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Abstract: Wireless Sensor Networks (WSNs) is a distributed network initially designed as simple monitoring systems comprising
numerous sensor nodes focusing on data collection, processing, and transmission. In WSNs, a huge amount of vulnerabilities
can arise, specifically those initiating from malicious nodes (MNs), which direct to cooperate data integrity, network stability,
and reliability. Although security remains critical, current MN detection methods are time-consuming and increased latency for
constrained WSNSs. In order to overcome these issues, a novel Linear Regressive Momentum Optimized Dense neural Network
(LiRMO-DenseNet) model is developed to enhance the data transmission security in WSN. The proposed LiRMO-DenseNet
model utilizes the dense neural network concept to categorize the sensor nodes as legitimate sensor nodes or intruders with help
of several layers such as input, numerous hidden layers, and output layer. First, the number of sensor nodes is given to the input
layer. After that, the input layer transmits the collected sensor nodes to the first hidden layer. In that layer, the different
characteristics of the sensor nodes like energy, cooperativeness and trust level are computed. Then, the computed values of the
sensor nodes are given to third hidden layer. In that layer, Changepoint linear regression analysis is carried out for analyzing
the sensor node with their characteristics by setting the threshold. Depending on the analysis, the nodes are classified as
legitimate sensor nodes and intruders. A new part of this process is fine-tuning of dense neural network, where the
Metaheuristic Walrus Optimization algorithm is employed to update the hyperparameter of dense neural network for minimizing
the training and validation errors, thereby boosting the accuracy of node classification. Finally, the accurate node classification
is carried out at output layer. With the selected legitimate sensor nodes, secure data transmission is achieved in WSN. The
effectiveness of the proposed LiRMO-DenseNet model is assessed using a comprehensive set of performance measures,
including accuracy, confidentiality rate, data integrity rate, packet delivery rate, throughput and delay. The simulation findings
demonstrate that the proposed LIRMO-DenseNet model consistently achieves superior security performance, exhibiting higher
confidentiality and reduced delay compared to existing deep learning based methods.

Keywords: WSN, secure data transmission, dense neural network, Changepoint linear regression analysis based legitimate node
classification, Metaheuristic Walrus Optimization algorithm based fine tuning.

L. INTRODUCTION

Wireless sensor networks (WSNSs) have gain significant attention due to their low-power intelligent processing, compact node size,
self-organizing capabilities, and efficient routing. These networks support a wide range of applications, including home automation,
smart city infrastructure, health monitoring, and object tracking. Sensor nodes are typically small and battery-powered, which
entails inherent limitations related to energy availability, and overall computational resources. Owing to their communication
patterns and deployment environments, WSNs face critical challenges in energy management and secure data transmission, both of
which directly impact network lifetime and resilience against malicious nodes. To address energy constraints and security of data
transmission, various techniques have emerged as effective solutions for prolonging the operational lifetime of the network.
Quantum search-enhanced bat algorithm (QS-BAT) was designed in [1] for accurate intrusion detection based on deep learning
architectures under multiple attack scenarios. However, accuracy, latency, and energy consumption remained major challenges in
distributed 1DS deployments. Machine Learning-based Secure Routing Protocol (MLSRP) was developed in [2] for WSN to obtain
better energy efficiency and deliver an efficient security with reduced data loss. However, deep learning model was not employed
for achieving higher accuracy in intruder node detection.
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An efficient Multi-Level Trust Based Secure Routing (MLTSR-BC) was presented in [3] for secure transmission of data between
the nodes within the network. The designed mode increases the data security and throughput. However, intruder nodes within the
network were not accurately identified. An Improved Type-2 Fuzzy Logic System (IT2FLS) was developed in [4] for secure and
energy-efficient routing with minimal delay and higher throughput by means of the Reptile Search Algorithm. However the network
complexity and security threats were major concern for reliable communication in complex technological environments. In order to
enhance the reliable data transmission, modular Artificial Intelligence (Al)-based routing framework was introduced in [5] for
WSN. However, the accuracy of the framework remained unaddressed. Secure Machine-learning-based Adaptive Reliable Trust
(SMART) model was introduced in [6] for enhanced security and accuracy based on trust values. However, fine-tuning the model
did not perform to verify and enhance its robustness and reliability. An energy-aware and adaptive intrusion detection system was
developed in [7] for WSNs to detect the Black Hole and Wormhole attacks on the routing systems. However, the energy-sensitive
routing functions did not integrated to minimize the computational load. Secure cluster-based routing model was designed in [8]
based on residual energy, trust, node degree, and location factors. However, it did not integrate advanced optimization techniques to
minimize energy consumption while considering a large number of nodes. Al-driven authentication system was introduced in [9] to
increase the security and reliability of sensor nodes. Though the model achieves high detection rates, accurate trust scores, minimal
latency, and competitive energy consumption, higher throughput was not achieved. A Deep Learning-Enhanced Hybrid Trust
(DLEHT) model was developed in [10] to greatly increase the security and performance of WSNs with higher packet delivery and
packet drop reduction. However, the accuracy of intruder node detection was a major issue. Effective machine learning (ML)
technique was developed in [11] to enhance the routing security. However, deep learning (DL) model was not implemented to
further enhance the security of data transmission. A fuzzy deep reinforcement learning (FDRL) was developed in [12] to enhance
the energy efficient and secure data throughput. However, lightweight Al-driven heuristics algorithms were not designed to
minimize the computational overhead. A new hybrid trust-based routing framework was introduced in [13] for secure, energy-
efficient, and scalable communication. However, the framework was not applicable for heterogeneous and mobile loT
environments. Trusted Energy-Aware Hierarchical Routing (TEAHR) framework was developed in [14] for multi-level trust
evaluation that enhances the security level. However, computational and energy overhead was not feasible for highly dynamic
networks. Energy-Efficient Elliptic Diffie Clustering Technique (3EDCT) method was designed in [15] for energy balance security
robustness. The designed technique reduces the communication and computation overhead. However, Al-driven trust evaluation and
real-time anomaly detection was not performed to further strengthen the security.

