Lehmer-4 Mean Labeling of Graphs

Dr P.Shalini ${ }^{1}$, S.A.Meena ${ }^{2}$
${ }^{1}$ Assistant Professor in Mathematics, ${ }^{2} P G \&$ Research department of Mathematics, Cauvery College for Women (Autonomous), Tiruchirappalli-620018, India

Abstract

A graph $G=(V, E)$ with p vertices and q edges is called Lehmer-4 mean graph, if it is possible to label verticesx $C V$ with distinct label $g(x)$ from $2,4,6,8, \ldots \ldots \ldots . .2 p$ in such a way thatwhen eachedge $e=u v$ islabeledwithg $(e=u v)=\left\lfloor\frac{\sigma(w)^{4}+g(v)^{4}}{g(w)^{2}+g(v)^{3}}\right\}$ (or) $\left\{\frac{g(u)^{4}+g(v)^{4}}{g(w)^{2}+g(w)^{3}}\right\}$,then the edge labels are distinct. In this case,g is called Lehmer-4 meanlabelingof G. Inthis paper, Lehmer-4 mean labeling have been introduced. Keywords: Labeling, Graceful Graph, Multiplicative Labeling

I. INTRODUCTION

Graph labeling is an assignment of integer to its vertices or edges subject to some certain condition.All Graphs in this paper are considered as finite and undirected. The symbols $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ denote the vertex set and edge set of a graph G . The cardinality of the vertex set is called the order of G denoted by p. The cardinality of the edge set is called the size of G denoted by q edges is called a (p, q) graph. A graph labeling is an assignment of integers to the vertices or edges. Bloom and Hsu[2] extended the notion of graceful labeling to directed graphs. Graceful signed graphs $f(u v)$ is the difference between $f(v)$ and $f(v)$, that is $f(u v)=f(v)$ $\mathrm{f}(\mathrm{u})$. Shalini, Paul Dhayabaran [14] introduced the concept A Study on Root Mean Square Labelings in Graphs. Shalini, Paul Dhayabaran [13] defined An Absolute Differences of Cubic and Square Difference Labeling. Shalini, Gowri, Paul Dhayabaran [15] discussed An Absolute Differences of Cubic and Square Difference LabelingFor Some Families of Graphs. Shalini, Sri Harini, Paul Dhayabaran [19] introduced Sum of an Absolute Differences of Cubic AndSquare Difference Labeling For Cycle Related Graphs. Shalini, Gowri, Paul Dhayabaran [16] studied An Absolute Differences of Cubic and Square Difference Labeling for Some Shadow and Planar Graphs. Shalini, Subha, Paul Dhayabaran [20] investigated A Study on Disconnected Graphs for an Absolute Difference Labeling. Shalini, Subha, Paul Dhayabaran [22] discussed A Study on Disconnected Graphs for Sum of an Absolute Difference of Cubic and Square Difference Labeling. Shalini, Sri Harini, Paul Dhayabaran [21] extended Sum of an Absolute Differences of Cubic And Square Difference Labeling For Path Related Graphs.For detailed survey J.A Gallian survey [1] is referred and for standard terminologies and notations HararyF [2] is referred.

II. BASIC DEFINITIONS

1) Definition2.1: A graph G is said to be Lehmer-4 mean graph if it admits lehmer-4 mean labeling.
2) Definition2.2: A pathis represented by a walk in which vertices are distinct. A path with n vertices is denoted byp p_{n}
3) Definition2.3: The Comb $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$ is a graph obtained by joining a single pendant edge to each vertex of a path
4) Definition2.4: The graph $P_{n} \odot K_{1,2}$ is obtained by attaching complete bipartite graph $K_{1,2}$ to each vertex of path P_{n}
5) Definition2.5: The graph $P_{n} \odot K_{1,3}$ is obtained by attaching complete bipartite graph $K_{1,3}$ to each vertex of path P_{n}

III. MAIN RESULTS

A. Theorem3.1

The Path P_{n} is a Lehmer-4 mean graph for $\mathrm{n} \geq 2$
Proof:
Let G be a graph of path P_{n}
The path P_{n} consists of n vertices and $\mathrm{n}-1$ edges
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{2,4,6,8, \ldots \ldots, 2 \mathrm{n}\}$ by $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}$
Then the edge labels as $\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=2 \mathrm{i}+1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$
The edges of the path graph receive distinct numbers
Hence, the path P_{n} is a Lehmer- 4 mean graph.

