

11 X October 2023

https://doi.org/10.22214/ijraset.2023.55414

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

407 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Leveraging Django: A Web Framework for

Efficient Infrastructure Monitoring Tools

Bhargava K P
1
, Dr. Deepamala

2

1
Dept. of CSE, RVCE Bengaluru-59

2
Associate Professor, Dept. of CSE, RVCE, Bengaluru-59

Abstract: Infrastructure monitoring is crucial for ensuring the reliability and performance of modern software systems. As these

systems grow in complexity and scale, the demand for efficient and scalable monitoring tools becomes increasingly important.

This review paper examines the utilization of Django, a powerful web framework, for constructing infrastructure monitoring

tools and provides an in-depth review of Django's capabilities, focusing on its robustness, scalability, and extensibility, as well as

its compatibility with various databases and integration with other technologies. It explores the different components and

modules within Django that can be leveraged to develop efficient infrastructure monitoring tools.

The review delves into the Django ORM (Object-Relational Mapping) system, highlighting its role in effective database

management for monitoring data. It also evaluates Django's authentication and authorization system, emphasizing its

contribution to secure access control in the monitoring environment. The review further examines the Django admin interface,

which simplifies monitoring configuration management and provide a comprehensive understanding of the benefits and

considerations of utilizing Django for developing efficient and scalable infrastructure monitoring tools. It serves as a valuable

resource for researchers and practitioners looking to construct robust monitoring systems using Django and contributes to the

ongoing discourse on effective infrastructure monitoring in modern software ecosystems. In conclusion, the paper summarizes

the advantages and challenges associated with leveraging Django for infrastructure monitoring tools. It highlights Django's

versatility, productivity, and strong community support, while also addressing potential areas for improvement and future

research directions.

Keywords: Infrastructure monitoring, Django, web framework, data modelling, views, templates, admin interface, background

tasks, authentication, authorization, REST APIs, data visualization.

I. INTRODUCTION

Monitoring the performance and health of infrastructure services is crucial for organizations to ensure the smooth operation of their

IT systems and deliver uninterrupted services to their users. With the increasing complexity and distributed nature of modern

infrastructure environments, there is a growing need for effective monitoring tools that can provide real-time insights and proactive

management capabilities. In this paper, we explore the utilization of the Django framework as a powerful tool for developing

infrastructure monitoring tools. Django, a popular web framework based on Python, offers a comprehensive set of features and a

robust development environment that can significantly simplify the process of building monitoring systems. By leveraging the

flexibility and scalability of Django, organizations can create sophisticated monitoring dashboards that enable them to monitor

various components such as servers, databases, networks, and applications. The primary advantage of using Django for

infrastructure monitoring tools is its modular and reusable nature. The framework follows the model-view-controller (MVC)

architectural pattern, allowing developers to separate the different aspects of the monitoring system into distinct components. This

modular approach promotes code reusability, ease of maintenance, and enables the integration of additional features or

functionalities as the monitoring needs evolve. Furthermore, Django's built-in features for database management facilitate the

storage, retrieval, and analysis of monitoring data. By leveraging Django's powerful ORM (Object-Relational Mapping) capabilities,

developers can seamlessly interact with various databases, ensuring efficient data handling and enabling advanced querying and

reporting functionalities.

Security is a critical aspect of infrastructure monitoring, as it involves handling sensitive data and access to critical systems. Django

provides robust security features such as authentication, authorization, and data encryption, which are essential for securing the

monitoring dashboard and ensuring that only authorized personnel can access and manage the monitoring system.

Another significant advantage of Django is its user-friendly development environment and intuitive user interface design

capabilities.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

408 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The framework's templating engine allows developers to create visually appealing and responsive monitoring dashboards that can be

accessed and utilized across different devices, including desktops, laptops, tablets, and smartphones. This flexibility ensures that

administrators can monitor the infrastructure and receive real-time alerts anytime, anywhere.