A. Research contribution

The major contribution of the LIRMO-DenseNet model is summarized as given below,

1) A novel LIRMO-DenseNet model is developed to improve energy-efficient and secure data transmission in WSNs. This dense
neural network-based approach integrates various processes, sensor node classification and secures data transmission.

2) To increase the classification accuracy, a dense neural network is employed to classify the sensor nodes based on their residual
energy levels, cooperativeness and trust score. The changepoint linear regression is employed for analyzing the node and
classified into legitimate and intruder nodes. The Walrus Optimization algorithm is employed to reduce the classification errors,
thereby increasing the performance of precision, and recall.

3) To improve the secure data transfer rate and throughput, the LIRMO-DenseNet model utilizes the legitimate sensor nodes to
transmit the data from sender to sink node.

4) Finally, an extensive simulation is conducted to analyze the performance of LiIRMO-DenseNet model and other existing works.

B. Organization of the Paper

The remainder of this paper is structured into five sections. Section 2 reviews existing studies and outlines the background
information. Section 3 details the proposed LiRMO-DenseNet model along with its architectural framework. Section 4 presents the
simulation environment and discusses the obtained results. Section 5 provides a comparative analysis of different approaches based
on multiple performance metrics. Finally, Section 6 concludes the paper by summarizing the key findings.

1. RELATED WORKS
A new Secure Clustering and Sleep-Wakeup based Energy Efficient Routing was introduced in [16] using Fennec fox optimized
deep learning framework to minimize the energy usage and extend the network lifetime. However, designing lightweight deep
learning strategies was major issue for resource-constrained nodes, and enhancing the security model to handle various attacks.
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A deep gradient descent multi-layer Marquardt vector algorithm was designed in [17] for energy efficiency analysis and security
analysis to achieve high throughput and minimize the delay. However, the model was not efficient in handling the dynamic nature
of WSNs to improve the data transmission effectiveness. An intrusion detection framework based on deep learning was designed in
[18] to increase the detection accuracy and minimize adversarial vulnerability. However, it failed to develop more reliable deep
learning models for guaranteeing the security of WSNs. A lightweight machine learning (ML) approach was designed in [19] based
on the extreme gradient boosting (XGBoost) model to distinguish various types of attacks with maximum accuracy. However secure
data delivery performance was not achieved. Deep learning-based Intrusion Detection System (IDS) was developed in [20] to
achieve both accurate and efficient threat detection. However, the latency aware threat detection remained major issue.
A novel improved bidirectional long-short-term memory (Bi-LSTM) algorithm was designed in [21] to address the issue of intrusion
detection with higher accuracy. However, false positives and negatives were not addressed in intrusion detection. Lightweight MG-
Net Model was introduced in [22] to addresses security by including a Trust Model, Anomaly Detection, and Secure
Communication. However the model did not enhance the trust and cooperativeness for effectively improving the detection rate with
minimum time. Adaptive Federated Reinforcement Learning-Hunger Games Search (AFRL-HGS) was developed in [23] for Secure
and Reliable Data Transmission. However, the algorithm did not consider the other parameters such as trust, energy, and
cooperativeness. A novel FireTG-Net model was introduced in [24] based on Firefly Swarm Optimization (FSO) for detecting
anomalies within WSNs with higher detection accuracy. However it did not consider the energy aware trust modeling to optimize
the network lifetime. Server—Client Machine Learning Intrusion Detection System (SC-MLIDS) was developed in [25] to enhance
security by addressing the various threats. However more robust and responsive intrusion detection was major challenges.
An optimized ensemble method was introduced in [26] for the wireless networks against various attacks. However, the accuracy of
various attack detection was not improved. In order to increase the accuracy, multi-deep learning intrusion detection framework was
developed in [27]. However the model failed to focus on optimizing the model to enhance energy efficiency. Graph Neural
Cryptonet (GNC-Net) was introduced in [28] for efficient trust-aware routing within the WSN environment. However, the model's
scalability was not improved. Energy aware and secure routing (EASR) was developed in [29] for indentifying malicious behavior
based on energy trust. However, machine learning and deep learning techniques failed to analyze comprehensive trust value for
minimizing the computation overhead. A Dual Layer Security Framework (DLSF) was introduced in [30] to provide robust node
authentication and secured communication using trust based approach. However, the framework did not support larger-scale
deployments to further enhancing its robustness.