Example3.1

Figure3.1 : Path P_{9}

B. Theorem3.2

The Comb $\mathrm{P}_{\mathrm{n}} \mathrm{OK}_{1}$ is a Lehmer-4 mean graph forn ≥ 2
Proof:
Let G be a graph of comb $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$
Let $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ be a comb with vertices as $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} ; \mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{n}}$
Definef: $\mathrm{V}(\mathrm{G}) \rightarrow\{2,4,6,8, \ldots \ldots, 4 n\}$ by ,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-2 ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i} ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The edges of the comb graph receive distinct numbers
Hence, the comb $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$ is said aLehmer-4 mean graph.
Example 3.2

Figure3.2 : Comb $\mathrm{P}_{8} \odot \mathrm{~K}_{1}$

C. Theorem3.3

$\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ is a Lehmer-4 mean graph for $\mathrm{n} \geq 2$
Proof:
Let G be a graph of $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$
Let $P_{n} \odot K_{1,2}$ with vertices as $v_{1}, v_{2}, \ldots, v_{n} ; w_{1}, w_{2}, \ldots, w_{n} ; u_{1}, u_{2}, \ldots, u_{n}$
Definef: $\mathrm{V}(\mathrm{G}) \rightarrow\{2,4,6,8, \ldots \ldots, 6 \mathrm{n}\}$ by ,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=6 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=6 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=6 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The edges of the graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ receive distinct numbers
Hence, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ is a Lehmer- 4 mean graph.

Example 3.3

Figure3.3: $\mathrm{P}_{5} \odot \mathrm{~K}_{1,2}$

D. Theorem 3.4

$\mathrm{P}_{\mathrm{n}} \odot K_{1,3}$ is a Lehmer-4 meangraph for $\mathrm{n} \geq 2$
Proof:
Let G be a graph of $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$
Let $P_{n} \odot K_{1,3}$ with vertices as $v_{1}, v_{2}, \ldots, v_{n} ; w_{1}, w_{2}, \ldots, w_{n} ; u_{1}, u_{2}, \ldots, u_{n} ; x_{1}, x_{2}, \ldots, x_{n}$
Define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{2,4,6,8, \ldots \ldots, 8 \mathrm{n}\}$ by ,

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=8 \mathrm{i}-6,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=8 \mathrm{i}-4,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=8 \mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=8 \mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The edges of the graph $P_{n} \odot K_{1,3}$ receive distinct numbers
Hence, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$ is a Lehmer-4 mean graph
Example 3.4

IV. CONCLUSION

Finally, we conclude that path, comb, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}, \mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$ is a Lehmer-4 mean graph.