II. LITERATURE REVIEW

Tool management systems are used to track and manage the usage of tools in various industries, and they help to improve tool

accountability and reduce tool loss and theft. The use of Django web framework provided a high-level development framework for

rapid development of secure and scalable web applications [1]. In this context. Work focus on related studies and works on tool

management systems, web frameworks, and the use of Django web framework for tool management systems.

Comparison study between New Relic and other performance monitoring tools. Performance monitoring tools are essential for

monitoring and analysing the performance of software applications, and they help to identify and resolve issues related to

application performance [2]. The comparison study focused on evaluating the features, performance, and usability of New Relic in

comparison to other performance monitoring tools. Work cover topics related to performance monitoring tools, their importance in

software development, and the specific features and capabilities of New Relic and other performance monitoring tools.

Web application for monitoring large-scale virtualized computing resources. With the rise of cloud computing, virtualization has

become an important technology for efficient resource utilization and cost reduction. The monitoring of virtualized computing

resources is essential to ensure their proper functioning and to detect potential issues or anomalies [3]. The web application provides

real-time monitoring and visualization of large-scale virtualized computing resources. Work cover topics related to virtualization

technology, cloud computing, monitoring of virtualized resources, web-based monitoring applications, and the proposed web

application for monitoring large-scale virtualized computing resources.

Web application called UNO using the Django framework. The application provides a platform for users to create and participate in

online polls, quizzes, and surveys. UNO offers various features such as real-time response tracking, customizable question types,

and data visualization tools [4]. The authors designed the application to be user-friendly and scalable, with support for multiple

users and roles. The proposed application can be used in various domains such as education, marketing, and research. Work cover

topics related to web application development, Django framework, online polls, quizzes, surveys, and the proposed web application

UNO

Python as a tool for web server application development. The authors discussed the advantages of using Python for web

development, including its simplicity, readability, and ease of use. They highlighted various Python web frameworks such as

Django, Flask, and Pyramid, and compared their features and performance. The authors also provided a tutorial for building a web

application using the Flask framework [5]. The proposed approach can reduce the development time and cost of web applications ,

and improve their scalability and maintainability. Work cover topics related to web server application development, Python

programming, Python web frameworks, and the proposed tutorial for building a web application using the Flask framework.

Comparison and analysis of web technologies in Node, PHP, and Python-Django. The authors compared these three technologies in

terms of their architecture, scalability, performance, security, and ease of use. They also provided a practical comparison by

implementing the same web application in each technology and evaluating the results. The study found that each technology has its

strengths and weaknesses, and the choice of technology depends on the specific requirements of the project [6]. Node was found to

be efficient for real-time applications, PHP for web development, and Python-Django for large-scale applications with complex data

structures. Work cover topics related to web technologies comparison, architecture, scalability, performance, security, and ease of

use, as well as the practical comparison of Node, PHP, and Python-Django.

Review study of frameworks used in developing web-based applications, specifically Django, Ruby on Rails, and Cake PHP. The

authors examined the features, advantages, and disadvantages of each framework in terms of development time, flexibility,

scalability, security, and community support [7]. They also analysed the popularity and trends of these frameworks based on

industry surveys and job market demand. The study concluded that Django and Ruby on Rails are suitable for large-scale and

complex applications, while Cake PHP is more appropriate for smaller and simpler projects. Work cover topics related to web-based

application development frameworks, including features, advantages, and disadvantages, development time, flexibility, scalability,

security, community support, popularity, and trends.

Generating Django MVC web framework using the Stratego transformation language. The authors discussed the importance of code

generation in software development to improve productivity, reduce errors, and facilitate code reuse. They also explained the

advantages of using a transformation language like Stratego for code generation, such as abstraction, modularization, and

automation [8].

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

409 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

The study proposed a method for generating a Django web application from an abstract model using Stratego and evaluated the

effectiveness of the method using case studies. The authors also discussed the limitations of the proposed method and future work

needed to improve it. Work cover topics related to code generation, transformation languages, Django web framework, model-

driven development, and software engineering.