1. PROPOSAL METHODOLOGY
Wireless Sensor Networks (WSNs) comprises of small unit of sensor nodes equipped with processors, battery elements, and
wireless communication units. These nodes gather information from the environment and transmit it to the sink node for further
processing and decision-making. Due to the dynamic nature of networks, WSNs are devised to improve the processing capacity and
data transmission effectiveness. However, secure data transmission remains a significant challenge in WSNs owing to increasing
security risks. To address these concerns, the a novel LiRMO-DenseNet model is introduced to recognize resource-efficient and
legitimate sensor nodes, thereby ensuring reliable and secure data communication across the network.

/ WSN

T
. changepoint linear
e iy

classified as legitimate classified as intruder
e eSS

&

secured data transmission

Figure 1: Architecture of the proposed LIRMO-DenseNet model
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Figure 1 presents the architectural structure of the proposed LiRMO-DenseNet model developed for secure data communication in
WSN. The proposed architecture utilizes the deep learning model for analyzing the key characteristics of the sensor nodes such as
energy, cooperativeness and trust level. In the initial step, the measured characteristics of the sensor nodes are processed using a
changepoint linear regression analysis method to precisely access node behavior. Based on the analysis outcome, each node is
classified either as a legitimate sensor node or an intruder sensor node. Then the legitimate sensors are permitted to contribute the
network operations, ensuring secure and reliable data transmission, while intruder sensors are detected and isolated to enhance the
overall security and performance of the WSN. Each of these stages plays a vital role in the functioning of the proposed. Further
details on these processes are described in the subsequent sections.

A. Network Model

The proposed model considers the network model specifically designed for secure data communication between the sensors to sink
node. This model consists of a large number of low-power, energy-constrained sensor nodes SN; = SN;,SN,,SN;...SN,,in a
M x M squared network area for sensing and collecting the data packets data packets Dp,, Dp,, Dps, ... Dp, that has a similar
sensible capacity and initial battery powers. In order to perform the secure communication, legitimate sensor nodes are identified
based on three key characteristics such as energy (E), node cooperativeness (NC) and trust level (TL).

B. Dense Neural Network

The proposed LIRMO-DenseNet model utilizes the dense neural network (DNN), also called a Multi-Layer Perceptron (MLP) for
identifying the legitimate or intruders sensor nodes. The dense neural network is a core artificial intelligence model where each
neuron in one layer fully connected to neuron in the next succeeding layer, allowing it to learn complex patterns. Compared to
traditional deep learning models, the proposed approach is capable of efficiently handling large volumes of input data. It processes
information efficiently through parallel processing, allowing faster computation and improved performance. The structural layout of
the proposed dense neural network model is illustrated in Figure 2.

Input First hidden Second hidden Third hidden Output
layer layer layer layer layer

sensor nodes

Sensor
nodes

Figure 2 Structure of dense neural network

Figure 2 demonstrates the architecture of a dense neural network designed for secure data transmission in WSN. As depicted, the
network consists of numerous layers, including input, hidden, and output layers. The input and output layers are single layers,
whereas the hidden layers contain several sub-layers. Each layer consists of multiple units called artificial neurons or nodes. These
neurons receive inputs, process them, and pass the results to neurons in the subsequent layer. The connections between neurons,
referred to as synapses, are assigned weights that determine the strength of the links between layers.

Let us consider input i.e. sensor nodes SN;,SN,,SN5 ...,SN,,’ given to the input layer of structure of the dense neural network
architecture. The input sensor nodes are transferred to the one or more hidden layers positioned between the input and output layers.
Each layer is made up of neurons that receive input from the previous layer.
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For each neuron, the input is multiplied by specific weights that determine their importance, and then a bias term is added to shift
the result. The neurons in the hidden layer computed the weighted sum as follows,
X = YILi(SNy* Q)+ b (1)
Where, X indicates an weighted sum output, Q;, indicates a weights between input and hidden layer, number of sensor nodes ‘SN;’,
‘b represents a bias that stored the value is ‘1’
At the beginning of the process, the entire sensor nodes are assumed to have equivalent initial energy. However, it performs sensing
and monitoring operations, their energy levels decrease over time. Therefore, the total sensor energy consumption is estimated as
follows,
ENZN' = ENg+ ENgy + ENpy (2)
Where, ENCS;Z} indicates an energy consumption of i*" sensor node, EN, indicates an energy dispersed during transmission of a
data, EN, refers to an energy consumed during processing tasks, ENg denotes an energy consumption of sensing the data.
ENgy Y = (ENel(TX) * ka) + (ENy * kry * D*)  (3)
Where, EN;,*" indicates a total energy consumed by the sensor node, k, denotes a size of the data being transmitted, ENgyrx)
refers to energy dissipated by the transmitter electronics per bit, EN, denotes a amplifier energy factor, D denotes a distance
between the sensor nodes.
Energy consumed during the reception of data is calculated by multiplying the device’s power consumption by the time taken to
complete the processing tasks.
ENRXSN = ENgy(rx) * krx 4)
Where, ENg,*" indicates an energy dissipated during reception of a data, EN,(rx) refers to energy dissipated by the receiver
electronics per bit, kp, denotes a size of the data being received.
Therefore, the residual energy typically indicates the remaining energy in a sensor node after it executes the tasks such as sensing,
communication, and processing.

