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Abstract: Wireless Sensor Networks (WSNs) is a distributed network initially designed as simple monitoring systems comprising 
numerous sensor nodes focusing on data collection, processing, and transmission. In WSNs, a huge amount of vulnerabilities 
can arise, specifically those initiating from malicious nodes (MNs), which direct to cooperate data integrity, network stability, 
and reliability. Although security remains critical, current MN detection methods are time-consuming and increased latency for 
constrained WSNs. In order to overcome these issues, a novel Linear Regressive Momentum Optimized Dense neural Network 
(LiRMO-DenseNet) model is developed to enhance the data transmission security in WSN. The proposed LiRMO-DenseNet 
model utilizes the dense neural network concept to categorize the sensor nodes as legitimate sensor nodes or intruders with help 
of several layers such as input, numerous hidden layers, and output layer. First, the number of sensor nodes is given to the input 
layer. After that, the input layer transmits the collected sensor nodes to the first hidden layer. In that layer, the different 
characteristics of the sensor nodes like energy, cooperativeness and trust level are computed. Then, the computed values of the 
sensor nodes are given to third hidden layer. In that layer, Changepoint linear regression analysis is carried out for analyzing 
the sensor node with their characteristics by setting the threshold. Depending on the analysis, the nodes are classified as 
legitimate sensor nodes and intruders. A new part of this process is fine-tuning of dense neural network, where the 
Metaheuristic Walrus Optimization algorithm is employed to update the hyperparameter of dense neural network for minimizing 
the training and validation errors, thereby boosting the accuracy of node classification. Finally, the accurate node classification 
is carried out at output layer. With the selected legitimate sensor nodes, secure data transmission is achieved in WSN. The 
effectiveness of the proposed LiRMO-DenseNet model is assessed using a comprehensive set of performance measures, 
including accuracy, confidentiality rate, data integrity rate, packet delivery rate, throughput and delay. The simulation findings 
demonstrate that the proposed LiRMO-DenseNet model consistently achieves superior security performance, exhibiting higher 
confidentiality and reduced delay compared to existing deep learning based methods. 
Keywords: WSN, secure data transmission, dense neural network, Changepoint linear regression analysis based legitimate node 
classification, Metaheuristic Walrus Optimization algorithm based fine tuning. 
 

I. INTRODUCTION 
Wireless sensor networks (WSNs) have gain significant attention due to their low-power intelligent processing, compact node size, 
self-organizing capabilities, and efficient routing. These networks support a wide range of applications, including home automation, 
smart city infrastructure, health monitoring, and object tracking. Sensor nodes are typically small and battery-powered, which 
entails inherent limitations related to energy availability, and overall computational resources. Owing to their communication 
patterns and deployment environments, WSNs face critical challenges in energy management and secure data transmission, both of 
which directly impact network lifetime and resilience against malicious nodes. To address energy constraints and security of data 
transmission, various techniques have emerged as effective solutions for prolonging the operational lifetime of the network. 
Quantum search-enhanced bat algorithm (QS-BAT) was designed in [1] for accurate intrusion detection based on deep learning 
architectures under multiple attack scenarios.    However, accuracy, latency, and energy consumption remained major challenges in 
distributed IDS deployments.   Machine Learning-based Secure Routing Protocol (MLSRP) was developed in [2] for WSN to obtain 
better energy efficiency and deliver an efficient security with reduced data loss. However, deep learning model was not employed 
for achieving higher accuracy in intruder node detection.   
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An efficient Multi-Level Trust Based Secure Routing (MLTSR-BC) was presented in [3] for secure transmission of data between 
the nodes within the network. The designed mode increases the data security and throughput. However, intruder nodes within the 
network were not accurately identified.  An Improved Type-2 Fuzzy Logic System (IT2FLS) was developed in [4] for secure   and 
energy-efficient routing with minimal delay and higher throughput by means of the Reptile Search Algorithm. However the network 
complexity and security threats were major concern for reliable communication in complex technological environments. In order to 
enhance the reliable data transmission, modular Artificial Intelligence (AI)-based routing framework was introduced in [5] for 
WSN. However, the accuracy of the framework remained unaddressed.  Secure Machine-learning-based Adaptive Reliable Trust 
(SMART) model was introduced in [6] for enhanced security and accuracy based on trust values.  However, fine-tuning the model 
did not perform to verify and enhance its robustness and reliability. An energy-aware and adaptive intrusion detection system was 
developed in [7] for WSNs to detect the Black Hole and Wormhole attacks on the routing systems. However, the energy-sensitive 
routing functions did not integrated to minimize the computational load.  Secure cluster-based routing model was designed in [8] 
based on residual energy, trust, node degree, and location factors. However, it did not integrate advanced optimization techniques to 
minimize energy consumption while considering a large number of nodes. AI-driven authentication system was introduced in [9] to 
increase the security and reliability of sensor nodes. Though the model achieves high detection rates, accurate trust scores, minimal 
latency, and competitive energy consumption, higher throughput was not achieved. A Deep Learning-Enhanced Hybrid Trust 
(DLEHT) model was developed in [10] to greatly increase the security and performance of WSNs with higher packet delivery and 
packet drop reduction. However, the accuracy of intruder node detection was a major issue. Effective machine learning (ML) 
technique was developed in [11] to enhance the routing security. However, deep learning (DL) model was not implemented to 
further enhance the security of data transmission. A fuzzy deep reinforcement learning (FDRL) was developed in [12] to enhance 
the energy efficient and secure data throughput. However, lightweight AI-driven heuristics   algorithms were not designed to 
minimize the computational overhead. A new hybrid trust-based routing framework was introduced in [13] for secure, energy-
efficient, and scalable communication. However, the framework was not applicable for heterogeneous and mobile IoT 
environments. Trusted Energy-Aware Hierarchical Routing (TEAHR) framework was developed in [14] for multi-level trust 
evaluation that enhances the security level. However, computational and energy overhead was not feasible for highly dynamic 
networks. Energy-Efficient Elliptic Diffie Clustering Technique (3EDCT) method was designed in [15] for energy balance security 
robustness. The designed technique reduces the communication and computation overhead. However, AI-driven trust evaluation and 
real-time anomaly detection was not performed to further strengthen the security.  
 
A. Research contribution 
The major contribution of the LiRMO-DenseNet model is summarized as given below,  
1) A novel LiRMO-DenseNet model is developed to improve energy-efficient and secure data transmission in WSNs. This dense 

neural network-based approach integrates various processes, sensor node classification and secures data transmission.    
2) To increase the classification accuracy, a dense neural network is employed to classify the sensor nodes based on their residual 

energy levels, cooperativeness and trust score. The changepoint linear regression is employed for analyzing the node and 
classified into legitimate and intruder nodes. The Walrus Optimization algorithm is employed to reduce the classification errors, 
thereby increasing the performance of precision, and recall.  

3) To improve the secure data transfer rate and throughput, the LiRMO-DenseNet model utilizes the legitimate sensor nodes to 
transmit the data from sender to sink node. 

4) Finally, an extensive simulation is conducted to analyze the performance of LiRMO-DenseNet model and other existing works.  
 

