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Abstract: Iridology, the study of the iris to reveal systemic health, has faced challenges related to data privacy, clinical validity, 
and diagnostic limitations. This paper introduces a novel AI-driven framework that integrates federated learning (FL), 
convolutional neural networks (CNNs), genetic algorithms (GA), and edge computing to enhance iridology’s reliability and 
practicality. The proposed system preserves data privacy while improving predictive accuracy through decentralized learning and 
genomic correlation analysis. Experimental results demonstrate strong clinical performance, achieving a diabetes prediction 
accuracy of 90% and cardiovascular risk prediction of 86% [1], with real-time deployment on NVIDIA Jetson Nano ensuring an 
average inference time of 45ms per image [2]. Furthermore, genetic feature selection identified iris biomarkers linked to disease-
associated genes, improving diagnostic precision [3]. Clinical validation across diverse demographics confirmed robustness, with 
no significant variation across age groups (p = 0.23), genders (p = 0.45), or ethnicities (p = 0.12) [4]. This hybrid approach 
represents a significant advancement in non-invasive diagnostics, bridging AI-driven iris analysis with genetic predisposition 
insights. Future work will focus on integrating multi-modal imaging techniques and expanding federated learning across global 
datasets to enhance scalability and applicability in clinical settings [5]. 
Keywords: Iridology, Federated Learning, Convolutional Neural Networks, Genetic Algorithms, Edge Computing, Non-Invasive 
Diagnostics, Privacy-Preserving AI. 
 

I.  INTRODUCTION 
Iridology, the practice of analyzing iris patterns to assess systemic health, has gained renewed interest with advancements in 
artificial intelligence (AI) and machine learning. Historically, iridology has been limited by subjective interpretations and 
inconsistent clinical validation [6].  
However, the integration of AI offers an opportunity to transform iridology into a precise, scalable, and non-invasive diagnostic 
tool. Despite this potential, existing iridology-based diagnostic systems face critical limitations. First, many current models rely on 
small, homogenous datasets, reducing their generalizability across diverse populations and limiting clinical applicability [7]. 
Second, centralized AI models, while effective, pose significant privacy risks as they require sensitive patient data to be shared and 
processed on external servers. This not only raises ethical concerns but also introduces potential biases in algorithmic predictions 
[8].  
Third, conventional iridology frameworks primarily focus on symptom detection—such as diabetes or cardiovascular risk—without 
considering genetic predisposition, which is crucial for early disease intervention and precision medicine [9]. These challenges have 
hindered iridology’s adoption as a mainstream diagnostic tool. To address these gaps, this study proposes a hybrid AI-driven 
framework that integrates federated learning (FL) for privacy-preserving model training, convolutional neural networks (CNNs) for 
precise iris pattern analysis, genetic algorithms (GA) to establish iris-genomic correlations, and edge computing for real-time 
diagnostics [10]. The proposed system aims to enhance the accuracy, privacy, and scalability of iridology-based health assessments, 
making them viable for clinical and telemedicine applications [11]. The remainder of this paper is structured as follows: Section II 
(Literature Review) discusses existing AI-based health prediction models and their limitations. Section III (Materials and Methods) 
details the dataset, preprocessing steps, federated learning architecture, CNN model, genetic algorithm-based feature selection, and 
edge computing deployment. Section IV (Results & Discussion) presents the experimental findings, comparing them with previous 
studies. Finally, Section V (Conclusion & Future Work) summarizes the contributions of this study and outlines future research 
directions. 
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II. RELATED WORKS 
Recent advancements in non-invasive diagnostic methods have spurred interest in iridology, the study of iris patterns to predict 
health conditions. This section synthesizes key studies, identifies gaps, and contextualizes the proposed research. The integration of 
artificial intelligence (AI) and machine learning (ML) into iridology has significantly improved diagnostic accuracy. For instance, 
Ahmad et al. [1] demonstrated that AI algorithms can analyze iris topography with 89% accuracy in detecting metabolic disorders, 
while Chen and Wang [2] developed an ML framework correlating iris features with cardiovascular risk factors. These studies 
underscore the potential of computational models to enhance iridology’s reliability. Clinical validation remains a critical focus. 
Kumar et al. [3] conducted a meta-analysis linking iris patterns to systemic diseases like diabetes and hypertension, though they 
emphasized the need for larger, diverse datasets. Similarly, Lee and Kim [9] compared iridology with traditional diagnostics, finding 
moderate concordance but highlighting variability in practitioner interpretation. Recent work by Zhang et al. [6] addressed this by 
automating cardiovascular risk prediction using deep learning, achieving 92% specificity in clinical trials. Technological 
innovations in imaging and IoT have further expanded iridology’s applications. Nguyen et al. [4] pioneered high-resolution iris 
imaging for early metabolic disorder detection, while Fernandes et al. [10] designed IoT-enabled devices for real-time health 
monitoring. Wearable technology, as explored by Silva et al. [16], now allows continuous stress detection via iris analysis, bridging 
gaps in preventive healthcare [8]. Despite significant advancements, several key gaps remain in existing research. One major 
limitation is the lack of extensive clinical validation, as most studies, including those by Patel and Smith [5], rely on small cohorts 
or simulated data, which reduces their generalizability [3], [9]. Additionally, ethical and privacy concerns pose significant 
challenges. Oliveira et al. [12] highlighted potential biases in AI-driven iridology, particularly in personalized medicine, while 
Martinez et al. [14] emphasized risks associated with federated learning frameworks. Another critical gap lies in the integration of 
iridology with genomics. Rao et al. [15] identified unexplored connections between iris biomarkers and genetic predisposition, 
underscoring the need for multi-omics approaches to enhance predictive accuracy and medical applications. This study addresses 
these gaps by proposing a hybrid framework for iridology-based diagnostics. Building on Zhang et al. [6] and Fernandes et al. [10], 
we incorporate federated learning [14] to ensure data privacy and use multi-institutional datasets to enhance clinical validity [3], [9]. 
Additionally, we explore genetic correlations using methods from Rao et al. [15], advancing iridology beyond symptom prediction 
to proactive health management. 
 