ENyes (SN) = EN 7 (SN) — ENGit (5)
Where, EN, ., (SN;) represents the residual energy of i** sensor node,EN , (SN;) symbolizes total energy of it" sensor node, ENCS;Z}
indicates energy consumed by the it* sensor node.
In this layer, the system evaluates cooperative each sensor node is in the network and assesses the trustworthiness of the nodes. This
helps in identifying reliable nodes for data transmission and ensures that the network functions efficiently while minimizing
malicious behavior.
The cooperativeness of the each sensor node is the ability of a node to actively participate in network activities, such as data
forwarding, routing, and sharing resources. However, the attacker nodes do not cooperate with the other nodes in the network for
better communication. Therefore, the cooperativeness of the sensor nodes is measured based on communication links between the
nodes over the specific time instant.
The communication links between the nodes are determined by the means of distributing the two beacon message distributions. The
beacon messages are request (Req) and route replies (Rep) are shared among the sensor nodes. First, the sensor node SN, sends a
request beacon message to other neighboring sensor nodes to identify the communication links.

Req
SN; = SN; (6)
Where, the node SN; sends route request (Req) beacon message to other sensor nodes SN; in the network. The node SN; sends the
reply message Rep back to the node SN; .
SN, < 5N, (7)
Where, node SN; sends a reply message Rep to the sensor node SN;. For each node compute the cooperative score values based on

the received requests and responses.
Rep rec
=—== (8
Reqsent ( )
Where, CS denotes a cooperative score of the each node based ratio of response received Rep .. from its neighbors and requests

sends Req....- A higher cooperative score, close to 1, indicates that the sensor node is highly cooperative. This means the sensor
node reliably responds to more requests from its neighbors, actively participates in data forwarding, and contributes positively to
network operations. These kinds of nodes are considered reliable and are preferred for energy-efficient data transmission.
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Conversely, a lower score value indicates that the sensor node is less cooperative. This suggests that the node frequently fails to
respond to requests, drops requests. Nodes with low cooperation negatively impact the network’s performance and decrease
reliability. In this way, the cooperativeness of the particular sensor node is determined for secure data communication in WSN.
Followed by, the node trust value is estimated to improve security, reliability, and successful data transmission in WSN. A
lightweight trust evaluation method is employed for decentralized WSN which measures the direct trust and indirect trust to identify
the nodes as trusted or untrusted.

The direct trust values of the nodes are computed as a ratio of number of successful data transmission to the total number of data
transmission, including both successful and unsuccessful data transmission. This value indicates the reliability and trustworthiness
of node of the node. The direct trust value is mathematically expressed as follows,

TSN =[ SpT ] (9)

Spr+USpr
Where, TSV denotes a trust of sensor nodes, S, represents a successful data transmission, US,, denotes an unsuccessful data
transmission. With the estimated rust value, the direct trust and indirect trust is estimated as follows.
DTSN = f « X(9; xT*V)  (10)
ITSN = ¥ (9, * DTSV)  (11)
TSN . = (95 x DTSN) + (9, = ITSV) (12)
Where, DTSN denotes a direct trust of the sensor node, ITSV indicates a indirect trust of the sensor node, f. denotes a confidence or
normalization factor that scales the overall trust value, 9,,9,,9; and 9, denotes a weight assigned to each interaction, TSY
denotes a total trust value of the sensor nodes.
The estimated energy cooperative score and trust values of the each node is formulated as follows,
Ell CSll Tln

E21 CSZZ TZn

M= (13)

Eml CSmZ Tmn
Where,M indicates a vector of three different characteristics of the sensor nodes, each column indicates a characteristics of the
sensor nodes Energy (E), cooperative score (CS) and trust (T") respectively.
The estimated vector consisting of three distinct characteristics of the sensor nodes is forwarded to the third hidden layer, where
changepoint linear regression analysis is performed. This analysis identifies variations in the relationships among the input key
characteristics by detecting transition points, enabling more accurate modeling of node behavior and improving decision-making in
the network.
It is a machine learning technique used for analyzing the distinct characteristics of the sensor nodes and dependent variables i.e.
target output.
IN =8, M+c,,if M <BP (14)
LN = B,.M + c,,if M > BP (15)
Where, ‘LN’ represent the legitimate node and their different characteristics of the sensor nodes ‘M’ via regression coefficient ‘g, ’,
‘B,’ and regression constants ‘c;’, ‘c,” with respect to breakpoints ‘BP’ (i.e. threshold), IN symbolize the intruder nodes.
Based on the classification results, the error rate is measured based on squared difference between the actual and predicted output.
ERR = (Yac — Ypre)?*  (16)
Where, ERR denotes a classification error, Y, indicates the actual classification output, Y, denotes the predicted output. In the
fine-tuning phase, the deep learning model updates its hyperparameters to reduce the classification errors and increases the accuracy
of node classification. The Gradient momentum function is employed to adjust the weights among the layers in MLP architectures.
Qrv1 = Qc—nH, (17)

JERR

Ho=yH_+ Q- y)a_m (18)
Where,Q,., indicates an updated weight, Q, represents a current weight, n denotes a learning rate, ‘%’ indicates a partial
t

derivative of the classification error ‘ERR’ with respect to the current weight ‘Q,’, y indicates default value 0.9. Based on the
updated values, multiple weight vectors are generated. From these, the optimal weight vector is chosen using the Walrus
Optimization algorithm, which increases the classification accuracy by minimizing errors.