B. Organization of the Paper 
The remainder of this paper is structured into five sections. Section 2 reviews existing studies and outlines the background 
information. Section 3 details the proposed LiRMO-DenseNet model along with its architectural framework. Section 4 presents the 
simulation environment and discusses the obtained results. Section 5 provides a comparative analysis of different approaches based 
on multiple performance metrics. Finally, Section 6 concludes the paper by summarizing the key findings. 
 

II. RELATED WORKS 
A new Secure Clustering and Sleep-Wakeup based Energy Efficient Routing was introduced in [16] using Fennec fox optimized 
deep learning framework to minimize the energy usage and extend the network lifetime. However, designing lightweight deep 
learning strategies was major issue for resource-constrained nodes, and enhancing the security model to handle various attacks.   
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A deep gradient descent multi-layer Marquardt vector algorithm was designed in [17] for   energy efficiency analysis and security 
analysis to achieve high throughput and minimize the delay. However, the model was not efficient in handling the dynamic nature 
of WSNs to improve the data transmission effectiveness. An intrusion detection framework based on deep learning was designed in 
[18] to increase the detection accuracy and minimize adversarial vulnerability.  However, it failed to develop more reliable deep 
learning models for guaranteeing the security of WSNs. A lightweight machine learning (ML) approach was designed in [19] based 
on the extreme gradient boosting (XGBoost) model to distinguish various types of attacks with maximum accuracy. However secure 
data delivery performance was not achieved.  Deep learning-based Intrusion Detection System (IDS) was developed in [20] to 
achieve both accurate and efficient threat detection. However, the latency aware threat detection remained major issue.  
A novel improved bidirectional long-short-term memory (Bi-LSTM) algorithm was designed in [21] to address the issue of intrusion 
detection with higher accuracy. However, false positives and negatives were not addressed in intrusion detection. Lightweight MG-
Net Model was introduced in [22] to addresses security by including a Trust Model, Anomaly Detection, and Secure 
Communication. However the model did not enhance the trust and cooperativeness for effectively improving the detection rate with 
minimum time. Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS) was developed in [23] for Secure 
and Reliable Data Transmission. However, the algorithm did not consider the other parameters such as trust, energy, and 
cooperativeness.  A novel FireTG-Net model was introduced in [24] based on Firefly Swarm Optimization (FSO) for detecting 
anomalies within WSNs with higher detection accuracy. However it did not consider the energy aware trust modeling to optimize 
the network lifetime.  Server–Client Machine Learning Intrusion Detection System (SC-MLIDS) was developed in [25] to enhance 
security by addressing the various threats. However more robust and responsive intrusion detection was major challenges. 
An optimized ensemble method was introduced in [26] for the wireless networks against various attacks. However, the accuracy of 
various attack detection was not improved. In order to increase the accuracy, multi-deep learning intrusion detection framework was 
developed in [27]. However the model failed to focus on optimizing the model to enhance energy efficiency.  Graph Neural 
Cryptonet (GNC-Net) was introduced in [28] for efficient trust-aware routing within the WSN environment. However, the model's 
scalability was not improved. Energy aware and secure routing (EASR) was developed in [29] for indentifying malicious behavior 
based on energy trust. However, machine learning and deep learning techniques failed to analyze comprehensive trust value for 
minimizing the computation overhead. A Dual Layer Security Framework (DLSF) was introduced in [30] to provide robust node 
authentication and secured communication using trust based approach.  However, the framework did not support larger-scale 
deployments to further enhancing its robustness.   

III. PROPOSAL METHODOLOGY 
Wireless Sensor Networks (WSNs) comprises of small unit of sensor nodes equipped with processors, battery elements, and 
wireless communication units. These nodes gather information from the environment and transmit it to the sink node for further 
processing and decision-making. Due to the dynamic nature of networks, WSNs are devised to improve the processing capacity and 
data transmission effectiveness. However, secure data transmission remains a significant challenge in WSNs owing to increasing 
security risks. To address these concerns, the a novel LiRMO-DenseNet model is introduced to recognize resource-efficient and 
legitimate sensor nodes, thereby ensuring reliable and secure data communication across the network. 

 
Figure 1: Architecture of the proposed LiRMO-DenseNet model 
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Figure 1 presents the architectural structure of the proposed LiRMO-DenseNet model developed for secure data communication in 
WSN. The proposed architecture utilizes the deep learning model for analyzing the key characteristics of the sensor nodes such as 
energy, cooperativeness and trust level. In the initial step, the measured characteristics of the sensor nodes are processed using a 
changepoint linear regression analysis method to precisely access node behavior. Based on the analysis outcome, each node is 
classified either as a legitimate sensor node or an intruder sensor node. Then the legitimate sensors are permitted to contribute the 
network operations, ensuring secure and reliable data transmission, while intruder sensors are detected and isolated to enhance the 
overall security and performance of the WSN. Each of these stages plays a vital role in the functioning of the proposed. Further 
details on these processes are described in the subsequent sections. 
 
A. Network Model  
The proposed model considers the network model specifically designed for secure data communication between the sensors to sink 
node. This model consists of a large number of low-power, energy-constrained sensor nodes ܵ ௜ܰ = ܵ ଵܰ,ܵ  ܰଶ,ܵ ଷܰ … ܵܰ௡in a 
× ܯ ,ଷ݌ܦ,ଶ݌ܦ,ଵ݌ܦ  squared network area for sensing and collecting the data packets data packets ܯ  ௡݌ܦ…  that has a similar 
sensible capacity and initial battery powers. In order to perform the secure communication, legitimate sensor nodes are identified 
based on three key characteristics such as energy (ܧ), node cooperativeness (ܰܥ) and trust level (ܶܮ). 
 
B. Dense Neural Network  
The proposed LiRMO-DenseNet model utilizes the dense neural network (DNN), also called a Multi-Layer Perceptron (MLP) for 
identifying the legitimate or intruders sensor nodes. The dense neural network is a core artificial intelligence model where each 
neuron in one layer fully connected to neuron in the next succeeding layer, allowing it to learn complex patterns. Compared to 
traditional deep learning models, the proposed approach is capable of efficiently handling large volumes of input data. It processes 
information efficiently through parallel processing, allowing faster computation and improved performance. The structural layout of 
the proposed dense neural network model is illustrated in Figure 2. 

