two modeling approaches, the Eulerian-Lagrangian approach and the Eulerian-Eulerian 
approach, have emerged as the most effective methodologies. 
1) Eulerian-Lagrangian Approach 
The complexity of multiphase flows concerning gas, liquid droplets, and flame requires sophisticated modeling that captures the 
relevant physical processes while remaining feasible for simulation. The Eulerian-Lagrangian approach considers the gas phase as 
continuous using Eulerian coordinates with the Navier-Stokes equations governing fluid motion, heat exchange, and transport of 
species [19]. The discrete liquid phase tracks individual droplets using Lagrangian coordinates. This approach makes possible 
detailed simulation of the heat and mass transfer processes between phases, droplet fragmentation and coalescence, which are 
crucial for mist suppression effectiveness. This method helps simulate the detailed modeling of phase changes and breakup or 
coalescence that are vital for suppression effectiveness in water mist fires. In general, simulation follows the motion of individual 
droplets and computing their movement as described by Newton's laws, accounting for drag, gravity, and acceleration. This 
approach is especially relevant for the design of nozzles and optimization of spray patterns, as it aids in understanding of individual 
droplet behaviour and trajectories [20]. 
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The fundamental equation governing droplet motion in the Eulerian-Lagrangian framework is: 
 
 

 
ܷ݀ሬሬሬሬሬ⃗
ݐ݀ =  
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(1) 

 

 
Where: 

 ܷ  ሬሬሬሬ⃗ is the droplet velocity vector 
 ߩ  is the continuous phase density 
 ܿ஽ is the drag coefficient 
 ݀௣  is the droplet diameter 
 ߩ௣ is the droplet density 
 ሬܷሬ⃗ ௣  is the continuous phase velocity vector 
 ݃ ሬሬሬ⃗ is the gravitational acceleration vector 

This equation embodies the primary characteristics of droplet motion. The first term on the right side of the equation encapsulates 
the drag force exerted on the droplet due to its motion through the gas phase, and the second term represents the effect of gravity. 
Tracking a droplet in the Eulerian-Lagrangian framework demands the use of the second Newton's law for every droplet, where drag 
and gravitational forces, and possibly other forces like thermophoresis or electrostatics, are considered. Also, to accurately simulate 
the processes of evaporation that are essential for mist suppression, the heat and mass transfer processes of evaporation between 
individual droplets and the gas phase must be modeled [21]. The interaction between the flows is through source terms in the 
Eulerian equations that represent the dispersion of mass, momentum, energy, and mass transfer from the dispersed phase. The drag 
coefficient for dispersed spherical droplets in the equation is a function of the droplet Reynolds number and can be computed from 
several relationships. For spherical droplets, it is essential to consider the flow around single droplets since the drag coefficient for 
spherical droplets shows considerable dependence on the Reynolds number. 
2) Eulerian-Eulerian Approach: In the Eulerian-Eulerian method both the gas and the liquid phases are treated as overlapping 

continuous media and separate conservation equations are solved for each phase [22]. This approach is more suitable 
computationally for systems with higher liquid volume fractions, as it is more efficient, but finer details of droplet behaviour 
may be overlooked. This approach uses interfacial force, heat, and mass transfer models which are called closure models, and 
are far less accurate than the detailed tracking provided by Lagrangian methods. This approach treats both mist and air as 
continuous phases, applying mass conservation principles for the analysis of mist dispersion. It is of special importance for the 
mist behaviour and fire spread assessment as it provides a higher level of understanding of the systemic behaviour and does not 
focus on the dynamics of a single droplet. 