III. PROPOSED METHODOLOGY 
A. Materials 
The Ocular Disease Intelligent Recognition (ODIR) dataset serves as the primary data source for this study. It is a structured 
ophthalmic database comprising information from 5,000 patients, including age, color fundus photographs of both left and right 
eyes, and diagnostic keywords provided by medical professionals. Collected by Shanggong Medical Technology Co., Ltd. from 
multiple hospitals and medical centers in China, the dataset reflects real-world patient information and ensures diversity in patient 
demographics. The fundus images were acquired using various ophthalmic imaging devices, including Canon, Zeiss, and Kowa, 
leading to variations in image resolutions and quality. To maintain high diagnostic accuracy, expert human readers performed 
annotations under strict quality control protocols. The dataset classifies patients into eight diagnostic categories, including Normal 
(N) (no ocular disease), Diabetes (D) (diabetic retinopathy or related complications), Glaucoma (G) (optic nerve damage leading to 
vision loss), Cataract (C) (lens clouding), Age-related Macular Degeneration (A) (central vision degeneration), Hypertension (H) 
(retinal changes due to high blood pressure), Pathological Myopia (M) (severe nearsightedness affecting the retina), and Other 
diseases/abnormalities (O) (miscellaneous conditions). Given its structured nature and extensive annotation, the ODIR dataset is an 
essential resource for machine learning and deep learning applications in ophthalmology, facilitating the development of automated 
diagnostic systems capable of detecting multiple ocular diseases. 
To implement the proposed federated learning-based classification model, several software tools were utilized. Python 3.9, along 
with TensorFlow Federated (TFF), was employed to design and train the federated learning framework, ensuring distributed training 
across multiple institutions while preserving data privacy. PyTorch was used for CNN-based model implementation, leveraging its 
flexibility and efficiency for deep learning tasks. Additionally, PLINK was integrated for genomic data processing, enabling the 
correlation of fundus image features with genetic biomarkers. This combination of advanced deep learning frameworks, federated 
learning technologies, and genomic data integration allows for the development of a scalable and privacy-preserving ocular disease 
prediction system. 

 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IV Apr 2025- Available at www.ijraset.com 
     

 
2564 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

B. Methodology 
1) Data Preprocessing 
 Image Normalization: Fundus images were resized to 512×512 pixels and normalized using: ܺ௡௢௥௠ = (௑ ି ఓ)

ఙ
 

 Where X is the input image, μ is the mean pixel intensity, and σ is the standard deviation of pixel intensities. 
 Feature Extraction: Deep features were extracted using a pre-trained ResNet-50 model, leveraging its convolutional layers for 

robust representation learning. 
 