The Metaheuristic Walrus Optimization algorithm is a nature-inspired technique designed based on foraging activities of walruses.
In this algorithm, each walrus represents a number of weights.
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The advantage of Walrus Optimization algorithm provides the better performance in finding better quality solutions. The algorithm
processed in three major phases namely exploration, migration, and exploitation to discover the optimal solution by the means of
ranking process. The optimization process starts to perform the population of Walrus i.e. weights in a random manner.

Q1

0. =|% (19)

@»
Where, Q, indicates ‘b’ population of weights. Followed by, fitness is estimated according to the error values.

fit(Q,) = arg min ERR (20)
Where fit(Q,.) indicates a fitness for each weight, arg min indicates an argument of minimal function, ERR represents an error
rate. Subsequently, the current best weight is chosen from the population based on fitness.
7= {fit(Qr) > fit(Qn) ; select Q, as best (21)
Otherwise Qy as best

Where,Z represents current best selection outcomes, fit(Q,,) denotes a fitness of the neighboring walrus,fit(Q,) indicates a fitness
of one walrus. Accordingly, the highest fitness value is identified as the strongest walrus in the population. Subsequently, three
distinct behaviors such as exploration, migration, and exploitation are carried out to effectively balance multiple objectives and
guide the search toward the optimal solution.

1) Exploration
Exploration helps to maintain population diversity and increases the possibility of finding global optimal or near-optimal solutions
than the local optima. The strongest walrus indicates the current best solution (best fitness function). Other walruses adjust their
positions toward this best strongest walrus. Therefore, the position of other walruses gets adjusted as follows,

P(t+1) =P (t)+ r.05|P,.(t) —J.P (O] (22)
Where, P (t + 1) represents an updated position of the walruses, P (t) represents a current position of walruses, r represents a
random numbers between [0, 1], 0.5|P,,..(t) —J. P (t)| denotes a Jensen Shannon divergence between the current position ‘P (t)’
and best position ‘P, (t)’, J represents the selected randomly between 1 or 2 and it is used to increase the algorithm’s exploration
ability.

2) Migration behaviors

The other behavior of walruses is the seasonal migration to stony seashores or temperatures increase during summer. In this
behavior, each walrus moves toward the position of another randomly chosen walrus positioned in a various region. This migration
behavior is mathematically expressed as follows,

P )+ 7.05|Ppes(®) = J. P ()| 5 if fit(Prana(®)) > fit(P; (£))

23
P(t)+ r.05|P (t) — Prgna(®)I ; otherwise 23)

PM(t+1)={

Where, Py, (t +1) represents a position of the other walruses in migration phase, P,.,4(t) indicates a position of another
randomly selected walrus, r denotes a random number between 0 and 1 that controls the step size. j integers selected randomly
between 1 or 2, fit(P,qnq(t)) denotes a fitness of the randomly selected walrus, fit(P; (t)) denotes a fitness of the current
selected walrus.

3) Exploitation

During this behavior, walruses are exposed to risks from predators such as polar bears and killer whales. In this behavior,
exploitation is the process of altering the solutions in promising areas according to the current knowledge, focusing on achieving the
best result by finding the neighborhood of known best solutions. The position updating process of the walruses in exploitation is
expressed as follows,

P, (t+1)=P()+ (Ub"'(Lb_T-Lb)) (24)
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Where, P; (t + 1) indicates a updated position, P (t) represents current location of the walrus, L, denotes a local bounds,U,
represents a upper bounds for the search range around the walrus, r indicates a random number between 0 and 1. Finally, the
algorithm verifies the new position along with previous position according to

P(t) = {fit (PE (t+ 1)) > fit (P (t)) ; return Pg (t + 1) is optimal

Otherwise ; return P (t) is optimal
If the fitness of new position ‘Pz (t + 1)’ is greater than the current best ‘P (t) it may replace the newly selected best-known
position P; (t + 1) as an optimal. This process continues until the maximum number of iterations gets achieved. Finally, the
optimal position of walrus (i.e., optimal weight) is making small changes in the direction that minimizes the error. This process
helps refine learned reduce prediction errors, and improve overall accuracy of the model. Finally, the accurately classified results are
generated at output layer with sigmoid activation function.
Y = Asigmoid(h(t)) (26)

Where, Y” denotes a final binary classification output, ‘h(t)’ represents the hidden layer output, * Ag;gmoiq” represents the sigmoid
activation function in output layer for binary classification output. Finally, the data communication is carried out through legitimate
sensor nodes to increase the security.
/l Algorithm 1: Linear Regressive Momentum Optimized Dense neural Network

(25)

Input: Number of sensor nodes ‘SN;,SN,,SN;, ...., SN,, , Environmental data packets DP,;, DP,,DP; ....DP,
Output: Security of data transmission

Begin

Step 1: Number of sensor nodes ‘SN;,SN,, SN, ....,SN,, and Environmental data packets --- input layer
Step 2: input of SN,, s given to input layer of MLP

Step 3: Compute the weighted sum using (1)

Step 4: For each sensor node SN; --- Hidden layer 1

Step 5: Compute the residual energy using (5)

Step 6: End for

Step 7: For each sensor node --- Hidden layer 2

Step 8: Compute the cooperative score “‘CS’ using (8)

Step 9: Compute the total trust value of sensor nodes TS¥ ,, using (12)

Step 10: End for

Step 11: Formulate the vector of different characteristics of sensor nodes ‘M’ using (13)

Step 12: If (M > BP) then--- Hidden layer 3

Step 13: sensor node is classified as legitimate
Step 14:  else
Step 15: sensor node is classified as intruder