 
Figure 2 Structure of dense neural network 

 
Figure 2 demonstrates the architecture of a dense neural network designed for secure data transmission in WSN. As depicted, the 
network consists of numerous layers, including input, hidden, and output layers. The input and output layers are single layers, 
whereas the hidden layers contain several sub-layers. Each layer consists of multiple units called artificial neurons or nodes. These 
neurons receive inputs, process them, and pass the results to neurons in the subsequent layer. The connections between neurons, 
referred to as synapses, are assigned weights that determine the strength of the links between layers. 
Let us consider input i.e. sensor nodes ܵ ଵܰ,ܵ ଶܰ,ܵ ଷܰ … ,ܵܰ௡’ given to the input layer of structure of the dense neural network 
architecture. The input sensor nodes are transferred to the one or more hidden layers positioned between the input and output layers. 
Each layer is made up of neurons that receive input from the previous layer.  
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For each neuron, the input is multiplied by specific weights that determine their importance, and then a bias term is added to shift 
the result. The neurons in the hidden layer computed the weighted sum as follows, 

ܺ =  ∑ (ܵ ௜ܰ ∗  ܳ௜௛) +  ܾ௡
௜ୀଵ  (1) 

Where, ܺ indicates an weighted sum output,  ܳ௜௛  indicates a weights between input and hidden layer, number of sensor nodes ‘ܵ ௜ܰ’, 
‘ܾ represents a bias that stored the value is ‘1’.  
At the beginning of the process, the entire sensor nodes are assumed to have equivalent initial energy. However, it performs sensing 
and monitoring operations, their energy levels decrease over time. Therefore, the total sensor energy consumption is estimated as 
follows, 

ܧ ௖ܰ௢௡
ௌே೔   = ܧ ௌܰ + ோ௑ܰܧ +  ௑  (2)்ܰܧ

Where, ܧ ௖ܰ௢௡
ௌே೔   indicates an energy consumption of ݅௧௛ sensor node, ்ܰܧ௑ indicates an energy dispersed during transmission of a 

data, ܰܧ௉ refers to an energy consumed during processing tasks, ܧ ௌܰ  denotes an energy consumption of sensing the data. 
௑ௌே்ܰܧ = ൫ܧ ௘ܰ௟(்௑) ∗ ்݇௑൯+ ܧ) ஺ܰ ∗ ்݇௑ ∗  ଶ)      (3)ܦ

Where, ்ܰܧ௑ௌே indicates a total energy consumed by the sensor node, ்݇௑  denotes a size of the data being transmitted,  ܧ ௘ܰ௟(்௑) 
refers to energy dissipated by the transmitter electronics per bit, ܧ ஺ܰ denotes a amplifier energy factor, ܦ  denotes a distance 
between the sensor nodes. 
Energy consumed during the reception of data is calculated by multiplying the device’s power consumption by the time taken to 
complete the processing tasks. 

ோ௑ௌேܰܧ = ܧ ௘ܰ௟(ோ௑) ∗ ݇ோ௑         (4) 
Where,  ܰܧோ௑ௌே indicates an energy dissipated during reception of a data, ܧ ௘ܰ௟(ோ௑) refers to energy dissipated by the receiver 
electronics per bit, ݇ோ௑ denotes a size of the data being received.  
Therefore, the residual energy typically indicates the remaining energy in a sensor node after it executes the tasks such as sensing, 
communication, and processing. 

ܧ ௥ܰ௘௦  (ܵ ௜ܰ) = ܧ  ܰ ்  (ܵ ௜ܰ)− ܧ ௖ܰ௢௡
ௌே೔            (5)              

Where, ܧ ௥ܰ௘௦  (ܵ ௜ܰ) represents the residual energy of ݅௧௛ sensor node,ܧ  ܰ ்  (ܵ ௜ܰ) symbolizes total energy of ݅௧௛ sensor node, ܧ ௖ܰ௢௡
ௌே೔  

indicates energy consumed by the ݅௧௛ sensor node.       
In this layer, the system evaluates cooperative each sensor node is in the network and assesses the trustworthiness of the nodes. This 
helps in identifying reliable nodes for data transmission and ensures that the network functions efficiently while minimizing 
malicious behavior. 
The cooperativeness of the each sensor node is the ability of a node to actively participate in network activities, such as data 
forwarding, routing, and sharing resources. However, the attacker nodes do not cooperate with the other nodes in the network for 
better communication. Therefore, the cooperativeness of the sensor nodes is measured based on communication links between the 
nodes over the specific time instant.  
The communication links between the nodes are determined by the means of distributing the two beacon message distributions. The 
beacon messages are request (Req) and route replies (Rep) are shared among the sensor nodes. First, the sensor node ܵ ଵܰ sends a 
request beacon message to other neighboring sensor nodes to identify the communication links.   

 ܵ ௜ܰ  
ோ௘௤
ሳሰ  ܵ ௝ܰ (6) 

Where, the node ܵ ௜ܰ sends route request (ܴ݁ݍ) beacon message to other sensor nodes  ܵ ௝ܰ in the network. The node  ܵ ௝ܰ sends the 
reply message ܴ݁݌ back to the node ܵ ௜ܰ .  

 ܵ ௝ܰ  
ோ௘௣ 
ሯልሴ ܵ ௜ܰ (7) 

Where, node ܵ ௝ܰ sends a reply message ܴ݁݌ to the sensor node ܵ ௜ܰ. For each node compute the cooperative score values based on 
the received requests and responses.  

ܵܥ = ோ௘௣ ೝ೐೎
ோ௘௤ೞ೐೙೟

      (8) 

Where, ܵܥ denotes a cooperative score of the each node based ratio of response received ܴ݁݌ ௥௘௖  from its neighbors and requests 
sends ܴ݁ݍ௦௘௡௧.  A higher cooperative score, close to 1, indicates that the sensor node is highly cooperative. This means the sensor 
node reliably responds to more requests from its neighbors, actively participates in data forwarding, and contributes positively to 
network operations. These kinds of nodes are considered reliable and are preferred for energy-efficient data transmission. 
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Conversely, a lower score value indicates that the sensor node is less cooperative. This suggests that the node frequently fails to 
respond to requests, drops requests. Nodes with low cooperation negatively impact the network’s performance and decrease 
reliability. In this way, the cooperativeness of the particular sensor node is determined for secure data communication in WSN.  
Followed by, the node trust value is estimated to improve security, reliability, and successful data transmission in WSN. A 
lightweight trust evaluation method is employed for decentralized WSN which measures the direct trust and indirect trust to identify 
the nodes as trusted or untrusted.  
The direct trust values of the nodes are computed as a ratio of number of successful data transmission to the total number of data 
transmission, including both successful and unsuccessful data transmission. This value indicates the reliability and trustworthiness 
of node of the node. The direct trust value is mathematically expressed as follows, 

ܶௌே = ቂ ௌವ೅ 
ௌವ೅ା௎ௌವ೅

    ቃ   (9) 

Where, ܶௌே  denotes a trust of sensor nodes, ܵ஽்  represents a successful data transmission, ܷܵ஽்  denotes an unsuccessful data 
transmission. With the estimated rust value, the direct trust and indirect trust is estimated as follows.   