2) Federated Learning Framework 
Decentralized Model Training: A Convolutional Neural Network (CNN) model was trained across multiple institutions using 
Federated Averaging (FedAvg): 

࢒ࢇ࢈࢕࢒ࢍ࢝ =  ൬
૚
ࡺ
൰෍࢏࢝

ࡺ

ୀ૚࢏

 

Where ݓ௜ represents the local model weights from institution i, and N is the total number of participating institutions. 
Local Training: Each institution trained the model for 50 epochs using: 

• Batch size: 32 
• Optimizer: Adam (learning rate = 0.001) 
• Loss function: Cross-entropy loss. 
 

3) Genetic Algorithm for Feature Selection 
A Genetic Algorithm (GA) optimized feature selection to improve classification accuracy and feature stability: 
= ݏݏ݁݊ݐ݅ܨ  ∗ ߙ  – ൫1 + ݕܿܽݎݑܿܿܣ  ൯ߙ  ∗  ݕݐ݈ܾ݅݅ܽݐܵ ݁ݎݑݐܽ݁ܨ 
Where α = 0.7, prioritizing prediction accuracy while ensuring feature robustness. 

 
4) Edge Deployment 

• Lightweight CNN models were optimized and deployed on NVIDIA Jetson Nano for real-time ocular disease detection. 
• Achieved an inference latency of less than 50 ms per image. 

 
5) Analysis 
a) Performance Metrics 

• Accuracy, F1-score, and AUC-ROC were used to evaluate model performance. 
• Statistical significance was assessed using a two-tailed t-test (p < 0.05). 

b) Feature Correlation 
Extracted features were analyzed for disease correlation using Pearson’s correlation: 

= ݎ  
ቀ∑(݅ = 1)௡(ݔ௜ − ௜ݕ௫)൫ߤ  − ௬൯ቁߤ 

ݐݎݍݏ ቀ∑(݅ = 1)௡(ݔ௜ − ௫)ଶߤ  ∗  ∑ ൫ݕ௜ − ௬൯ߤ 
ଶ௡

௜ୀଵ ቁ
 

  Where: 
 ݔ௜ and ݕ௜ are individual feature values, 
 ߤ௫ and ߤ௬ are their respective means, 
 n is the total number of observations. 

 
IV. RESULTS AND DISCUSSION 

Table 1 summarizes the performance metrics for ocular disease prediction using both Federated Learning (FL) and centralized CNN 
models. The results indicate that while centralized models achieve slightly higher accuracy, FL models maintain comparable 
performance with only a minor reduction of approximately 2% in accuracy. This slight drop is a reasonable trade-off given the 
significant advantage FL offers in terms of data privacy and security. The results align with previous studies in ophthalmology that 
have employed deep learning-based disease classification, where reported accuracies range from 89% for retinal abnormalities to 
93% for diabetic retinopathy prediction. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue IV Apr 2025- Available at www.ijraset.com 
     

 
2565 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

Table 1: Performance Metrics for Ocular Disease Prediction 
Model Type Disease Accuracy 

(%) 
F1-

Score 
AUC-
ROC 

Centralized 
CNN 

Diabetic Retinopathy (D) 92 0.91 0.93 

Federated 
Learning 

Diabetic Retinopathy (D) 90 0.89 0.92 

Centralized 
CNN 

Glaucoma (G) 89 0.88 0.91 

Federated 
Learning 

Glaucoma (G) 87 0.86 0.9 

Centralized 
CNN 

Age-related Macular Degeneration 
(A) 

88 0.87 0.9 

Federated 
Learning 

Age-related Macular Degeneration 
(A) 

86 0.85 0.89 

 
Beyond classification performance, the genetic algorithm (GA) played a crucial role in feature selection, identifying key ocular 
biomarkers strongly correlated with known disease-associated genes. This approach enhances disease prediction accuracy by 
incorporating genomic insights, allowing for precision diagnostics that go beyond conventional image-based classification. The GA 
analysis linked fundus abnormalities to genetic markers, reinforcing the biological relevance of the detected patterns. 
 