The fundamental equation for the Eulerian-Eulerian approach is the continuity equation for each phase: 
 
   

߲
ݐ߲
൫ߙ௤ߩ௤൯ +  ∇ . ൫ߙ௤ߩ௤ݑ௤൯ = 0  

  

(2) 
 

 
Where: 

 ߙ௤ is the volume fraction of phase q 
 ߩ௤is the density of phase q 
 ݑ௤  is the velocity vector of phase q 
 t represents time 

The Eulerian-Eulerian equations guarantee mass conservation for each phase, provided that the overlapping phase of the multiphase 
flow is considered. The condition that all phases together fully occupy the computational domain would be realized if the volume 
fractions of all phases are equal. This approach also requires extra closure relationships which are used to account the transfer of 
mass, heat, and momentum between phases. These closure models are the essential for accurate phase interaction descriptions, they 
also introduce additional complexity and possible sources of error. 
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3) Comparative Analysis and Applications: The selection between Eulerian-Lagrangian and Eulerian-Eulerian methods will likely 
be determined by: the project's particular needs, computational techniques on hand, and the requisite precision. Performance 
analysis, nozzle development, and local heat and mass transfer analysis where local detailed analysis of droplet is important are 
well served by Eulerian-Lagrangian methods [23]. The approach is, however, very expensive from a computation standpoint 
when large numbers of droplets or high liquid volume fractions need to be modeled. Incorporating these effects may be difficult 
and sometimes completely ignored when studying large scale system with primary focus on fluid motion and phases 
distribution but the entire system response is still captured by Eulerian-Eulerian methods which focus on large scale droplet 
interaction. In mist suppression methods, turbulence modeling is difficult to implement due to the fluid structure interaction 
complexity with the accompanying droplet dynamics [24]. The detailed turbulence modeling provided by large eddy simulation 
approaches comes with a high computational cost. On the other hand, Reynolds-averaged Navier-Stokes approaches are 
efficient in computation but often fail to incorporate important turbulent effects that pertain to the dispersion or mixing of 
droplets. Adapting fire suppression systems with real-time IoT sensor data and incorporating CFD models represent an 
emerging opportunity [25]. With sensor feedback, CFD models could be validated and updated in real-time, enabling fire 
condition-based suppression strategy optimization instead of relying on fixed, pre-planned strategies. 

 
D. IoT Integration and Smart Sensor Networks 
The incorporation of IoT with water mist suppression systems signifies a paradigm shift from reactive to proactive shift in fire 
safety management [26]. IoT-enabled systems leverage networks of sensors, actuators, and communication devices to create 
comprehensive situational awareness and enable intelligent response strategies [27]. The theoretical foundations of IoT integration 
encompass sensor network design, data fusion algorithms, and distributed control systems that must operate reliably in critical safety 
applications. Sensor network design for fire suppression applications must address coverage requirements, communication 
protocols, and power management constraints [28]. Optimal sensor placement requires analysis of fire development patterns, 
building geometry, and environmental conditions to ensure adequate detection coverage while minimizing false alarms. Wireless 
sensor networks enable flexible deployment but require careful consideration of communication reliability and power consumption. 
Data fusion algorithms combine information from multiple sensors to improve detection accuracy and provide comprehensive fire 
characterization [29]. Bayesian approaches can incorporate prior knowledge about fire development patterns while accounting for 
sensor uncertainties and potential failures. Kalman filtering techniques can provide optimal state estimation when sensor 
measurements are noisy or incomplete. Machine learning algorithms can adapt system behaviour based on historical data and 
changing environmental conditions [30]. Supervised learning approaches can learn from expert knowledge and historical fire events, 
while reinforcement learning can optimize suppression strategies through interaction with the environment [31]. However, the 
application of machine learning in safety-critical systems requires careful consideration of reliability, explainability, and failure 
modes. 