Method to optimize the Django web framework by using a greedy strategy. The authors highlight that the Django framework has

been widely used in developing web applications, but its performance can be negatively impacted by its high-level abstraction and

dynamic nature. To address this issue, the authors propose a method that optimizes the execution of Django by reducing the

overhead of function calls and class instantiations through a greedy strategy [9] . The proposed method is evaluated by comparing

the performance of a Django application before and after optimization, and the results show that the proposed method can

significantly improve the performance of Django-based web applications.

Python-based simulation software for monitoring the operability state of critical infrastructures under emergency conditions. The

software simulates emergency scenarios to evaluate the resilience and operability of critical infrastructures such as power grids,

water supply networks, and transportation systems. The software incorporates real-time data from various sources to monitor the

state of the infrastructure during the simulation. The simulation results can provide insights into the weaknesses and vulnerabilities

of the infrastructure and help to identify necessary improvements [10]. Work cover topics related to critical infrastructure

monitoring, emergency scenarios simulation, Python-based simulation software, and the proposed software for monitoring the

operability state of critical infrastructures under emergency conditions.

Compares the performance of three popular web development technologies, PHP, Python, and Node.js, based on various criteria

such as response time, throughput, memory usage, concurrency, and scalability [11]. The paper concludes that the choice of

technology depends on the specific requirements of the application and the preferences of the development team.

III. DJANGO USED IN DEVELOPMENT OF REMOTE INFRASTRUCTURE SERVICES MONITORING

DASHBOARD

Django is a high-level Python web framework that can be used to develop web applications, including Remote Infrastructure

Services Monitoring Dashboards. Here are some reasons why Django may be a suitable choice for developing a Remote

Infrastructure Services Monitoring Dashboard:

1) Rapid Development: Django provides many built-in features and tools that can help developers build web applications quickly.

This can be particularly useful when building a Remote Infrastructure Services Monitoring Dashboard where speed is critical.

2) Scalability: Django is designed to handle large-scale web applications, making it suitable for a Remote Infrastructure Services

Monitoring Dashboard that may need to monitor many different systems and services.

3) Security: Django includes many built-in security features that can help protect a Remote Infrastructure Services Monitoring

Dashboard from security threats, such as cross-site scripting (XSS) and SQL injection attacks.

4) Admin interface: Django includes a built-in admin interface that can be used to manage the application's data and settings. This

can be particularly useful when building a Remote Infrastructure Services Monitoring Dashboard that needs to be configured

and managed by non-technical users.

The Django admin interface offers several key advantages. Firstly, it eliminates the need for developers to build a separate

administration interface from scratch, saving valuable development time and effort. By simply configuring the admin interface,

developers can quickly provide administrators with access to the underlying data models and their associated functionality. The

Django admin interface is highly customizable and extensible. Developers can define custom admin views, modify existing views,

and add additional features to suit specific application requirements. This flexibility allows for tailoring the admin interface to match

the application's unique data models and business logic.

The admin interface provides a comprehensive set of tools for managing data models. It automatically generates forms for data

entry, performs data validation, and handles common CRUD (Create, Read, Update, Delete) operations. The admin interface also

supports search, filtering, and sorting capabilities, making it easy to locate and manipulate specific records within the data models.

The admin interface integrates seamlessly with Django's authentication and authorization system. Administrators can be assigned

specific permissions and access levels, granting them control over specific data models and actions. This ensures that sensitive data

and critical operations are only accessible to authorized personnel.

The admin interface provides a user-friendly and consistent interface for administrators. Its intuitive design and navigation allow

administrators to quickly familiarize themselves with the interface and perform tasks efficiently. The interface is responsive and

adaptable, providing a seamless experience across different devices and screen sizes.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

410 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

In summary, the Django admin interface is a powerful tool that simplifies the management and administration of data models in a

Django application. Its pre-built functionality, customization options, integration with authentication and authorization systems, and

user-friendly interface make it an invaluable asset for developers and administrators. By leveraging the Django admin interface,

developers can streamline administrative tasks, improve productivity, and provide administrators with a convenient and efficient

tool for managing application data.

