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Abstract: Legacy systems, characterized by their heterogeneity and outdated coding practices, present significant security 
challenges in modern software infrastructure. Recent advances in Large Language Models (LLMs) and Retrieval Augmented 
Generation (RAG) offer promising solutions for vulnerability detection, as demonstrated by successful implementations of 
knowledge-level retrieval frameworks [1]. This research proposes LegacyGuard, a hybrid framework that integrates state-of-the- 
art code-specific LLMs with traditional static analysis and RAG-enhanced knowledge retrieval to detect vulnerabilities in multi-
lingual legacy codebases. The framework leverages LLM- based semantic analysis for deep code understanding, while 
incorporating external vulnerability intelligence through RAG to enhance detection accuracy. Through systematic evaluation 
using precision, recall, and F1-score metrics, this work aims to demonstrate improved vulnerability detection rates and provide 
actionable insights through chain-of-thought reasoning. The modular architecture ensures extensibility and adaptability for 
future security analysis applications, contributing to both theoretical foundations and practical implementations of AI-driven 
vulnerability detection in legacy systems. 
Keywords: Vulnerability Detection, Legacy Code Analysis, Hybrid AI Framework, Large Language Models, Static Analysis, 
Explainable AI, Multi-lingual Codebases, Security Intelligence, Code Analysis Tools, Software Security 
 

I. INTRODUCTION 
A. Background of study 
Legacy systems remain the underpinning infrastructure of mission-critical systems within the majority of organizations, despite 
increasing problems with maintenance and security. Legacy systems, typically written in multiple programming languages and with 
non-standard coding practices, are a huge security risk to modern software infrastructures. Large Language Model (LLM) and 
Retrieval Augmented Generation (RAG) research has provided promising evidence within the fields of code analysis and 
vulnerability detection [2], thus creating new ways to address these challenges. Blending LLMs with traditional static analysis has 
shown improved accuracy in code analysis operations [1], while RAG-based systems have provided more potential for utilizing 
external knowledge in vulnerability detection systems [2]. Industry research has shown that legacy systems remain at risk due to 
outdated practices and poor documentation, and this reveals the need for more sophisticated analytical solutions. 
 
B. Problem Statement 
Legacy codebases face three critical challenges that com- promise their security: 
1) Inconsistent and Outdated Coding Practices 
 Traditional static analyzers struggle with heteroge- neous codebases containing multiple programming languages. 
 Sparse documentation and inconsistent coding stan- dards make vulnerability detection more complex. 
 Limited contextual understanding of code semantics hampers accurate vulnerability identification. 
 The lack of standardized coding practices increases the complexity of automated analysis. [1] 
 Industry research indicates that 75% of organiza- tions struggle with legacy system maintenance due to outdated practices 

 
2) Limited Contextual Understanding 
 Existing vulnerability detection tools lack the capa- bility to effectively leverage external security intel- ligence. 
 Historical vulnerability patterns and remediation practices are not adequately integrated into analysis frameworks. 
 The semantic understanding of code remains limited in traditional static analysis approaches. 
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 The integration of multi-dimensional vulnerabil- ity knowledge requires more sophisticated analysis techniques. 
 Research shows that combining multiple analysis approaches can improve detection accuracy by up to 12.96%. [1] 

 
3) Data Fragmentation 
 Vulnerability-related information is scattered across diverse sources including CVE reports, security advisories, and code 

review archives. 
 Current analysis frameworks rarely integrate these multiple sources effectively. 
 The integration of external vulnerability knowledge with local code analysis remains underexplored. 
 The lack of standardized vulnerability classification systems complicates comprehensive analysis. 
 Industry study indicate that 60% of the security breaches occur in legacy systems due to data frag- mentation. 
 