ௌேܶܦ =  ௖݂ ∗ ଵߴ )∑ ∗ ܶௌே)     (10) 
ௌேܶܫ = ଶߴ)∑  ∗  ௌே)     (11)ܶܦ 

௧ܶ௢௧௔௟
ௌே = ଷߴ) ∗ (ௌேܶܦ  + ସߴ) ∗  ௌே)    (12)ܶܫ 

Where, ܶܦௌே denotes a direct trust of the sensor node, ܶܫௌே indicates a indirect trust of the sensor node, ௖݂ denotes a confidence or 
normalization factor that scales the overall trust value, ߴଵ,ߴଶ,ߴଷ  and ߴସ  denotes a weight assigned to each interaction,  ௧ܶ௢௧௔௟

ௌே  
denotes a total trust value of the sensor nodes.  
The estimated energy cooperative score and trust values of the each node is formulated as follows,  

ܯ = ൦

ଵଵܧ ܥ ଵܵଵ ଵܶ௡
ଶଵܧ ଶଶܵܥ ଶܶ௡
⋮ ⋮ ⋮

௠ଵܧ ௠ଶܵܥ ௠ܶ௡

൪   (13) 

Where,ܯ indicates a vector of three different characteristics of the sensor nodes, each column indicates a characteristics of the 
sensor nodes Energy (ܧ), cooperative score (ܵܥ) and trust (ܶ) respectively.  
The estimated vector consisting of three distinct characteristics of the sensor nodes is forwarded to the third hidden layer, where 
changepoint linear regression analysis is performed. This analysis identifies variations in the relationships among the input key 
characteristics by detecting transition points, enabling more accurate modeling of node behavior and improving decision-making in 
the network. 
It is a machine learning technique used for analyzing the distinct characteristics of the sensor nodes and dependent variables i.e. 
target output.  

ܰܫ = ܯ.ଵߚ + ܿଵ, ܯ ݂݅ <  (14)            ܲܤ
ܰܮ = ܯ.ଶߚ + ܿଶ, ܯ ݂݅ >  (15)  ܲܤ

Where, ‘ܰܮ’ represent the legitimate node and their different characteristics of the sensor nodes ‘ܯ’ via regression coefficient ‘ߚଵ’, 
  .symbolize the intruder nodes ܰܫ ,(i.e. threshold) ’ܲܤ‘ ଶ’ and regression constants ‘ܿଵ’, ‘ܿଶ’ with respect to breakpointsߚ‘
Based on the classification results, the error rate is measured based on squared difference between the actual and predicted output.   

ܴܴܧ = ( ୅ܻେ − ௉ܻோா)ଶ      (16) 
Where, ܴܴܧ denotes a classification error, ୅ܻେ indicates the actual classification output, ௉ܻோா   denotes the predicted output. In the 
fine-tuning phase, the deep learning model updates its hyperparameters to reduce the classification errors and increases the accuracy 
of node classification. The Gradient momentum function is employed to adjust the weights among the layers in MLP architectures.  

ܳ௧ାଵ  = ܳ௧ −  ௧  (17)ܪ ߟ

௧ܪ = ௧ିଵܪ ߛ  +  (1 − (ߛ డாோோ   
డௐ೟

   (18) 

Where,ܳ௧ାଵ indicates an updated weight, ܳ௧  represents a current weight, ߟ  denotes a learning rate, ‘డாோோ   
డௐ೟

’ indicates a partial 

derivative of the classification error ‘ܴܴܧ’ with respect to the current weight ‘ܳ௧’, ߛ indicates default value 0.9 .   Based on the 
updated values, multiple weight vectors are generated. From these, the optimal weight vector is chosen using the Walrus 
Optimization algorithm, which increases the classification accuracy by minimizing errors.    
 The Metaheuristic Walrus Optimization algorithm is a nature-inspired technique designed based on foraging activities of walruses. 
In this algorithm, each walrus represents a number of weights.  
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The advantage of Walrus Optimization algorithm provides the better performance in finding better quality solutions. The algorithm 
processed in three major phases namely exploration, migration, and exploitation to discover the optimal solution by the means of 
ranking process. The optimization process starts to perform the population of Walrus i.e. weights in a random manner.   

 ܳ௥ = ൦

ܳଵ
ܳଶ
⋮
ܳ௕

൪                 (19) 

Where,  ܳ௥ indicates ‘ܾ’ population of weights. Followed by, fitness is estimated according to the error values. 
(௥ܳ)ݐ݂݅ = ݊݅݉݃ݎܽ  (20)   ܴܴܧ 

Where ݂݅ݐ(ܳ௥) indicates a fitness for each weight, ܽ݃ݎ ݉݅݊ indicates an argument of minimal function, ܴܴܧ represents an error 
rate.  Subsequently, the current best weight is chosen   from the population based on fitness.  

ܼ = ൜݂݅ݐ(ܳ௥) > ; (௛ܳ)ݐ݂݅ ݐݏܾ݁ ݏܽ ௥ܳ  ݐ݈ܿ݁݁ݏ                
;   ݁ݏ݅ݓݎℎ݁ݐܱ                   ܳ௛ ݐݏܾ݁ ݏܽ       (21) 

Where,ܼ  represents current best selection outcomes, ݂݅ݐ(ܳ௛) denotes a fitness of the neighboring walrus,݂݅ݐ(ܳ௥) indicates a fitness 
of one walrus. Accordingly, the highest fitness value is identified as the strongest walrus in the population. Subsequently, three 
distinct behaviors such as exploration, migration, and exploitation are carried out to effectively balance multiple objectives and 
guide the search toward the optimal solution. 
 
1) Exploration 
Exploration helps to maintain population diversity and increases the possibility of finding global optimal or near-optimal solutions 
than the local optima. The strongest walrus indicates the current best solution (best fitness function). Other walruses adjust their 
positions toward this best strongest walrus. Therefore, the position of other walruses gets adjusted as follows, 

ݐ) ܲ + 1) = (ݐ) ܲ + .ݎ  0.5| ௕ܲ௘௦௧(ݐ)−  (22)   |(ݐ) ܲ.ܬ
Where, ܲ (ݐ + 1) represents an updated position of the walruses, ܲ (ݐ) represents a current position of walruses, ݎ represents a 
random numbers between [0, 1],  0.5| ௕ܲ௘௦௧(ݐ) −  ’(ݐ) ܲ‘ denotes a Jensen Shannon divergence between the current position |(ݐ) ܲ.ܬ
and best position ‘ ௕ܲ௘௦௧(ݐ)’,  ܬ represents the selected randomly between 1 or 2 and it is used to increase the algorithm’s exploration 
ability.   
 
2) Migration behaviors 
The other behavior of walruses is the seasonal migration to stony seashores or temperatures increase during summer. In this 
behavior, each walrus moves toward the position of another randomly chosen walrus positioned in a various region. This migration 
behavior is mathematically expressed as follows, 
 

 ெܲ ݐ)  + 1) = ቊܲ (ݐ) + .ݎ  0.5| ௕ܲ௘௦௧(ݐ)− ;  |(ݐ) ܲ.ܬ ൫ݐ݂݅  ݂݅     ௥ܲ௔௡ௗ(ݐ)൯ > ൫ݐ݂݅ ௜ܲ ൯(ݐ) 
(ݐ) ܲ + .ݎ  −(ݐ) ܲ|0.5 ௥ܲ௔௡ௗ(ݐ)|  ; ݁ݏ݅ݓݎℎ݁ݐ݋                            

   (23) 

 
Where,  ெܲ ݐ)  + 1)   represents a position of the other walruses in migration phase, ௥ܲ௔௡ௗ(ݐ)  indicates a position of another 
randomly selected walrus, ݎ  denotes a random number between 0 and 1 that controls the step size. ݆ integers selected randomly 
between 1 or 2, ݂݅ݐ൫ ௥ܲ௔௡ௗ(ݐ)൯ denotes a fitness of the randomly selected walrus, ݂݅ݐ൫ ௜ܲ  ൯ denotes a fitness of the  current(ݐ) 
selected walrus.  
 