A. Django Rest Framework

Django Rest Framework is a powerful toolkit that can be used to build RESTful APIs quickly. This can be useful when building a

Remote Infrastructure Services Monitoring Dashboard that needs to integrate with other systems and services.

The Django Rest Framework (DRF) is a powerful toolkit for building Web APIs (Application Programming Interfaces) using the

Django web framework. It provides a set of tools and libraries that simplify the development of RESTful APIs, enabling developers

to build robust and scalable web services.The Django Rest Framework extends the capabilities of Django by adding features

specifically designed for building APIs. It leverages the familiar Django syntax and conventions, making it a natural choice for

Django developers to create API endpoints and manage data serialization and deserialization. One of the key advantages of using

the Django Rest Framework is its ability to handle complex API requirements with ease. It offers powerful features such as

serialization, authentication, authorization, and request/response handling, allowing developers to focus on the core business logic of

the API rather than dealing with repetitive tasks. Serialization is a fundamental aspect of APIs, and the Django Rest Framework

excels in this area. It provides robust serialization mechanisms, allowing developers to convert complex data models and Python

objects into various formats such as JSON, XML, or YAML. DRF's serializers also handle data validation, enabling the API to

receive and process input data efficiently. DRF includes built-in support for authentication and authorization, making it

straightforward to secure API endpoints. It integrates seamlessly with Django's authentication system, enabling developers to

implement various authentication methods such as token-based authentication or OAuth2. Additionally, DRF provides flexible

authorization options, allowing developers to define granular access control policies for different API resources.

B. Django MVT Architecture

Django will be a suitable choice for developing a Remote Infrastructure Services Monitoring Dashboard. Its rapid development,

scalability, security features, built-in admin interface, and support for RESTful APIs can make it a powerful tool for building

monitoring dashboards.

Django is a popular Python web framework that follows the Model-View-Template (MVT) architectural pattern.

Here's a brief explanation of the MVT pattern as it applies to Django:

1) Model: This is the data layer of the application, responsible for defining the database schema and managing data access.

2) View: The view is the intermediary between the model and the template. It processes incoming requests, retrieves data from the

model, and passes that data to the template for rendering.

3) Template: The template is the presentation layer of the application. It defines the structure and layout of the user interface and

uses data passed from the view to populate the interface with dynamic content.

In the MVT pattern, the controller logic is divided between the view and model layers, with the view acting as the controller that

handles user input and updates the model accordingly. Django provides a range of built-in tools and libraries for working with

databases, rendering templates, and handling HTTP requests and responses as shown in the fig 1 . This allows developers to focus

on writing application logic rather than low-level infrastructure concerns. The MVT pattern used in Django provides a clear

separation of concerns and allows for greater flexibility and maintainability in web applications.

Fig 1: Django Working Process

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

411 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

IV. DJANGO OBJECT-RELATIONAL MODEL

The Object-Relational Mapping (ORM) capabilities of Django simplify the interaction between the application and the underlying

database, reducing the complexity of database management. As shown in fig-2 Developers can leverage Django's ORM to model

and manipulate monitoring data, perform complex queries, and ensure seamless updates to the database schema as the monitoring

system evolves.

By leveraging Django's capabilities, organizations can effectively monitor and manage their distributed infrastructure, proactively

identify and address performance issues, and ensure the continuous availability of critical services. The remote infrastructure

services monitoring dashboard developed using Django provides real-time insights, trend analysis, customizable alerts, and

historical data visualization, empowering administrators to make informed decisions and maintain the stability and reliability of

their infrastructure.

Fig 2: Django used in Infrastructure Monitoring Tools

Django proves to be a valuable framework for the development of remote infrastructure services monitoring dashboards. Its

versatility, scalability, security, user-friendliness, and Object-Relational Mapping capabilities contribute to the creation of a robust

monitoring tool that meets the evolving needs of modern organizations, ensuring the smooth operation and optimal performance of

remote infrastructure services.