C. Research Objectives 
This research addresses the following key questions: 
1) How can we effectively combine LLM-based semantic analysis with traditional static analysis for improved vulnerability 

detection in legacy codebases? 
2) How can we effectively combine LLM-based semantic analysis with traditional static analysis for improved vulnerability 

detection in legacy codebases? 
3) What role can RAG play in integrating external vulner- ability knowledge with local code analysis? 
4) How can we ensure explainability in vulnerability de- tection results while maintaining detection accuracy? 
The primary objectives of this research are: 
 To develop a hybrid framework (LegacyGuard) that in- tegrates LLM-based semantic analysis with traditional static analysis 

and RAG-enhanced knowledge retrieval 
 To improve vulnerability detection accuracy through the fusion of multiple analysis approaches 
 To provide explainable vulnerability detection results through chain-of-thought reasoning 
 To create a modular and extensible framework that can be adapted for various legacy system architectures 

 
Fig. 1. LegacyGuard System Architecture 

 
D. Significance of study 
This research contributes to both theoretical and practical aspects of software security: 
Theoretical Contributions 
1) Development of a novel hybrid approach combining LLMs, RAG, and static analysis 
2) Integration of external vulnerability knowledge with local code analysis 
3) Enhancement of explainability in AI-driven vulnerability detection 
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Practical Implications 
 Improved security for critical legacy systems 
 Reduced false positives through multi-modal analysis 
 Actionable vulnerability reports with detailed explana- tions 
 Extensible framework for future security analysis appli- cations 
 

II. LITERATURE REVIEW 
The security of legacy systems remains a critical concern, with recent studies emphasizing the increasing vulnerabili- ties inherent 
in outdated codebases [1, 6]. Traditional static analysis tools, while effective for modern software, often struggle with the 
complexities of legacy systems character- ized by multi-language environments and inconsistent coding standards [3]. These tools 
frequently lack the contextual under- standing necessary to identify vulnerabilities in heterogeneous code, leading to high false 
positive and negative rates [4]. 
Recent advancements in Large Language Models (LLMs) have opened new avenues for vulnerability detection. Zhou, Zhang, and 
Lo (2024) [4] explored the effectiveness of LLMs like GPT-3.5 and GPT-4 in detecting software vulnerabilities, demonstrating that 
LLMs can achieve competitive or superior performance compared to traditional methods with appropriate prompts. Further, the 
study emphasized diverse prompts for LLMs, encompassing task and role descriptions, project infor- mation, and examples from 
Common Weakness Enumeration (CWE) and the training set. However, their work primarily focused on modern code and did not 
address the specific challenges posed by legacy systems [4]. Other studies have also shown the potential of AI in vulnerability 
management, particularly in speeding up detection, identification, risk as- sessment, and mitigation . However, these approaches 
often treat vulnerability detection as a single-language problem, overlooking the polyglot nature of modern software projects. [5] 
Retrieval Augmented Generation (RAG) has emerged as a promising technique for enhancing LLM performance by inte- grating 
external knowledge [6]. 
RAG enables LLMs to access real-time data and context-enriched solutions grounded in the company’s frontier data, boosting 
accuracy and relevance [6].  
However, the application of RAG in vulnerability detection for legacy systems is still in its early stages. 233 words clear Though 
RAG can offer LLMs access to security advisories and vulnerability databases, the resultant security issues such as malicious 
customer data or trade secrets access are not to be undermined. Implementation security of RAG is mission- critical [6]. Integration 
of RAG with LLMs can conceivably enhance the discovery of vulnerability through the provision of context information and 
relevant coding examples, yet viable means for such integration into legacy systems should be researched. 
Several works have highlighted the importance of vulnera- bility identification in a multi-lingual environment [5]. Le et al. 
suggested a multi-lingual vulnerability detection (MVD) framework that is modeled on vulnerability data across a very large 
number of languages . However, MVD requires a distinct pipeline for vulnerability data curation and does not address the 
problems related to legacy codebases very well [5]. Further work has also highlighted the need for varied problem formulations, 
varied detection granularity levels, and greater support for languages in automated vulnerability systems. detection [3]. 
With these advances, some gaps in the existing literature remain to be filled. Firstly, there is no general framework that is 
capable of integrating LLMs, RAG, and static analysis in an effective manner to identify vulnerabilities in legacy applications. 
Secondly, current methods do not adequately ad- dress the multi-lingual character and non-homogeneous coding standards of legacy 
codebases. Thirdly, explainability of AI- based vulnerability detection methods is still an issue, which is a hindrance to real-world 
deployment [7]. Lastly, there is a requirement for curated data sets and evaluation benchmarks specifically tailored to vulnerability 
detection in heterogeneous legacy systems. A reliability analysis also shows the gap in detecting successful attacks, where 
misclassifications of an attack can reach 37% [7]. 
To address these gaps, this research proposes LegacyGuard, a hybrid framework that integrates LLM-based semantic anal- ysis, 
traditional static analysis, and RAG-enhanced knowledge retrieval to detect vulnerabilities in multi-lingual legacy code- bases. 
LegacyGuard aims to improve vulnerability detection accuracy by leveraging the strengths of each component while also providing 
explainable vulnerability detection results through chain-of-thought reasoning. Furthermore, this research will contribute a curated 
dataset and evaluation benchmarks for vulnerability detection in heterogeneous legacy systems, facilitating future research in this 
area. By addressing these gaps, LegacyGuard seeks to provide a practical and effective solution for securing vulnerable legacy 
systems. 
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III. RESEARCH METHODOLOGY 
A. Data Collection 
The data collection process for LegacyGuard will adopt a comprehensive approach to gather representative samples of vulnerable 
legacy codebases while ensuring sufficient diversity across programming languages and vulnerability types. 
1) Legacy Code Repositories: The primary source of data will consist of open-source and proprietary legacy codebases spanning 