3) Exploitation  
 During this behavior, walruses are exposed to risks from predators such as polar bears and killer whales. In this behavior, 
exploitation is the process of altering the solutions in promising areas according to the current knowledge, focusing on achieving the 
best result by finding the neighborhood of known best solutions. The position updating process of the walruses in exploitation is 
expressed as follows, 
 

ாܲ ݐ)  + 1) = (ݐ) ܲ  +  ൫ ௕ܷ + ௕ܮ) −  ௕)൯    (24)ܮ.ݎ
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Where, ாܲ ݐ)  + 1) indicates a updated position,   ܲ (ݐ) represents current location of the walrus, ܮ௕  denotes a local bounds, ௕ܷ 
represents a upper bounds for the search range around the walrus, ݎ  indicates a random number between 0 and 1. Finally, the 
algorithm verifies the new position along with previous position according to   

(ݐ) ܲ = ቊ݂݅ݐ ൫ ாܲ ݐ)  + 1)൯ > ;   ൯(ݐ) ൫ܲ  ݐ݂݅  ாܲ  ݊ݎݑݐ݁ݎ  ݐ)  +  ݈ܽ݉݅ݐ݌݋ ݏ݅  (1
;   ݁ݏ݅ݓݎℎ݁ݐܱ ݈ܽ݉݅ݐ݌݋ ݏ݅  (ݐ) ܲ ݊ݎݑݐ݁ݎ                          

   (25) 

If the fitness of new position ‘ ாܲ ݐ)  + 1)’ is greater than the current best ‘ܲ (ݐ)   it may replace the newly selected best-known 
position ாܲ ݐ)  + 1)  as an optimal. This process continues until the maximum number of iterations gets achieved. Finally, the 
optimal position of walrus (i.e., optimal weight) is making small changes in the direction that minimizes the error. This process 
helps refine learned reduce prediction errors, and improve overall accuracy of the model. Finally, the accurately classified results are 
generated at output layer with sigmoid activation function. 

ܻ =  (26)  ((ݐ)ℎ)௦௜௚௠௢௜ௗܣ 
Where, ܻ’ denotes a final binary classification output, ‘ℎ(ݐ)’ represents the hidden layer output, ‘ ܣ௦௜௚௠௢௜ௗ’ represents the sigmoid 
activation function in output layer for binary classification output.  Finally, the data communication is carried out through legitimate 
sensor nodes to increase the security.   

  // Algorithm 1: Linear Regressive Momentum Optimized Dense neural Network 

Input:  Number of sensor nodes ‘ܵ ଵܰ,ܵ ଶܰ,ܵ ଷܰ, … . , ܵܰ௡ , Environmental data packets ܦ ଵܲ,ܦ ଶܲ ܦ, ଷܲ, … ܦ. ௡ܲ  
Output: Security of data transmission            
Begin 
Step 1:  Number of sensor nodes ‘ܵ ଵܰ,ܵ ଶܰ,ܵ ଷܰ, … . ,ܵܰ௡ and Environmental data packets --- input layer 
Step 2:   input of ܵܰ௡  s given to input layer of MLP 
Step 3:    Compute the weighted sum  using (1)   
Step 4:        For each sensor node  ܵ ௜ܰ --- Hidden layer 1 
Step 5:        Compute the residual energy using (5)  
Step 6:        End for 
Step 7:       For each sensor node --- Hidden layer 2 
Step 8:         Compute the cooperative score ‘ܵܥ’ using (8) 
Step 9:         Compute the total trust value of sensor nodes ௧ܶ௢௧௔௟

ௌே  using (12) 
Step 10:        End for 
Step 11:       Formulate the vector of different characteristics of sensor nodes ‘M’  using (13) 
Step 12:       If (M’  >  then--- Hidden layer 3  (ܲܤ
Step 13:         sensor node is classified as legitimate  
Step 14:       else 
Step 15:         sensor node is classified as intruder   
Step 16:     End if     
Step 17:   Obtain classes of sensor nodes 
Step 18:      For each classification result  
Step 19:       Measure the classification error ‘  ܴܴܧ  using (16) 
Step 20:       Update the weights using  (17) (18) 
Step 21:   End for  
Step 22:   Initialize the population of the weights  using (19) 
Step 23:   For each weight ‘ܳ’ 
Step 24:           Evaluate the fitness using equation (20) 
Step 25:            End for 
Step 26:  While (ܶ <  ௠ܶ௔௫) do 
Step 27:      if (݂݅ݐ(ܳ௥) >  then( (௛ܳ)ݐ݂݅
Step 28:        Select the current best weight    
Step 29:      End if 
Step 30:      for each weight   in population  do 
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Step 31:         if the exploration phase then 
Step 32:           Update the positions ‘ܲ (ݐ + 1)’ using  (22) 
Step 33:        Else if Migration phase then 
Step 34:            Update the positions ‘ ெܲ ݐ)  + 1)’ using  (23) 
Step 35:     End if  
Step 36:    End for 
Step 37:         Calculate new position in the neighborhood of the walrus using (24)   
Step 38:   if  ቀ݂݅ݐ ൫ ாܲ ݐ)  + 1)൯ >  ൯ቁ   then(ݐ) ൫ܲ  ݐ݂݅ 

Step 39:               ாܲ ݐ)  + 1) considered as best optimal solution   
Step 40:               else 
Step 41:                 ܲ (ݐ) considered as optimal solution  
Step 42:         End if  
Step 43:       Increment t= t+1 
Step 44:   Go to step 8  
Step 45:    End While 
Step 46:    Return best optimal according to fitness    
Step 47:    Obtain accurate node classification  results at output layer using (26) 
Step 48:     Perform secured data transmission through legitimate sensor nodes 
End  

 
Algorithm 1 describes the step by step process of secure data transmission between sensor node and sink node in WSN. The Dense 
neural network is used as a feed forward deep learning model to classify the sensor nodes into legitimate or intruder nodes. The 
input i.e. sensor nodes are given to the input layer. In the hidden layer, the nodes residual energy, trust value, cooperativeness is 
calculated. After that, the changepoint linear regression is employed for classifying the sensor node as legitimate or intruder nodes 
by setting the break point or threshold. After the classification, the training error rate is computed.  Based on the error rate, the 
weight values get updated accordingly. Afterward, the weight parameters are initialized and optimized using a population-based 
walrus optimization. During this process, the fitness of each candidate weight solution is iteratively estimated, and the best-
performing solutions are chosen to update the weight positions. If a newly updated weight achieves better fitness, it replaces the 
previous weight. Otherwise, the existing weight gets retained. This optimization process continues until the predefined maximum 
number of iterations is reached. In deep learning models, the optimal weight values guide the backpropagation to minimize the error 
function. Finally, the output layer produces the accurate classification results with reduced error, thereby enhancing the overall 
detection performance. The data transmission is performed through the legitimate node for attaining high security.      
 