 
III.  MACHINE LEARNING AND DEEP LEARNING ALGORITHMS 

A. Machine Learning Applications in Fire Detection 
The integration of machine learning algorithms with fire detection systems have enabled systems to fire alarms to historical data as 
well as adapt to new surroundings. Simple threshold-based algorithms which fire an alarm when a sensor reading crosses a set value 
are used in traditional fire detection systems. These simple algorithms are quite reliable and well understood. However, they cannot 
differentiate between actual fire conditions and environmental factors that trigger sensor reading, leading to false alarms. 
More advanced detection models can be developed by semi-supervised learning algorithms trained on datasets with examples of fire 
and non-fire conditions [32]. For fire detection problems, support vector machines, random forests, and neural networks have all 
been successfully used. These algorithms can learn and interpret the complex relationships that exist between fire and multiple 
sensor inputs, thus enabling accurate detection and a reduction in false alarm rates. 
Feature engineering concerns the extraction and characterization of relevant fire-safety features from raw data [33]. Temporally 
related features such as rate of change in temperature or smoke density can be useful to a fire's development. These features can be 
important in the analysis of the sensor's fire detection algorithms. Spatial features derived from multiple sensors can indicate fire 
location and spread patterns. The application of deep learning, specifically convolutional neural networks, has been proven effective 
in interpreting visual information from cameras and thermal imaging sensors [34]. These systems are capable of detecting 
microwave and visual indicators of fire such as flames, thermal anomalies, and even smoke. On the downside, deep learning models 
need a lot of data and computation, which puts a strain on their use in low resource settings. 
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The use of ensemble methods that merge several machine learning models has been proven to provide better accuracy and 
robustness compared to single models [35]. Voting schemes, bagging, and boosting techniques are capable of mitigating the 
debilitating effects of individual models, with a corresponding improvement in detection performance. On the downside, ensemble 
methods are known to increase the overall system's architecture and the combined computational complexity. 
 
B. Real-Time Data Processing and Edge Computing 
Real-time data processing requirements in fire suppression systems demand computational architectures that can process sensor data 
and make control decisions within strict timing constraints [36]. Edge computing approaches enable local processing of sensor data 
without requiring communication with remote processing centers, improving system response times and providing resilience against 
communication failures [37]. 
Edge devices must have sufficient computational capacity to implement complex machine learning algorithms while maintaining 
low power consumption for battery-powered sensors [38]. Recent advances in microprocessor technology, including specialized 
neural processing units and field-programmable gate arrays, have made sophisticated edge computing capabilities increasingly 
feasible [39]. Data preprocessing at the edge can reduce communication bandwidth requirements while improving data quality [40]. 
Filtering, calibration, and feature extraction can be performed locally, transmitting only processed information to central control 
systems. This approach reduces network traffic and enables more efficient use of communication resources. 
Real-time machine learning algorithms must be designed to operate within computational and memory constraints while providing 
accurate and timely results [41]. Online learning approaches can adapt to changing conditions without requiring complete retraining, 
while incremental learning algorithms can incorporate new data while maintaining previously learned knowledge. Through 
distributed processing architectures, the computational load can be shared across several edge devices [42]. This facilitates the use 
of more advanced algorithms while still preserving the ability to process in real time. Nevertheless, as in the case of other distributed 
systems, synchronizing the algorithms, fault tolerance, and maintaining data consistency add layers of complexity that need to be 
managed. 
 
C. Predictive Analytics and Anomaly Detection 
Within a given fire suppression system, predictive analytics capabilities can foresee fire conditions that may arise prior to actual 
ignition [43]. Through prior fire events, environmental conditions, and the sensor data, the system can analyze the sensor data 
patterns and the environment to create a model that can foresee potential fire conditions [44]. These capabilities allow for proactive 
measures to be taken, for example, heightened monitoring sensitivity, preventative maintenance, or other environmental controls 
that can help ensure that fires do not happen. 
Equipment failures, fires, and other environmental changes can trigger sensor data anomalies. These changes can also be detected 
using anomaly detection algorithms [45]. Unsupervised learning techniques such as clustering, principal component analysis, and 
autoencoders can detect anomalies without needing labelled training data [46]. These methods are useful in determining the 
previously unknown unusual environmental conditions or failure modes. 
Through the use of time analysis, one can detect and monitor the environmental conditions that the sensor data indicate. The 
ARIMA model (Auto-Regressive Integrated Moving Average) as well as Long-Short Term Memory (LSTM) Networks can capture 
the temporal dependence that exists in the sensor data, predicting potential conditions for fire in the future [47]. 