Step 16: Endif

Step 17: Obtain classes of sensor nodes

Step 18:  For each classification result

Step 19: Measure the classification error © ERR using (16)
Step 20: Update the weights using (17) (18)

Step 21: End for

Step 22: Initialize the population of the weights using (19)
Step 23: For each weight ‘Q’

Step 24: Evaluate the fitness using equation (20)

Step 25: End for

Step 26: While (T < T,,,,) do

Step 27:  if (fit(Q,) > fit(Q,) )then

Step 28: Select the current best weight

Step 29:  End if

Step 30:  for each weight in population do
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Step 31: if the exploration phase then

Step 32: Update the positions ‘P (t + 1)’ using (22)
Step 33: Else if Migration phase then

Step 34: Update the positions ‘P, (t + 1)’ using (23)

Step35: Endif
Step 36: End for

Step 37: Calculate new position in the neighborhood of the walrus using (24)
Step 38: if (fit (P; (t+1)) > fit (P(1))) then

Step 39: P (t + 1) considered as best optimal solution

Step 40: else

Step 41: P (t) considered as optimal solution

Step 42: End if

Step 43: Increment t=t+1

Step 44: Gotostep 8

Step 45:  End While

Step 46: Return best optimal according to fitness

Step 47: Obtain accurate node classification results at output layer using (26)
Step 48:  Perform secured data transmission through legitimate sensor nodes

Algorithm 1 describes the step by step process of secure data transmission between sensor node and sink node in WSN. The Dense
neural network is used as a feed forward deep learning model to classify the sensor nodes into legitimate or intruder nodes. The
input i.e. sensor nodes are given to the input layer. In the hidden layer, the nodes residual energy, trust value, cooperativeness is
calculated. After that, the changepoint linear regression is employed for classifying the sensor node as legitimate or intruder nodes
by setting the break point or threshold. After the classification, the training error rate is computed. Based on the error rate, the
weight values get updated accordingly. Afterward, the weight parameters are initialized and optimized using a population-based
walrus optimization. During this process, the fithess of each candidate weight solution is iteratively estimated, and the best-
performing solutions are chosen to update the weight positions. If a newly updated weight achieves better fitness, it replaces the
previous weight. Otherwise, the existing weight gets retained. This optimization process continues until the predefined maximum
number of iterations is reached. In deep learning models, the optimal weight values guide the backpropagation to minimize the error
function. Finally, the output layer produces the accurate classification results with reduced error, thereby enhancing the overall
detection performance. The data transmission is performed through the legitimate node for attaining high security.

IV.  SIMULATION SETUP
In this section, simulation of three different methods namely the proposed LiIRMO-DenseNet model, an existing method referenced
as QS-BAT [1], and MLSRP [2] are implemented using the NS3 simulator. A total of 500 sensor nodes are deployed within a
square area of 1100 m x 1100 m. The Random Waypoint mobility model is adopted to support energy-efficient secure routing in the
wireless sensor network (WSN). The simulation duration is set to 100 seconds. To further enhance energy efficiency and ensure
secure data communication, the Dynamic Source Routing (DSR) protocol is utilized. The simulation parameters and their
corresponding values are summarized in Table 1.

Table 1 Simulation Parameters

Simulation parameters Value
Simulator NS3

Network area 1100m * 1100m

Number of sensor nodes 50, 100, 150, 200...500

Number of data packets 100, 200, 300, ....1000
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Protocol DSR

Simulation time 100sec

Mobility model Random Way Point model
Nodes speed 0-20m/s

Communication range of a sensor nodes 30m

Number of runs 10

A. Simulation Implementation Results

This section explains the various processes involved in the LIRMO-DenseNet model,with the support of illustrative screenshots.
Initially, 50 sensor nodes are randomly distributed over a square area of 1100 x 1100 m2.
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Figure 3 sensor nodes deployments

Following the deployment of sensor nodes within the designated network area, energy, trust and cooperativeness of sensor nodes are
measured as illustrated in Figure 4.
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Figure 4 sensor nodes energy, trust and cooperativeness of sensor nodes measurements

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |




International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue | Jan 2026- Available at www.ijraset.com

After measuring the characteristics of sensor nodes, Change point linear regression analysis is carried out in dense neural network
model for classifying the legitimate and intruder sensor nodes in WSN.
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Figure 5 sensor nodes classification

Figure 5 demonstrates 50 sensor nodes randomly deployed within the network area. The nodes are represented using different colors
to indicate their roles and status. Green nodes denote legitimate sensor nodes, while orange nodes represent intruder nodes identified
during the detectlon process

File Views Analysis outnam

«“ - [ > » |[" ss0s000 | step:2.0ms
=] E|
=]
9|
o] = @ @

ug(...jnm ® o)
Squrce dat @ @ @
© o ® ©
') © © =
@ @ O @ (@)
® @

B Lo
‘ 1 | | | | | | | 1 \ 1 | | | | | | | 1 | | | | | | | | | | | I |
+|[The optimal weight values guide the bu:k e tion
Finaly. the output layer produces th ssif
<| T T T TR

s s S e

Figure 6 data transmission via legitimate sensor node

The figure 6 illustrates the data transmission process after intrusion detection in the WSN. In this scenario, legitimate nodes are
shown in green, while intruder nodes are indicated in orange. The source node initiates data transmission through the legitimate
nodes for secure data delivery and supports reliable routing while mitigating security threats within the network.