IV. SIMULATION SETUP 
In this section, simulation of three different methods namely the proposed LiRMO-DenseNet model, an existing method referenced 
as QS-BAT [1], and MLSRP [2] are implemented using the NS3 simulator.  A total of 500 sensor nodes are deployed within a 
square area of 1100 m × 1100 m. The Random Waypoint mobility model is adopted to support energy-efficient secure routing in the 
wireless sensor network (WSN). The simulation duration is set to 100 seconds. To further enhance energy efficiency and ensure 
secure data communication, the Dynamic Source Routing (DSR) protocol is utilized. The simulation parameters and their 
corresponding values are summarized in Table 1. 

 
Table 1 Simulation Parameters 

Simulation parameters Value 

Simulator  NS3  
Network area 1100m * 1100m 
Number of sensor nodes   50, 100, 150, 200…500 

Number of data packets  100, 200, 300, ….1000 
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Protocol DSR 
Simulation time 100sec 
Mobility model Random Way Point model 

Nodes speed  0-20m/s 
Communication range of a sensor nodes  30m 
Number of runs 10 

 
A. Simulation Implementation Results     
This section explains the various processes involved in the LiRMO-DenseNet model,with the support of illustrative screenshots. 
Initially, 50 sensor nodes are randomly distributed over a square area of 1100 ×  1100 ݉². 

 
Figure 3 sensor nodes deployments  

  
Following the deployment of sensor nodes within the designated network area, energy, trust and cooperativeness of sensor nodes are 
measured as illustrated in Figure 4. 

 
Figure 4 sensor nodes energy, trust and cooperativeness of sensor nodes measurements  
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After measuring the characteristics of sensor nodes, Change point linear regression analysis is carried out in dense neural network 
model for classifying the legitimate and intruder sensor nodes in WSN.  

 
Figure 5 sensor nodes classification  

 
Figure 5 demonstrates 50 sensor nodes randomly deployed within the network area. The nodes are represented using different colors 
to indicate their roles and status. Green nodes denote legitimate sensor nodes, while orange nodes represent intruder nodes identified 
during the detection process.  

 
Figure 6 data transmission via legitimate sensor node   

 
The figure 6 illustrates the data transmission process after intrusion detection in the WSN. In this scenario, legitimate nodes are 
shown in green, while intruder nodes are indicated in orange. The source node initiates data transmission through the legitimate 
nodes for secure data delivery and supports reliable routing while mitigating security threats within the network. 
 

V. PERFORMANCE RESULTS AND DISCUSSION 
This section offers a relative analysis of LiRMO-DenseNet model by comparing it with established state-of-the-art methods, namely 
QS-BAT [1], and MLSRP [2]. The performance evaluation uses metrics such as including accuracy, precision, recall, F1 score, data 
transfer security rate, throughput and end to end delay. The performance of LiRMO-DenseNet model is compared to existing model 
with respect to these metrics is illustrated through tables and graphical representations. 
 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 14 Issue I Jan 2026- Available at www.ijraset.com 
     

 
1508 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 

A. Performance Comparison Analysis of Accuracy  
It refers to the ratio of correctly classified the sensor nodes as legitimate or intruders to the total number of sensor nodes. The 
corresponding mathematical formula for accuracy is expressed as follows, 

ݕܿܽݎݑܿܿܣ =   ቀ  ்௉ା்ே
்௉ା்ேାி௉ାிே

ቁ ∗ 100         (27) 
Where TP (True Positive) represents the number of correctly identified legitimate nodes, TN (True Negative) denotes the number of 
correctly identified intruder nodes, FP (False Positive) refers to intruder nodes incorrectly classified as legitimate nodes, and FN 
(False Negative) represents legitimate nodes incorrectly classified as intruder nodes. Accuracy is measured as a percentage (%). 

 
Table 2 comparison analysis of accuracy 

Number of  
sensor nodes   

Accuracy (%) 
  Proposed LiRMO-

DenseNet  
Existing  QS-BAT [1] Existing  MLSRP [2]    

50 94 90 86.27 
100 96.32 92.36 89.23 
150 97.23 91.56 90.05 
200 96.56 92.33 89.52 
250 96.41 91.56 90.05 
300 96.78 92.63 91.23 
350 97.21 93.22 91.63 
400 98.1 93.45 91.44 
450 97.26 93.22 91.03 
500 97.22 92.45 90.23 

 

 
Figure 7 graphical illustration of accuracy 

 
Figure 7 shows a comparative examination of accuracy including the proposed LiRMO-DenseNet model is evaluated by comparing 
it against existing methods, namely QS-BAT [1], and MLSRP [2]. The analysis measures accuracy of intruder detection based on 
sensor nodes with various ranging from 50 to 500. Among three methods, the LiRMO-DenseNet model consistently outperforms the 
other approaches in terms of achieving higher accuracy.  
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For instance, with a 50 sensor nodes, LiRMO-DenseNet model achieves an accuracy of 94%. In comparison, [1] reaches 90%, [2] 
records 86.27%, respectively. Subsequently, various performance results were observed with respect to various counts of input 
sensor nodes. Finally, the observed results of LiRMO-DenseNet model are compared to results of existing methods.  The average of 
ten results illustrates an improvement in accuracy of approximately 5%, and 7% when compared to [1], [2], respectively. This 
performance improvement is chiefly achieved to the integration of dense feed forward neural network architecture. This architecture 
helps to identify sensor devices that have higher residual energy, cooperative score and trust value by applying the changepoint 
linear regression for secure data transmission, resulting overall accuracy of legitimate and intruder node is significantly improved.  
 
B. Performance comparison analysis of precision   
Precision is measured as the ratio of correctly predicted positive instances (true positives) to the total number of instances predicted 
as positive, which includes both true positives and false positives. The formula for precision is expressed as follows 

࢔࢕࢏࢙࢏ࢉࢋ࢘ࡼ =   ቀ ࡼࢀ 
ࡼࡲାࡼࢀ

ቁ ∗ ૚૙૙ (28) 
Where,   ܶܲ represents the true positive,  ܲܨ indicates the false positive.  

 
Table 3 comparison analysis of precision   

Number of  
sensor nodes   

Precision (%) 
  Proposed LiRMO-

DenseNet  
Existing  QS-BAT [1] Existing  MLSRP [2]    

50 94.87 92.30 89.74 
100 96.23 93.36 90.33 
150 96.11 93.26 91.06 
200 96.22 93.44 91.45 
250 96.25 93.56 91.66 
300 96.36 93.23 91.41 
350 96.88 93.56 90.63 
400 97.11 93.36 91.45 
450 96.32 92.66 91.55 
500 96.63 93.05 91.36 

 
Figure 8 graphical illustration of precision  
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Figure 8 presents a comparison of precision across varying numbers of sensor nodes ranged from 50 to 500. In the chart, the x-axis 
represents the number of sensor nodes, and the y-axis indicates the corresponding precision values in intruder node classification. 
Among the three methods, LiRMO-DenseNet model achieves the highest precision, outperforming the other existing approaches. 
For example, when using 50 sensor nodes, the LiRMO-DenseNet model achieved a precision of 94.87%, while the existing methods 
[1] and [2] achieved 92.30% and 89.74% respectively. On average, LiRMO-DenseNet model demonstrates an improvement in 
precision of approximately 3% over method [1] and around 6% over method [2]. This improvement is achieved due to the 
integration of dense neural learning techniques, which incorporate the walrus optimization algorithm for fine-tuning the sensor node 
classification results. By iteratively tuning the deep learning model hyperparameters, the system increases its learning process, 
directing to high true positives and less false positives, thereby enhancing the precision performance in sensor node classification. 
 