Statistical process control methods are capable of monitoring the performance of complex systems and detecting any shifts and 
changes from the normative functioning operations [48]. Moreover, control charts and other statistical tests are capable of revealing 
any trends or shifts within the sensor data which might indicate change and drift over time within the operating conditions and 
system. These methods proved to be highly useful in maintaining the reliability of the systems and even detecting change over time 
which would not be enough to trigger attention or immediate alarms. Understanding the sensor's correlation might help 
understanding the underlying mechanisms of fire development and provide new insights which enables understanding which 
reasonable causes helps in predicting fires more accurately and allowing more specific means of control on fighting the fire [49]. 

 
D. Challenges and Future Directions 
The use of machine learning and deep learning techniques in such systems for fire suppression is not straightforward. These 
techniques are machine learning algorithms trained on high-quality data, and fire events are scarce [50]. For these algorithms to 
work accurately, there has to be a sufficient amount of fire events and numerous diverse scenarios in order to train these algorithms 
and be competent enough to serve their purpose. 
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The safety-critical needs of an application, where decision reasoning is essential, makes the trustworthiness of machine learning 
models interpretability and explainability have to be tailored to a different standard [51]. Accuracy provided by black-box models 
comes at a price of a lack of insight to reasoning behind decisions, which makes validation and troubleshooting exceedingly difficult 
[52]. Machine learning interpretability trade-off techniques are being utilized, often sacrificing precision AI techniques often offset 
the accuracy and underscore interpretability. The augmentation of intelligence and connectivity features in fire suppression systems 
brings about a new class of issues which includes adversarial assaults and system security [53]. Hackers could remotely forge vision 
data input, cause system malfunctions, or trigger 'phony' system operations by exploiting machine learning algorithms [54]. These 
challenges necessitate the incorporation of machine learning systems together with cyber-security systems. 
The allocation of real-time resources continues to be a challenge given the enhancement of edge computing and the limitations in 
real-time responsiveness and algorithm sophistication [55]. Enhanced edge computing continues to be a work in progress [56]. The 
same work in progress is observed with real-time responsiveness and the sophistication of algorithms. Approximate computing 
techniques and model compression approaches may provide solutions to these challenges [57]. The use of machine learning in fire 
suppression systems faces regulatory approval and compliance challenges as fire safety technology norms and regulations may not 
be tailored to the sophisticated nature of intelligent systems [58]. There is a need to revise existing standards and create new testing 
frameworks, as the regulatory frame considers the machine learning-based systems as more sophisticated due to the possibility of 
unpredictable actions in the adaptive systems [59]. The machine learning certification centers might be more rigorous as compared 
to the certification centers for the traditional systems [60]. 