V. PERFORMANCE RESULTS AND DISCUSSION
This section offers a relative analysis of LIRMO-DenseNet model by comparing it with established state-of-the-art methods, namely
QS-BAT [1], and MLSRP [2]. The performance evaluation uses metrics such as including accuracy, precision, recall, F1 score, data
transfer security rate, throughput and end to end delay. The performance of LIRMO-DenseNet model is compared to existing model
with respect to these metrics is illustrated through tables and graphical representations.

©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 1507



International Journal for Research in Applied Science & Engineering Technology (IJRASET)
ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538
Volume 14 Issue | Jan 2026- Available at www.ijraset.com

A. Performance Comparison Analysis of Accuracy
It refers to the ratio of correctly classified the sensor nodes as legitimate or intruders to the total number of sensor nodes. The
corresponding mathematical formula for accuracy is expressed as follows,

TP+TN ) « 100 27)

TP+TN+FP+FN
Where TP (True Positive) represents the number of correctly identified legitimate nodes, TN (True Negative) denotes the number of

correctly identified intruder nodes, FP (False Positive) refers to intruder nodes incorrectly classified as legitimate nodes, and FN
(False Negative) represents legitimate nodes incorrectly classified as intruder nodes. Accuracy is measured as a percentage (%).

Accuracy = (

Table 2 comparison analysis of accuracy

Number of Accuracy (%)
sensor nodes Proposed LIRMO- Existing QS-BAT [1] Existing MLSRP [2]
DenseNet

50 94 90 86.27
100 96.32 92.36 89.23
150 97.23 91.56 90.05
200 96.56 92.33 89.52
250 96.41 91.56 90.05
300 96.78 92.63 91.23
350 97.21 93.22 91.63
400 98.1 93.45 91.44
450 97.26 93.22 91.03
500 97.22 92.45 90.23

100 Number of sensor nodes Vs Accuracy (%)

981

96 1

94 1

921

Accuracy(%)

90

—&— Proposed LiIRMO-DenseNet
—&— Existing QS-BAT [1]
86 1 —9~— Existing MLSRP [2]

50 100 150 200 250 300 350 400 450 500
Number of sensor nodes

Figure 7 graphical illustration of accuracy

Figure 7 shows a comparative examination of accuracy including the proposed LiRMO-DenseNet model is evaluated by comparing
it against existing methods, namely QS-BAT [1], and MLSRP [2]. The analysis measures accuracy of intruder detection based on
sensor nodes with various ranging from 50 to 500. Among three methods, the LIRMO-DenseNet model consistently outperforms the
other approaches in terms of achieving higher accuracy.
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For instance, with a 50 sensor nodes, LIRMO-DenseNet model achieves an accuracy of 94%. In comparison, [1] reaches 90%, [2]
records 86.27%, respectively. Subsequently, various performance results were observed with respect to various counts of input
sensor nodes. Finally, the observed results of LIRMO-DenseNet model are compared to results of existing methods. The average of
ten results illustrates an improvement in accuracy of approximately 5%, and 7% when compared to [1], [2], respectively. This
performance improvement is chiefly achieved to the integration of dense feed forward neural network architecture. This architecture
helps to identify sensor devices that have higher residual energy, cooperative score and trust value by applying the changepoint
linear regression for secure data transmission, resulting overall accuracy of legitimate and intruder node is significantly improved.

B. Performance comparison analysis of precision
Precision is measured as the ratio of correctly predicted positive instances (true positives) to the total number of instances predicted
as positive, which includes both true positives and false positives. The formula for precision is expressed as follows

)+100  (28)

TP+FP
Where, TP represents the true positive, FP indicates the false positive.

Precision = (

Table 3 comparison analysis of precision

Number of Precision (%)
sensor nodes Proposed LiIRMO- Existing QS-BAT [1] Existing MLSRP [2]
DenseNet

50 94.87 92.30 89.74
100 96.23 93.36 90.33
150 96.11 93.26 91.06
200 96.22 93.44 91.45
250 96.25 93.56 91.66
300 96.36 93.23 91.41
350 96.88 93.56 90.63
400 97.11 93.36 91.45
450 96.32 92.66 91.55
500 96.63 93.05 91.36

100 Number of sensor nodes Vs Precision(%)

—8— Proposed LiRMO-DenseNet
—&— Existing QS-BAT [1]
98 -~ Existing MLSRP [2]
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Figure 8 graphical illustration of precision
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Figure 8 presents a comparison of precision across varying numbers of sensor nodes ranged from 50 to 500. In the chart, the x-axis
represents the number of sensor nodes, and the y-axis indicates the corresponding precision values in intruder node classification.
Among the three methods, LIRMO-DenseNet model achieves the highest precision, outperforming the other existing approaches.
For example, when using 50 sensor nodes, the LIRMO-DenseNet model achieved a precision of 94.87%, while the existing methods
[1] and [2] achieved 92.30% and 89.74% respectively. On average, LiIRMO-DenseNet model demonstrates an improvement in
precision of approximately 3% over method [1] and around 6% over method [2]. This improvement is achieved due to the
integration of dense neural learning techniques, which incorporate the walrus optimization algorithm for fine-tuning the sensor node
classification results. By iteratively tuning the deep learning model hyperparameters, the system increases its learning process,
directing to high true positives and less false positives, thereby enhancing the precision performance in sensor node classification.