multiple programming languages commonly found in enterprise environments. These will include: 
 Legacy codebases developed in COBOL, C/C++, Java, FORTRAN, and Visual Basic, with particular focus on systems 

developed before 2010 that have undergone minimal modernization 
 Documented vulnerabilities from these codebases, including patch histories when available, to create labeled training and 

validation datasets. 
 Production code samples from decommissioned legacy systems (with appropriate permissions) to capture real- world 

vulnerabilities and coding patterns specific to enterprise environments 
The collection will prioritize systems that demonstrate the typical characteristics of legacy code, including poor documentation, 
inconsistent coding standards, and accumulated technical debt. This approach ensures that the resulting dataset accurately represents 
the challenges faced when analyzing real-world legacy systems. 
 
2) Vulnerability Knowledge Base: To establish ground truth for training and evaluation, the methodology will incorporate 

vulnerability information from multiple authoritative sources: 
 Known vulnerability databases such as the National Vulnerability Database (NVD) and Common Vulnerabilities and Exposures 

(CVE) to provide standardized vulnerability information [8] 
 Security advisories and patch repositories specific to legacy systems to capture documented vulnerability pat- terns and their 

corresponding fixes 
 OWASP Top 10 and similar security benchmark lists that categorize and prioritize common security vulnerabilities 
 Industry reports and academic publications documenting vulnerability patterns specific to legacy programming languages 
This comprehensive vulnerability knowledge base will serve as the foundation for both the RAG component and the evaluation 
metrics, ensuring that the hybrid approach can accurately identify and classify vulnerabilities across different programming 
languages and system architectures. 
 
3) Documentation and Context: Understanding that legacy code often lacks comprehensive documentation, the data col- lection 

will extend beyond code to include: 
 Available system documentation, including architecture diagrams, requirements specifications, and developer notes 
 Maintenance histories and change logs, which can pro- vide insight into previous security-related modifications 
 Expert knowledge capture through interviews with developers and security professionals experienced with the specific legacy 

systems being analyzed 
This contextual information will be essential for the RAG component of the hybrid approach, providing the additional knowledge 
needed to accurately interpret code patterns and identify vulnerabilities that might not be apparent from the code alone. [9]. 

 
B. Sampling Technique 
Given the vast volume and diversity of legacy code, effective sampling is crucial to ensure that the research focuses on representative 
and relevant code segments while maintaining manageable dataset sizes for analysis. 
1) Stratified Random Sampling: The research will employ stratified random sampling to ensure balanced representation across 

different programming languages, system types, and vulnerability categories: 
 Primary stratification based on programming language (COBOL, C/C++, Java, FORTRAN, Visual Basic) to en- sure adequate 

representation of each language’s specific vulnerability patterns 
 Secondary stratification based on application domain (financial systems, healthcare, manufacturing, government, etc.) to 

capture domain-specific security concerns 
 Tertiary stratification based on known vulnerability categories (e.g., buffer overflows, SQL injection, memory leaks) to ensure 

comprehensive coverage of different vulnerability types 
Within each stratum, random sampling will be applied to select code segments for inclusion in the analysis dataset. This approach 
ensures that the final dataset adequately represents the diverse landscape of legacy systems while maintaining statistical validity. 
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2) Vulnerability-Focused Sampling: To address the challenge of imbalanced datasets (where vulnerable code examples are 
significantly less common than non-vulnerable examples), the sampling approach will include targeted selection of code 
segments known to contain vulnerabilities: 

 Oversampling of vulnerable code segments to create a more balanced dataset for training and evaluation 
 Inclusion of code segments before and after vulnerability patches to provide examples of both vulnerable and secure 

implementations 
 Selection of code segments with varying degrees of complexity and patch length to evaluate how these factors affect detection 

performance [10] 
This vulnerability-focused sampling will help address the chal- lenge of training models to detect relatively rare but critical 
security issues within large codebases. 