REFERENCES

[1] Bodendick, R. and Walther, G., On number theoretical methods in graph labelingsRes.Exp. Maths (2,/1995) 3-25.
[2] Bloom, D.F. Hsu, On graceful directed graphs, SIAMJ, Alg. Discrete Math.,6(1985),519-536.
[3] Gallian, M.A., "A Dynamic survey of graph labelings" Electronic journal, 2000 (Volume-23).
[4] Harary, F., Graph Theory, New Delhi: Narosa Publishing House, 2001.
[5] Hedge, S.M., Labeled graphs and Digraphs: Theory and Application.
[6] MacDougall, J.A., Mikra Millar, Slamin and W.D Wallis, Utilitas Math in press.
[7] Murugan, K., Subramanian, A., Skolem Difference Mean Graphs, Mapana, Christ University Journal of Science.
[8] Palanikumar, R, Rameshkumar, A, Wiener Index of Physio-Chemical Labeled Graph, Bulletin of pure and Applied Sciences, Vol. 37E(Math \& Stat), No. 2, 2018, PP: 519-522.
[9] Palanikumar, R, Rameshkumar, A, T Wiener Index of Fibonacci Labeled Graph $P_{n} \bigodot F_{4}$, Journal of Computer and Mathematical Sciences, Vol. $9(11)$, 17121716,November 2018..
[10] Palanikumar, R, Rameshkumar, A, Labeling on Dragon curve Fractal Graph, Aryabhatta Journal of Mathematics \& Informatics, Vol. 10, No. 2, July - Dec 2018.
[11]Rameshkumar, A, Palanikumar, R, The Wiener Lower Sum and Upper Sum of Friendship Graph F_{n}^{r}, Journal of Indian Acad. Math, Vol. 37, No. 2(2015), pp. 305-311.
[12] Rameshkumar, A, Palanikumar, R, Wiener Lower Sum of Complete K_{N}^{R} Graph, Aryabhatta Journal of Mathematics \& Informatics, Vol. 7, No. 2, July - Dec 2015.
[13] Shalini. P, Paul Dhayabaran. D, An Absolute Differences of Cubic and Square Difference Labeling, International Journal of Advanced Scientific and Technical Research, May-June 2015, Issue-5, Volume-3, pages1-8.
[14] Shalini. P, Paul Dhayabaran. D, A Study on Root Mean Square Labelings in Graphs, International Journal of Engineering Science and Innovative Technology, May 2015, Volume-4, Issue-3, pages305-309.
[15] Shalini. P, Gowri. R, Paul Dhayabaran. D,An absolute Differences of Cubic and Square Difference Labeling For Some Families of Graphs, International Journal of Analytical and Experimental Modal Analysis, Vol.11, Issue 10, October 2019, Pages 538-544, Impact Factor: 6.3. ISSN No: 0886 - 9367.
[16] Shalini. P, Gowri. R, Paul Dhayabaran. D, An Absolute Differences of Cubic and Square Difference Labeling for Some Shadow and Planar Graphs, The International Journal of Analytical and Experimental Modal Analysis, Volume XII, Issue I, January 2020, Pages 352 - 355 ..
[17] Shalini. P, Paul Dhayabaran. D, Maximization of Multiplicative Labeling, International Journal of Research in Advent Technology, Special Issue, pages 209214, January 2019.
[18] Shalini. P, Paul Dhayabaran. D,Minimization of Multiplicative Graphs, International Journal of Current Research, Volume 7, Issue-08,pages 1951119518,August 2015.
[19] Shalini. P, Sri Harini. S ,PaulDhayabaran. D,Sum of an Absolute Differences of Cubic And Square Difference Labeling For Cycle Related Graphs, The International Journal of Analytical and Experimental Model Analysis, Volume XII, Issue I, January 2020, pages 370-374.
[20] Shalini. P, Subha. P, Paul Dhayabaran. D,A Study on Disconnected Graphs for an Absolute Difference Labeling, The International Journal of Analytical and Experimental Modal Analysis, Volume XII, Issue I, January 2020, Pages 415-421.
[21] Shalini. P, Sri Harini. S, Paul Dhayabaran. D,Sum of an Absolute Differences of Cubic And Square Difference Labeling For Path Related Graphs, Infokara Research, Volume IX, Issue 2, February 2020, pages 58-67, ISSN NO: 1021-9056.
[22] Shalini. P, Subha. P, Paul Dhayabaran. D,A Study On Disconnected Graphs For Sum of an Absolute Difference of Cubic and Square Difference Labeling, Journal Of Interdisciplinary Cycle Research, Volume XII, Issue II, February 2020, Pages 952-962, ISSN NO: 0022-1945.
[23] Shalini. P, Sudar. A, Minimization of Multiplicative labelling for some families of Graphs, Gorteria Journal, Vol 34, Issue 1, 2021, Pg.No: 369-376, ISSN No: 0017-2294.
[24] Shalini. P, Sudar. A,Minimization of Multiplicative labelling for Antenna, Dumpy Level Instrument, Net Graphs, International Journal of analytical and experimental modal analysis, Vol XIII, Issue II, February 2021, Pg.No: 343-349, ISSN No: 0886-9367.

do
cross ${ }^{\text {ref }}$
10.22214/IJRASET

IMPACT FACTOR: 7.129

TOGETHER WE REACH THE GOAL.

IMPACT FACTOR:
7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE \& ENGINEERING TECHNOLOGY
Call : 08813907089 @ (24*7 Support on Whatsapp)