C. Performance Comparison Analysis of Recall    
It also known as sensitivity, evaluates the model effectiveness in correctly identifying intruder and malicious node. It is measured by 
dividing the number of true positive predictions by the total of true positives and false negatives.   

ܴ݈݈݁ܿܽ =   ቀ  ்௉
்௉ାிே

ቁ ∗ 100   (29) 
Where, ܶܲ indicates the true positive, ܰܨ represents the false negative.  

 
 Table 3 comparison analysis of recall    

Number of  
sensor nodes   

Recall   (%) 
  Proposed LiRMO-

DenseNet  
Existing  QS-BAT [1] Existing  MLSRP [2]    

50 97.36 94.73 92.10 
100 98.33 96.36 93.23 
150 98.11 96.11 93.25 
200 98.36 96.05 93.25 
250 97.98 96.02 93.63 
300 98.23 96.13 93.47 
350 97.86 96.16 93.65 
400 98.15 96.02 93.45 
450 98.11 95.68 93.85 
500 98.12 95.33 93.41 

 

 
Figure 9 graphical illustration of recall   
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Figure 9 portrays a performance evaluation of recall with respect to the number of sensor nodes deployed in the WSN. The LiRMO-
DenseNet model exposes higher recall compared to the existing approaches [1] and [2]. For instance, with 50 sensor nodes, LiRMO-
DenseNet model achieved a recall of 97.36%, while methods [1] and [2] observed 94.73% and 92.10%, respectively. After reaching 
the ten performance runs, the average recall rate of LiRMO-DenseNet model improved by approximately 2% compared to [1] and 
5% compared to [2]. The improved recall performance of the LiRMO-DenseNet model is achieved owing to the fine-tuning process 
employed within the dense neural network architecture. By utilizing a fine-tuning process, the model minimizes the classification 
error between predicted and actual outcomes through hyperparameter adjustment using the walrus optimization algorithm. This 
iterative process continues until the classification error gets minimized, resulting in fewer false negative results and increase in true 
positives. 
 
D. Performance Comparison Analysis of F1 Score     
It also called as F-measure refers to the harmonic mean of precision as well as recall. It is mathematically calculated using following 
expression. 

−1ܨ ݁ݎ݋ܿܵ = 2 ∗ ቀ࢔࢕࢏ࢉࢋ࢘ࡼ∗ோ௘௖௔௟௟
ାோ௘௖௔௟௟࢔࢕࢏ࢉࢋ࢘ࡼ

ቁ   (30) 
  

Table 3 comparison analysis of recall    
Number of  

sensor nodes   
F1 score      (%) 

  Proposed LiRMO-
DenseNet  

Existing  QS-BAT [1] Existing  MLSRP [2]    

50 96.09  93.49   90.90  
100 97.26  94.83  91.75  
150 97.09  94.66  92.14  
200 97.27  94.72  92.34  
250 97.10  94.77  92.63  
300 97.28  94.65  92.42  
350 97.36  94.84  92.11  
400 97.62  94.67  92.43  
450 97.20  94.14  92.68  
500 97.36  94.17  92.37  

 

 
Figure 10 graphical illustrations of F1 score    
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Figure 10 illustrates a performance comparison of F1 scores for different number of sensor nodes ranging from 50 to 500. The 
results confirm that the proposed LiRMO-DenseNet model constantly outperforms conventional models in terms of achieving high 
F1 score. Each method was analyzed over ten various results to obtain consistent F1 measurements. The analysis exposes that 
LiRMO-DenseNet model achieves superior F1 score performance across all simulations. The average of ten results indicates that the 
LiRMO-DenseNet model showed an improvement of F1 score approximately 5% over method [1] and 3% over method [2]. This 
enhanced performance is owing to the efficient implementation of the dense neural network, which enhances the F1 score by 
balancing effects of precision as well as recall, leading to more accurate and consistent sensor node classification. 
 
E. Performance Comparison of Data transfer security rate 
Data transfer security Performance measures the effectiveness of the proposed approach in safeguarding transmitted data against 
intruder node access in a WSN. It quantifies reliable data packets are delivered without being altered by intruder nodes. The metric 
is computed as the ratio of secure transmissions to the total number of transmissions. A higher Data Security Performance value 
indicates stronger protection, and improved reliability of the secure data communication process within the network. 

ܵܶܦ =  ∑ ൤஽௉஼஽
 ஽௉ೕ 

൨௠
௝ୀଵ ∗ 100    (31) 

Where ܵܶܦ refers to a Data transfer Security rate, ܦܥܲܦsymbolizes the data packets correctly delivered at the sink node and 
ܦ ௝ܲ      .(%) indicates a data sent. The ratio is measured in terms of percentage ݐ݊݁ݏ 

 
Table 3 comparison analysis of Data Security rate 

Number of  
data packets   

Data transfer Security rate (%) 
  Proposed LiRMO-

DenseNet  
Existing  QS-BAT [1] Existing  MLSRP [2]    

100 96 93 91 
200 96.23 92.36 90.05 
300 96.74 92.23 90.63 
400 96.36 92.15 90.36 
500 97.05 93.05 91.22 
600 96.88 92.32 90.65 
700 96.11 92.41 90.41 
800 96.07 92.33 90.65 
900 96.15 92.41 90.05 

1000 96.12 92.36 90.66 
 

 
Figure 11 graphical illustrations of Data transfer Security rate 
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Figure 11 demonstrates the performance comparison of data transfer security rate using four different methods namely the proposed 
LiRMO-DenseNet model is evaluated by comparing it against existing methods, namely QS-BAT [1], and MLSRP [2]. In the 
figure, the x-axis represents the number of data packets, ranging from 100 to 1000, while the y-axis shows the corresponding data 
transfer security rate. Among all the three methods, LiRMO-DenseNet model consistently achieves superior performance. For 
example, when considering 100 data packets to be transmitted, the LiRMO-DenseNet model records a data transfer security rate of 
96%, whereas [1], [2] achieved data transfer security rate rates of 93%, and 91%, respectively. This assessment was conducted 
across ten various data volumes, and the results demonstrate a clear improvement. The LiRMO-DenseNet model maintains higher 
data transfer security rate in all cases. The average of ten results indicates that the LiRMO-DenseNet model outperforms the existing 
techniques by approximately 4% compared to [1], 6% compared to [2]. The improved performance of LiRMO-DenseNet model is 
achieved due to the integration of a dense neural network model. This deep learning architecture determined the legitimate and 
intruder nodes by the means of energy and cooperativeness and trust. Finally, the secure data transmission is carried out via 
legitimate sensor nodes, thereby enhancing the data transfer security.  
 