 
3) Contextual Code Selection: Recognizing that vulnera- bilities often exist within a broader context, the sampling technique will 

ensure that selected code segments include sufficient contextual information: 
 Function-level sampling that includes complete func- tions or methods rather than isolated lines of code 
 Module-level sampling that captures interactions be- tween related components 
 Inclusion of dependencies and imported libraries when necessary to understand the security implications of the code 
This contextual approach to sampling addresses a com- mon limitation of existing vulnerability detection approaches, 
which often analyze code segments in isolation without con- sidering the broader system context. [10]. 

 
C. Data Analysis 
The data analysis methodology for LegacyGuard imple- ments a three-phase approach that leverages the strengths of static analysis, 
LLMs, and RAG to achieve comprehensive vul- nerability detection across multi-language legacy codebases. 
1) Phase 1: Static Analysis Baseline: The first phase estab- lishes a baseline using traditional static analysis tools tailored to each 

target programming language: 
 Language-specific static code analyzers will be deployed to analyze code samples for predefined patterns of vulnerabilities, 

such as buffer overflows, SQL injection points, and insecure use of cryptographic implementa- tions. [8] 
 The results will be documented along with metadata that contains the identified vulnerability type, severity rating, and 

confidence level. 
 False positive rates will be determined through manual confirmation of a set of vulnerabilities found by security experts. 
This baseline assessment provides a comparative foundation for quantifying the effectiveness of the hybrid approach and for 
determining specific limitations of traditional static analysis to be applied to legacy codebases. 
 
2) Phase 2: LLM-Based Vulnerability Detection: The sec- ond phase then employs pre-trained code-specific LLMs to analyze the 

identical codebase, keeping contextual awareness in perspective: 
 CodeBERT and CodeT5 models will be fine-tuned on vulnerability datasets to further equip them to identify security 

weaknesses in a number of programming lan- guages. [10] 
 The LLMs will search code samples with specific instructions to identify potential vulnerabilities since research indicates 

LLMs perform better with specific questions rather than general calls for code review. [8] 
 The models will be ranked based on how well they can identify vulnerabilities, how well they can explain their findings, 

and how well they operate on different programming languages. 
This phase analyzes how contemporary LLMs can better understand the semantic properties of the code outside of the scope of 
conventional static analyzers, especially in multi- language settings. 
 
3) Phase 3: RAG-Enhanced Integrated Analysis: The third phase employs a new RAG-augmented method that integrates the 

benefits of static analysis and LLMs with knowledge acquisition from outside sources: 
 A vector database will be established with vulnerability patterns, security best practices, and code examples for semantic 

similarity indexed search. [9] [11] 
 An analyzing code snippets, the system will refer to per- tinent information from this knowledge base to improve the context of 

the LLM, responding the boundaries of the model’s pre-training knowledge. [9] 
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 A combined pipeline custom-made will combine the outcomes generated from static code analysis tools and the LLM-RAG-
based vulnerability scans using a score- based algorithm to account for the degree of confidence in each method. [11] 

 Security measures shall be put in place at the recovery stage to prevent prompt injection, and unauthorized in- formation access, 
addressing the security threats inherent in RAG systems. [9] [11] 

This hybrid solution takes advantage of the systematicity of static analysis, the contextual understanding of LLMs, and the 
knowledge-augmentation capability of RAG to build a more effective vulnerability detection system for legacy codebases. 
 