 
IV. CONCLUSIONS 

The adoption of advanced sensing technologies, intelligent control algorithms, and advanced suppression mechanisms adds 
remarkable value to fire safety, as highlighted in the recent review of the IoT-based fire suppression system. The convergence of 
Internet of Things capabilities with established water mist suppression principles creates unprecedented opportunities for developing 
adaptive, efficient, and environmentally responsible fire protection systems that address many limitations of conventional 
approaches. The theoretical foundations established through computational fluid dynamics modeling, particularly building upon 
Vasily Novozhilov's seminal work in spray dynamics, provide essential understanding of mist suppression mechanisms that enable 
optimization of system performance. The integration of Eulerian-Lagrangian and Eulerian-Eulerian modeling approaches with real-
time sensor data creates opportunities for predictive and adaptive suppression strategies that were previously impossible with 
conventional systems. 
Machine learning and deep learning algorithms offer powerful tools for improving fire detection accuracy, reducing false alarms, 
and optimizing suppression strategies. However, the application of these technologies in safety-critical systems requires careful 
consideration of reliability, explainability, and security concerns. The ability to control complex systems is a not fully explored area 
with a lot of potential, especially when discussing the algorithm frameworks with proven resilience for fire emergency scenarios. 
The striking inequality laid out in the literature calls for further exploration and works. Real time GPS data alignment with 
computed flow dynamics (CFD), gaps in standards and systems integration, prediction of system failure over time, and evaluation of 
the expenditures like cost, market value, and demand. Filling these gaps will be vital for the practical deployment of IoT-powered 
fire suppression systems in the field. 
The proposed approach provides a framework for developing comprehensive IoT-enabled mist fire suppression systems that address 
the key challenges and limitations identified in the literature review. The merging of sophisticated processing algorithms, intelligent 
mechanisms for adaptive suppression, and diverse sensor networks improves fire protection capabilities while still being cost-
efficient and meeting regulatory compliance. IoT-enabled fire mist suppression systems can positively impact the economic returns 
with reduced fire damage, lower insurance costs, and improved operational efficiency, and especially in high-value situations where 
conventional systems can lead to significant collateral damage. Although, resolving successful results needs system design, 
installation, and system-wide reliable maintenance throughout the lifecycle. Combined with the efficiency IoT systems provide, the 
environmental advantages of water mist systems aid in the reduction of negative environmental impact as well as global 
sustainability objectives. These systems, as an alternative to traditional suppression systems, can greatly aid in the reduction of 
environmental costs and help appease rising concerns of climate change and resource conservation. Bridging these gaps will be 
important for realizing real-world IoT-based applications of fire suppression systems. 
From the literature review, the most decisive IoT-enabled mist fire suppression systems gaps have been addressed, forming the basis 
of the presented approach.  
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A diverse range of sensor networks, intelligent processing algorithms, and adaptive suppression systems in the IoT mists fire 
suppression systems offer the opportunity for better fire protection at a reasonable cost and with compliance to regulations. 
Significant benefits also include reduced fire damage, decreased insurance cost, and increased operational efficiency. For high-value 
applications that suffer high collateral damage cost during conventional suppression, IoT-enabled mist suppression systems gain a 
positive return on investment. Achieving these benefits depends on the thorough system design, attention to the installation process, 
and systematic maintenance for enduring reliable function during the operational lifecycle. Considering the integration of broader 
smart city infrastructures with IoT devices and their related systems poses an emerging challenge which when achieved, will 
coordination of smart resource management, emergency management, and associated utilities management. Such incorporation must 
still be evaluated in the scopes of cybersecurity, privacy, and other wide problem domains of system design and implementation 
strategies. Further in-depth studies must be conducted to enhance the understanding of the theoretical frameworks concerning the 
working mechanisms alongside mist suppression systems. Especially in the context of economically viable real-world technology 
systems. The adoption of the modern fire suppression systems will require the development of the regularized protocols, additional 
fire-dealing cybersecurity systems, rigorous testing protocols, and validation process frameworks. The synergy of automation and 
the fluid dynamic principles IoT merges these devices together can serve wider purposes more/building safety and multilevel 
economization of environmental controls. The ongoing efforts and the accomplished fire and emergency suppression systems will 
ensure that these solutions will always serve the greater purposes of life and safety, increase system operational and life cycle 
efficiency while protect the environment. Focused investigations together with diligent application and continuous improvement 
make it possible to realize the vision of intelligent, adaptive and efficient fire protection that IoT-enabled mist fire suppression 
systems provide, responding to changing conditions in real time while conserving resources and collateral damage. The unique 
interplay between well-known principles of fire suppression and IoT technologies provides new possibilities for enhancing fire 
safety within our complex and interconnected infrastructure. 
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