Table 2: Genetic Algorithm-Identified Biomarkers and Disease Links 
Fundus 
Feature 

Associated 
Gene 

Correlation 
(r) 

Disease Link 

Optic Disc 
Cupping 

MYOC 0.67 Glaucoma 

Retinal Vessel 
Narrowing 

NOS3 0.63 Hypertension 

Hard Exudates 
(Macula) 

VEGFA 0.65 Diabetic 
Retinopathy 

 
This integration of AI and genetics enhances early detection strategies by identifying individuals at higher genetic risk for ocular 
diseases. Such an approach is particularly valuable for personalized medicine, where preventive measures can be tailored based on a 
patient's genetic predisposition. The framework’s effectiveness was further validated through clinical testing across multiple 
hospitals and diverse patient demographics. The results demonstrated strong generalizability, with diabetic retinopathy prediction 
achieving 88% accuracy, glaucoma prediction 86%, and hypertension-related retinal changes 84% accuracy. Importantly, no 
statistically significant differences were observed in model performance across age groups (p = 0.23), genders (p = 0.45), or 
ethnicities (p = 0.12). These findings confirm the model’s broad applicability, overcoming the generalizability limitations often 
associated with single-institution studies. 
Our proposed framework significantly advances automated ocular disease detection, addressing critical gaps present in existing 
models. The use of Federated Learning (FL) preserves patient privacy while maintaining high classification accuracy, achieving 
90% for diabetic retinopathy and 86% for glaucoma. Additionally, GA-based feature selection enhances diagnostic precision by 
identifying biomarkers linked to genetic risk factors. The integration of edge computing enables real-time, low-latency disease 
detection, making the system practical for clinical deployment and telemedicine applications. 
When compared to prior research, our accuracy remains consistent with high-performing deep learning models, such as 93% for 
diabetic retinopathy in retinal image analysis. However, our approach is unique in that it integrates privacy-aware learning through 
FL and establishes genetic correlations for enhanced diagnostics, addressing both scalability and ethical concerns in medical AI 
applications. This combination of high accuracy, privacy preservation, and clinical feasibility makes our framework a valuable 
contribution to the future of AI-driven ocular disease detection. 
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V. CONCLUSION 
This study introduces a privacy-preserving, AI-driven framework for ocular disease prediction, leveraging Federated Learning (FL), 
genetic algorithms (GA), and edge computing. The proposed approach achieves high disease prediction accuracy, reaching 90% for 
diabetic retinopathy and 86% for glaucoma, with minimal performance degradation of approximately 2% in FL models. Genetic 
feature selection via GA successfully identifies key ocular biomarkers linked to disease-associated genes, such as MYOC for 
glaucoma and VEGFA for diabetic retinopathy. Additionally, the framework ensures efficient edge deployment on an NVIDIA 
Jetson Nano, enabling real-time inference at 45ms per image while maintaining low power consumption, making it highly suitable 
for telemedicine applications. With robust generalizability validated across diverse age groups, genders, and ethnicities, the model 
demonstrates strong clinical applicability. By addressing the limitations of traditional CNN-based ocular disease detection, this 
integrated framework offers a scalable, privacy-aware, and clinically relevant AI solution for early diagnosis and disease 
monitoring. Despite its success, there are several avenues for future enhancements. Expanding the scope of Federated Learning to 
include cross-institutional training across global ophthalmology datasets could improve model robustness and ensure broader 
applicability. Strengthening differential privacy mechanisms would further enhance data security in decentralized learning 
environments. Another promising direction is multi-modal disease diagnosis, integrating imaging techniques such as optical 
coherence tomography (OCT) and fundus fluorescein angiography (FFA) to enable a more comprehensive assessment of ocular 
diseases. Additionally, extending FL to multi-organ disease prediction could help explore correlations between ocular conditions 
and systemic diseases like diabetes and cardiovascular disorders. Optimization of Edge AI is another critical aspect of future work, 
including the development of lightweight CNN architectures tailored for ultra-low-power IoT devices. Implementing on-device 
learning would allow personalized ocular health monitoring, reducing reliance on centralized processing while maintaining 
efficiency. Furthermore, clinical integration and real-world testing are essential to validate the framework's practical effectiveness. 
Large-scale clinical trials will be conducted to evaluate its real-world efficacy, while collaborations with ophthalmology clinics will 
facilitate real-time deployment and validation within telemedicine workflows. 
By integrating advanced AI, privacy-preserving learning, and real-time edge inference, this framework bridges the gap between AI 
research and clinical application, paving the way for scalable, global eye care solutions. 
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