D. Tools and Techniques 
The LegacyGuard framework will leverage a diverse set of tools and methods, combining proven security evaluation methods 
with the latest AI methods to develop a robust vulnerability detection system for legacy codebases. 
1) Static Analysis Tools: For the static analysis part, language-specific facilities will be utilized to examine code in various 

programming languages: 
 For C/C++ codebases, CodeSonar provides extensive static analysis features specifically intended for memory- based 

deficiencies prevalent in these languages 
 For Java codebases: FindBugs/SpotBugs, which can detect a broad spectrum of patterns of vulnerabilities in Java applications. 
 Regarding COBOL codebases, Veracode SAST offers particular functionalities designed for the evaluation of enterprise 

COBOL applications. 
 Concerning Visual Basic, Visual Expert serves the func- tion of detecting security vulnerabilities in legacy Visual Basic 

programs 
 For FORTRAN: FLfortra or equivalent tools experienced with FORTRAN analysis. code for potential vulnerabil- ities. 
These tools will perform systematic analysis to identify potential security threats, code stability issues, and maintain- ability without 
executing the program. [8] 
 
2) LLM Framework and Fine-tuning: The LLM module will leverage the most recent pre-trained models specially designed for 

code comprehension: 
 Pre-trained models: The models CodeBERT and CodeT5 will be used as base models in this paper’s research because they are 

efficient in understanding code across languages and identifying vulnerabilities. [10] 
 Fine-tuning Methodology: The models will be fine-tuned domain-wise using labeled vulnerability datasets, thus enhancing their 

ability to identify security vulnerabilities in different programming languages. 
 Prompt engineering: Following experiments demonstrat- ing that LLMs are improved by certain instructions, a strict prompting 

framework will be used to direct the models to detect certain kinds of vulnerabilities. [8] 
 Evaluation infrastructure: A comprehensive testing framework will be created to evaluate the performance of the models for 

different programming languages and types of vulnerabilities. 
This feature exploits the contextual awareness abilities of contemporary LLMs to detect weaknesses that may not be caught by 
conventional static analysis tools, specifically in intricate or poorly documented legacy codebases. 
 
3) RAG Implementation: The RAG module will enhance the LLM’s function through purposeful knowledge retrieval: 
 A vector database like ChromaDB or similar will be employed to store and retrieve relevant code patterns, vulnerability 

information, and security best practices. [9] 
 Generation embedding: Code snippets and vulnerability descriptions will be embedded as vector embeddings to enable 

semantic similarity search. 
 Retrieval mechanisms: The model should include context-sensitive retrieval methods that pick the most suitable information in 

relation to the code being ana- lyzed. 
 Security controls: There will be complete security mea- sures in place to counter the threats posed by RAG systems, such as 

timely injection protection, access controls, and data privacy protection measures. [9] [11] 
This deployment is based on traditional RAG security mod- els, with the incorporation of code-specific changes instead of text-
based security threats. [9] [11] 
 
4) Integration Framework: A customized pipeline will be built that will merge findings from different sections and produce full-

fledged vulnerability scans. 
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 Multi-model voting: Where various elements yield con- flicting judgments, a weighted voting system will decide the final 
classification of vulnerability. 

 Confidence scoring: The confidence score for every weakness that is identified will be calculated, based on the degree of 
concordance between different elements and the strength of the evidence. 

 Explanation generation: The system will utilize the capa- bilities of the LLM to generate human-readable explana- tions of 
identified weaknesses, e.g., possible remediation strategies 

 Cross-language correlation: The system is designed to detect equivalent vulnerabilities and trends observed in various 
programming languages, employing the the approach’s ability to support multilingualism. 

The suggested integration framework addresses the chal- lenge of merging results derived through different analysis techniques with 
a common approach to vulnerability analysis for different programming languages. 

 
5) Evaluation and Benchmarking: The research will em- ploy an integrated assessment framework to assess the efficacy of the 

hybrid approach: 
 Standardized vulnerability datasets: The assessment will use standard vulnerability metrics where appropriate, supplemented by 

manually validated data sets specifi- cally designed for legacy languages. 
 Performance metrics: Already defined security metrics, i.e., CVSS scores to gauge severity as well as precision, recall, and F1-

scores to gauge detection accuracy. 
 Comparative analysis: The hybrid approach will be con- trasted with existing vulnerability detection tools, both general-

purpose and language specific. 
 Ablation studies: Effect of each constituent element (static analysis, LLM, RAG) will be evaluated by sys- tematic ablation 

studies. 
The evaluation process employed ensures that the research yields reliable and comparable results, which show the effec- tiveness of 
the hybrid approach in identifying vulnerabilities in legacy systems. 
 