A. Advantages Of Django In Infrastructure Monitoring Tools

1) Modularity and Reusability: Django follows the model-view-controller (MVC) architectural pattern, which promotes code

modularity and reusability. This allows developers to separate the different components of the monitoring tool, such as data

collection, processing, and visualization, making it easier to maintain and enhance the system as monitoring needs evolve.

2) Rapid Development: Django provides a comprehensive set of built-in features and tools that accelerate the development

process. These include an ORM (Object-Relational Mapping) for database management, form handling, user authentication,

URL routing, and more. By leveraging these ready-to-use components, developers can focus on the monitoring-specific logic

rather than building basic functionalities from scratch, resulting in faster development and deployment cycles

3) Database Management: Django's ORM simplifies database management by providing a high-level Pythonic interface to

interact with the database. It supports multiple database backends, such as PostgreSQL, MySQL, and SQLite, allowing the

monitoring tool to work with different infrastructure setups. The ORM handles tasks like data retrieval, storage, and querying,

making it easier to manage and analyse monitoring data.

4) Scalability and Performance: Django is designed to handle high-traffic and high-performance applications. It supports

horizontal scaling by deploying multiple instances of the monitoring tool, ensuring it can handle increasing data volumes and

user traffic. Additionally, Django offers caching mechanisms, asynchronous task processing, and optimization options to

improve the system's performance and responsiveness.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

412 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

5) Security: Security is critical when dealing with infrastructure monitoring, as it involves handling sensitive data and accessing

critical systems. Django provides robust security features, such as authentication, authorization, and data encryption. It also

incorporates protections against common web vulnerabilities, like cross-site scripting (XSS) and cross-site request forgery

(CSRF), ensuring that the monitoring tool is secure and protected from unauthorized access.

6) User-Friendly Interface: Django's templating engine allows for the creation of visually appealing and responsive monitoring

dashboards. The framework supports the development of intuitive user interfaces that can be accessed across various devices,

including desktops, laptops, tablets, and smartphones. This flexibility ensures that administrators can monitor the infrastructure

and receive real-time alerts anytime, anywhere, enhancing the user experience and ease of use.

B. Dis-Advantages Django in Infrastructure Monitoring Tools

1) Learning Curve: Django has a learning curve, especially for developers who are new to the framework. Its comprehensive

feature set and conventions may require some time and effort to fully grasp. Developers may need to invest time in

understanding Django's concepts, structure, and best practices before they can efficiently develop monitoring tools using the

framework.

2) Overhead: Django is a full-featured web framework, which means it comes with a certain amount of overhead. This overhead

can impact performance, particularly for lightweight monitoring tools that require minimal resources. Depending on the scale

and complexity of the infrastructure being monitored, the additional layers and abstractions provided by Django may not be

necessary and could potentially introduce unnecessary complexity.

3) Customization Limitations: While Django offers a high degree of customization, there may be scenarios where specific

customization requirements fall outside the framework's conventions and patterns. In such cases, developers may need to work

around Django's defaults or make modifications to the core framework, which can introduce complexity and potentially affect

the stability and maintainability of the monitoring tool.

4) Dependency Management: Django has its own set of dependencies and may require additional packages or libraries for specific

monitoring tool requirements. Managing these dependencies and ensuring compatibility between different versions of Django

and its extensions can be a challenge. It's important to carefully manage and update dependencies to avoid potential conflicts

and compatibility issues.

5) Performance Considerations: While Django is capable of handling high-traffic and high-performance applications, it may not

be the most performant framework for all monitoring scenarios. Depending on the specific requirements and scale of the

infrastructure being monitored, there may be more lightweight or specialized frameworks available that can offer better

performance for specific use cases.