F. Performance Comparison of Throughput 
 It measured as the rate of successful data transmission over a communication network within a specified time period. It is measured 
in bits per second (bps).  The formula for calculating he throughput is measured as follows,   

ܲܪܶ = ቂௌ௨௖௖ _்௥௔௡௦_ ௗ௔௧௔ ௣௔௖௞௘௧ (௕௜௧௦)
௧௜௠௘  (௦)

ቃ   (32) 

Where, ܶܲܪ  indicates a throughput, ܵ(ݏݐܾ݅) ݐ݁݇ܿܽ݌ ܽݐܽ݀ _ݏ݊ܽݎܶ_ ܿܿݑ denotes a successful transmission of data packets in bits in 
one seconds (Bps). 

Table 3 comparison analysis of Data Security rate 
Data packet size 

(KB)  
Throughput(bps) 

  Proposed LiRMO-
DenseNet  

Existing  QS-BAT [1] Existing  MLSRP 
[2]    

100 226 196 163 
200 326 288 216 
300 485 405 323 
400 596 489 411 
500 688 612 532 
600 865 711 622 
700 1123 936 823 
800 1325 1163 986 
900 1532 1325 1163 

1000 1863 1532 1263 

 
Figure 12 graphical illustrations of throughput  
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Figure 12 illustrates the graphical examination of throughput across three various methods LiRMO-DenseNet model is evaluated by 
comparing it against existing methods, namely QS-BAT [1], and MLSRP [2]. The horizontal axis represents size of data packets 
ranging from 100KB to 1000KB, while the perpendicular axis demonstrates the performance of throughput. Among the different 
approaches, LiRMO-DenseNet model consistently reveals higher throughput of successful data transmission. In initial iteration, 
100KB of data being transmitted in sender node, the LiRMO-DenseNet model achieves a 226bps of throughput. In comparison, 
methods [1] and [2] recorded throughput of 196bps and 163bps, respectively. This assessment was reiterated across numerous runs, 
and the averages of ten results were considered for the final classification performance. The overall result indicates that LiRMO-
DenseNet model outperforms the existing methods [1] [2], showing improvement of throughput approximately 18% and 40%.   The 
performance enhancement is achieved by integrating the dense feed forward neural network. This network strategy facilitates the 
identification of the most suitable legitimate sensor nodes by evaluating parameters such as high residual energy, cooperativeness 
and trust value. As a result, data transmission becomes more efficient, leading to improved overall throughput in WSNs.  
 
G. Performance Comparison of End to end delay 
It is a key performance metrics that measures the amount of time it takes for data packets travelled from sender to sink node across a 
network. The formula for calculating the end to end delay is expressed as follows,  

ܦܧ2ܧ =  ௝ܶ(ܴ)− ௝ܶ(ܶ)  (33) 
Where, ܦܧ2ܧ denotes an End to end delay, ௝ܶ(ܴ) denotes a time of ݆௧௛data packet received at the sink node, ௝ܶ(ܶ)   denotes a time 
of  ݆௧௛data packet transmitted from sender. It is measured in milliseconds (ms).  

Table 3 comparison analysis of End to end delay  
Number of  

data packets   
End to end delay (ms) 

  Proposed LiRMO-
DenseNet  

Existing  QS-BAT [1] Existing  MLSRP [2]    

100 11.8 13.5 15.6 
200 12.5 15.2 18.3 
300 13.4 16.4 19.4 
400 15.6 18.2 20.5 
500 18.7 20.5 22.6 
600 20.9 22.3 25.4 
700 23.6 26.1 28.4 
800 26.5 28.4 30.2 
900 30.2 32.3 34.7 

1000 32.6 35.8 37.2 
 

 
 Figure 13 graphical illustrations of End to end delay 
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Figure 13 presents a performance assessment of end to end delay in relation to the number of data packets transmitted from the 
source node to sink. The findings reveal that, across all three methods analyzed, end to end delay increases as the data packet 
volume rises. However, the LiRMO-DenseNet model consistently demonstrates a significant reduction in transmission delay 
compared to the traditional approaches in [1] and [2]. For example, when 100 data are transmitted, the LiRMO-DenseNet model 
records a delay of 11.8 ms while the methods in [1] and [2] demonstrate delay of 13.5ms and 15.6ms, respectively. Throughout the 
range of increased data volumes, the LiRMO-DenseNet model achieves an average delay reduction of approximately 11% and 20% 
in comparison to the existing techniques. This improvement is largely achieved due to selecting the energy efficient sensor nodes to 
improve the overall efficiency of data transmission within the network. This approach increases the data   transmissions speed, 
reduces communication overhead, and significantly lowers transmission delay.   
 
H. Case Studies 
In this section, the practical application of LiRMO-DenseNet model is analyzed to demonstrate its effectiveness and adaptability. 
These case studies highlight the proposed LiRMO-DenseNet model optimizes routing decisions under diverse network conditions 
by intelligently considering factors such as energy efficiency and security. 
In order to conduct the case scenario, Healthcare_IOT_Data is collected from the  
https://www.kaggle.com/datasets/ziya07/healthcare-iot-data. This dataset represents sensor readings collected from wearable 
devices in an IoT-enabled healthcare environment and is used to evaluate secure data transmission in patient monitoring scenarios. It 
captures real-time physiological parameters such as body temperature, blood pressure, and heart rate, along with device-related 
attributes including sensor identity, timestamps, and battery levels. Each record is associated with a unique patient and sensor, 
enabling continuous health assessment and comparison against predefined target values for vital signs and health status. The 
inclusion of battery-related information supports energy-aware communication, which is critical for maintaining reliable and 
uninterrupted data transmission. In the context of secure healthcare applications, this dataset facilitates the analysis of sensitive 
patient data are transmitted efficiently and securely to healthcare providers while ensuring data security, reliability, and privacy in 
IoT-based remote monitoring systems. 
 

VI. CONCLUSION 
The paper introduces a novel approach called the LiRMO-DenseNet model, designed to achieve energy-efficient and secure data 
transmission in WSN.  The proposed approach starts with the deployment of multiple sensor nodes across the large scale sensor 
network, followed by the application of a dense neural network that categorizes the nodes into legitimate or intruder   according to 
their residual energy, trust and node cooperativeness. To further improve the classification accuracy performance, walrus 
optimization algorithm is employed. This optimization mechanism effectively minimizes error rate during sensor node 
classification. The effectiveness of the proposed LiRMO-DenseNet model is validated through extensive simulations using key 
performance metrics such as accuracy, precision, recall, F1 score, data transfer security, throughput, and end to end delay. The 
simulation results clearly designate that the LiRMO-DenseNet model outperforms existing approaches by achieving superior data 
transfer security, throughput and transmission success while considerably lowering delay when compared to conventional methods. 
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