IV. EXPECTED OUTCOMES AND IMPACT 
A. Expected Outcomes 
LegacyGuard research project is focused on providing several impactful outputs that build upon current strengths in the 
identification of legacy system vulner- abilities. The main output will be an in-practice hybrid tech- nique that combines large 
language models (LLMs), retrieval- augmented generation (RAG), and static analysis methods to detect vulnerabilities in various 
programming languages frequently used in legacy codebases. This is a culmination of recent work reported by Du et al.(2024) 
and Zhou et al. (2024). [12] 
The research will establish a general framework for vulner- ability classification applicable to legacy codebases and hence address 
the individual security challenges in such cases. The categorization will rank the vulnerabilities categorically based on severity, 
exploitability, and patch complexity, which will provide organizations with a foundation on which to anchor their security activities. 
We will also develop a customized knowledge base for legacy code vulnerability patterns for programming languages like COBOL, 
FORTRAN, C/C++, Visual Basic, and vintage versions of Java based on the multi- lingual approaches identified in Zhang et al. 
(2023). [13] 
Our findings will include quantitative performance measures across a range of programming languages and types of vul- nerabilities, 
enabling comparison of the effectiveness of dif- ferent combinations and configurations of components. These measures will 
establish baseline performance levels for hybrid methods of vulnerability detection in legacy systems, thus resolving the limitations 
enumerated in the systematization of knowledge by Shereen et al. (2024) [3]. The study also seeks to formulate optimized RAG 
methods specifically designed for use in code vulnerability contexts, thus resolving the security issues enumerated by Es et al. 
(2024) for RAG applications. [14] 
 
B. Impact 
1) Security Impact: LegacyGuard addresses the deep and serious security issues of organizations running legacy systems. By 

providing for greater vulnerability detection capa- bility, the framework helps organizations to find and address security 
vulnerabilities prior to them being exploited, thus lessening the risk of data breaches and loss of funds. Loss. Scandariato et al. 
(2023) affirm that legacy system vulnerabil- ities tend to be long-term because detection mechanisms are ineffective, hence 
making breakthroughs in this area very vital. [15] 
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The study also deals with the new security threat of ex- ploitation through AI. Lippmann et al. (2024) latest study highlights the 
ability of LLMs to attack vulnerabilities through the reading of threat advisories, highlighting the need to improve and 
accelerate the processes of vulnerability detec- tion. Leveraging AI functionality in a protective mechanism, LegacyGuard 
keeps firms ahead of the new threat landscape. [16] 

2) Economic and Practical Impact: The economic impli- cations of enhanced legacy software vulnerability discovery are 
extensive in that costs associated with security breach are large and resources allocated to support legacy programs are 
significant. By eliminating successful attack risks and vulner- ability scanning time, LegacyGuard will enable organizations to 
achieve enormous savings on the cost of their security activities. This activity explicitly addresses the problem of mitigating 
mean-time-to-remediate (MTTR) for Soremekun et al. (2023) write that vulnerabilities are a particular focus in traditional 
COBOL stacks. 
For most organizations, it is prohibitively costly or oper- ationally hazardous to replace legacy systems. LegacyGuard offers a 
pragmatic option that tightens security without ob- soleting existing infrastructure investments. This is especially important for 
industries such as finance, healthcare, and gov- ernment, where legacy systems are the norm even though they are not secure. 

3) Research Community Impact: LegacyGuard will signifi- cantly contribute to the research community by providing new 
methods of assessing and enhancing vulnerability detection systems. The project’s unique blend of LLMs, RAG, and static 
analysis lays the foundation upon which other researchers can build to further improve the work of benchmarking efforts such as 
CodeXGLUE outlined by Lu et al. [17]. 

 
V. TIMELINE 

LegacyGuard research project will be implemented for 12 months and will have six critical phases with clear milestones and 
deliverables. The latter facilitates complexity of creating a hybrid framework with numerous technologies and strict evaluation and 
documentation during research 
 
A. Gantt Chart 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Gantt Chart 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 13 Issue V May 2025- Available at www.ijraset.com 
     

 
4084 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

 

B. Breakdown 
1) Phase 1: Project Initialization and Planning (Month 1) 
The preliminary phase serves to lay the groundwork for the comprehensive research endeavor, emphasizing the clarification of 
project objectives, assembling the research team, and establishing the requisite technical infrastructure. 
During this month, a research team will be formed, comprising static code analysis experts, machine learning-based solutions to 
code understanding, and security vulnerability assessment experts. The research infrastructure needed, including development 
environments, code repositories, and collaboration tools, will be set up. The initial project planning documents, including detailed 
work breakdown structures and communication protocols, will be completed. The technical requirements specification document 
will also be completed, describing the legacy programming languages of interest (COBOL, C/C++, Java, FORTRAN, and Visual 
Basic) and their respective vulnerability patterns. Additionally, the evaluation metrics and baseline performance targets for the 
framework will be determined. 
 