6) Development Constraints: Django follows a specific architectural pattern (MVC), which may impose certain constraints on the

development process. While this pattern promotes code organization and modularity, it may not be the ideal fit for all

monitoring tool architectures or development preferences. Developers may need to work within the framework's conventions,

which could limit flexibility and customization options.

V. CONCLUSION

The utilization of the Django framework in the development of a remote infrastructure services monitoring dashboard proves to be a

powerful and effective solution.

Django's features, such as modularity, scalability, security, user-friendly interface, and Object-Relational Mapping (ORM),

contribute to the creation of a comprehensive monitoring tool that ensures the smooth operation and optimal performance of remote

infrastructure services.

The modular structure of Django allows for the separation of concerns and promotes code reusability, making it easier to develop

and maintain the monitoring dashboard. The framework's scalability enables the system to handle increasing data volumes and user

traffic, ensuring it can adapt to growing infrastructure needs.

Django's robust security measures protect sensitive infrastructure data from unauthorized access and tampering, maintaining the

integrity and confidentiality of the monitoring system. The user-friendly interface provided by Django's templating engine allows

administrators to easily navigate and interact with the monitoring dashboard, accessing real-time performance data, generating

reports, and setting up customized alerts.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

 Volume 11 Issue X Oct 2023- Available at www.ijraset.com

413 © IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] J. -Y. Chen, Y. -L. Lin and B. -Y. Lee, "Development of Tool Management System based on Django Web Framework," 2022 IEEE 4th Eurasia Conference on

IOT, Communication and Engineering (ECICE), Yunlin, Taiwan, 2022, pp.278-282, doi10.1109/ECICE55674.2022.10042890.

[2] J. Singh and K. Ghai, "Comparing New Relic with other Performance Monitoring Tools," 2022 10th International Conference on Reliability,Infocom

Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 2022, pp. 1-5, doi:10.1109/ICRITO56286.2022.9964706.

[3] R. Poenaru, "Web Application for Monitoring Large-scale Virtualized Computing Resources," 2022 21st RoEduNet Conference: Networking in

 Education and Research (RoEduNet), Sovata, Romania, 2022, pp.1-5,doi: 10.1109/RoEduNet57163.2022.9921106.

[4] Elbasheir, Hassena Babiker Mohammed Diss. Sudan University of Science and Technology, 2015 .A Review Study of Frameworks Used in Developing Web-

based Applications Django, Ruby on Rails and Cake PhP

[5] I. A. Bairagi, A. Sharma, B. K. Rana and A. Singh, "UNO: A Web Application using Django," 2021 3rd International Conference on Advances in Computing,

Communication Control and Networking (ICAC3N), Greater Noida, India, 2021, pp. 1371-1374, doi: 10.1109/ICAC3N53548.2021.9725577.

[6] Taneja, Sheetal and Pratibha R. Gupta. “Python as a Tool for Web Server Application Development.” (2014).

[7] Lei, Kai & Ma, Yining & Tan, Zhi. (2014). Performance Comparison and Evaluation of Web Development Technologies in PHP, Python, and Node.js. 661-

668. 10.1109/CSE.2014.142.

[8] S. Liawatimena et al., "Django Web Framework Software Metrics Measurement Using Radon and Pylint," 2018 Indonesian Association for Pattern Recognition

International Conference (INAPR), Jakarta, Indonesia, 2018, pp. 218-222, doi: 10.1109/INAPR.2018.8627009.

[9] D. V. Annenkov and E. A. Cherkashin, "Generation technique for Django MVC web framework using the stratego transformation language," 2013 36th

International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia, 2013, pp. 1084-1087.

[10] J. Chou, L. Chen, H. Ding, J. Tu and B. Xu, "A Method of Optimizing Django Based on Greedy Strategy," 2013 10th Web Information System and Application

Conference, Yangzhou, China, 2013, pp. 176-179, doi: 10.1109/WISA.2013.41.

[11] Plekhanova, Julia. “A Review Study of Frameworks Used in Developing Web-based Applications Django, Ruby on Rails and Cake PhP” (2015)