2) Phase 2: Data Collection and Preparation (Months 2- 4) 
This stage is concerned with accumulating various legacy codebases and setting up the vulnerability knowledge base. 
During Month 2, the team will acquire open-source legacy codebases in the target programming languages, concentrating on 
systems developed before 2010. In addition, arrangements will be made with organizations willing to provide access to proprietary 
legacy systems on terms of confidentiality. 
Month 3 will be spent developing the vulnerability knowl- edge base by including data from the National Vulnerabil- ity 
Database (NVD), Common Vulnerabilities and Exposures (CVE), OWASP Top 10, and industry reports related to legacy systems. 
System documentation, maintenance records, and sit- uational data will also be gathered to aid the RAG component. Month 4 will 
consist of the deployment of sampling meth- ods, the development of stratified samples by programming languages, application 
domains, and vulnerability types. Labeled training and test datasets will be set up. 
 
3) Phase 3: Component Development (Months 5-7) 
This phase covers the concurrent advancement of the three basic components of the LegacyGuard framework: integration of 
static analysis, LLM adaptation, and RAG system execution. In Month 5, the team will deploy and customize static analysis 
tools for every target programming language, such as CodeSonar for C/C++, FindBugs/SpotBugs for Java, Veracode SAST for 
COBOL, Visual Expert for Visual Basic, and FLfortra for FORTRAN. Baseline testing will define baseline performance metrics 
for conventional static analysis methods. Month 6 will be utilized for LLM adaptation and tuning, exploring CodeBERT and 
CodeT5 models to determine the best base architecture for multi-language vulnerability detec- tion. Tailored fine-tuning 
techniques and prompt engineering approaches will be created. 
Month 7 will be spent in deploying the RAG component, i.e., installing the vector database (ChromaDB), constructing embedding 
generation pipelines for code snippets and vulnerability descriptions, and deploying context-aware retrieval mechanisms. 
Security controls will be incorporated to reduce the risks presented by RAG systems. 
 
4) Phase 4: Integration and Framework Development (Months 8-9) 
This phase focuses on integrating the individual components into a cohesive framework and developing neces- sary interfaces and 
workflow mechanisms. 
During Month 8, the team will develop the integration framework, implementing the multi-model voting system, con- fidence 
scoring mechanisms, and cross-language correlation capabilities. APIs and interfaces for framework interaction will also be 
developed. 
Month 9 will focus on implementing explanation generation capabilities, leveraging the LLM’s abilities to produce human- readable 
vulnerability explanations and remediation suggestions. Visualization tools will be developed to help users understand 
relationships between detected vulnerabilities. 

 
5) Phase 5: Evaluation and Validation (Months 10-11) 
This critical phase involves comprehensive testing and eval- uation of the LegacyGuard framework against established 
benchmarks and real-world legacy codebases. 
During Month 10, the team will conduct systematic ablation studies to measure the contribution of each component (static analysis, 
LLM, RAG) to the overall performance of the frame- work.  
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A comparative analysis against existing vulnerability detection tools across different programming languages will also be 
performed. 
Month 11 will focus on real-world validation using propri- etary legacy codebases provided by industry partners. Expert 
assessments will evaluate the framework’s precision, recall, and F1-scores, as well as qualitative analysis of the explana- tions 
generated by the system. 
 
6) Phase 6: Documentation and Dissemination (Month 12) 
The final phase focuses on documenting the research findings and preparing for dissemination to the academic and industry 
communities. 
Month 12 will be dedicated to finalizing research documen- tation, including comprehensive technical documentation of the 
LegacyGuard framework, detailed analysis of evaluation results, and preparation of academic papers for submission to relevant 
conferences and journals. Additionally, dissemination activities will include preparing open-source components for release, 
developing case studies and best practices guides, and organizing workshops or webinars to demonstrate the framework’s 
capabilities to potential users in industry and academia. 
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