C. Performance Comparison Analysis of Recall
It also known as sensitivity, evaluates the model effectiveness in correctly identifying intruder and malicious node. It is measured by
dividing the number of true positive predictions by the total of true positives and false negatives.

Recall = (—2—)+100 (29)

P+FN
Where, TP indicates the true positive, FN represents the false negative.

Table 3 comparison analysis of recall

Number of Recall (%)
sensor nodes Proposed LIRMO- Existing QS-BAT [1] Existing MLSRP [2]
DenseNet
50 97.36 94.73 92.10
100 98.33 96.36 93.23
150 98.11 96.11 93.25
200 98.36 96.05 93.25
250 97.98 96.02 93.63
300 98.23 96.13 93.47
350 97.86 96.16 93.65
400 98.15 96.02 93.45
450 98.11 95.68 93.85
500 98.12 95.33 93.41
100 Number of sensor nodes Vs Recall(%)
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Figure 9 graphical illustration of recall
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Figure 9 portrays a performance evaluation of recall with respect to the number of sensor nodes deployed in the WSN. The LiRMO-
DenseNet model exposes higher recall compared to the existing approaches [1] and [2]. For instance, with 50 sensor nodes, LIRMO-
DenseNet model achieved a recall of 97.36%, while methods [1] and [2] observed 94.73% and 92.10%, respectively. After reaching
the ten performance runs, the average recall rate of LIRMO-DenseNet model improved by approximately 2% compared to [1] and
5% compared to [2]. The improved recall performance of the LIRMO-DenseNet model is achieved owing to the fine-tuning process
employed within the dense neural network architecture. By utilizing a fine-tuning process, the model minimizes the classification
error between predicted and actual outcomes through hyperparameter adjustment using the walrus optimization algorithm. This
iterative process continues until the classification error gets minimized, resulting in fewer false negative results and increase in true
positives.

D. Performance Comparison Analysis of F1 Score
It also called as F-measure refers to the harmonic mean of precision as well as recall. It is mathematically calculated using following
expression.

F1 — Score = 2 « (Precion*Recall) (30)

Precion+Recall

Table 3 comparison analysis of recall

Number of F1score (%)
sensor nodes Proposed LiRMO- Existing QS-BAT [1] Existing MLSRP [2]
DenseNet
50 96.09 93.49 90.90
100 97.26 94.83 91.75
150 97.09 94.66 92.14
200 97.27 94.72 92.34
250 97.10 94.77 92.63
300 97.28 94.65 92.42
350 97.36 94.84 92.11
400 97.62 94.67 92.43
450 97.20 94.14 92.68
500 97.36 94.17 92.37
100 Number of sensor nodes Vs F1 score(%)

—&— Proposed LiIRMO-DenseNet
—&— Existing QS-BAT [1]
98 { =@~ Existing MLSRP [2]
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Figure 10 graphical illustrations of F1 score
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Figure 10 illustrates a performance comparison of F1 scores for different number of sensor nodes ranging from 50 to 500. The
results confirm that the proposed LiIRMO-DenseNet model constantly outperforms conventional models in terms of achieving high
F1 score. Each method was analyzed over ten various results to obtain consistent F1 measurements. The analysis exposes that
LiRMO-DenseNet model achieves superior F1 score performance across all simulations. The average of ten results indicates that the
LiRMO-DenseNet model showed an improvement of F1 score approximately 5% over method [1] and 3% over method [2]. This
enhanced performance is owing to the efficient implementation of the dense neural network, which enhances the F1 score by
balancing effects of precision as well as recall, leading to more accurate and consistent sensor node classification.

E. Performance Comparison of Data transfer security rate

Data transfer security Performance measures the effectiveness of the proposed approach in safeguarding transmitted data against
intruder node access in a WSN. It quantifies reliable data packets are delivered without being altered by intruder nodes. The metric
is computed as the ratio of secure transmissions to the total number of transmissions. A higher Data Security Performance value
indicates stronger protection, and improved reliability of the secure data communication process within the network.

DTS = ¥m [DPCD]*loO (31)

N -
J DP;

Where DTS refers to a Data transfer Security rate, DPCDsymbolizes the data packets correctly delivered at the sink node and
DP; sent indicates a data sent. The ratio is measured in terms of percentage (%).

Table 3 comparison analysis of Data Security rate

Number of Data transfer Security rate (%)
data packets Proposed LiRMO- Existing QS-BAT[1] | Existing MLSRP [2]
DenseNet

100 96 93 91
200 96.23 92.36 90.05
300 96.74 92.23 90.63
400 96.36 92.15 90.36
500 97.05 93.05 91.22
600 96.88 92.32 90.65
700 96.11 92.41 90.41
800 96.07 92.33 90.65
900 96.15 92.41 90.05
1000 96.12 92.36 90.66

100 Number of data packets Vs Data transfer Security rate(%)
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Figure 11 graphical illustrations of Data transfer Security rate
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Figure 11 demonstrates the performance comparison of data transfer security rate using four different methods namely the proposed
LiRMO-DenseNet model is evaluated by comparing it against existing methods, namely QS-BAT [1], and MLSRP [2]. In the
figure, the x-axis represents the number of data packets, ranging from 100 to 1000, while the y-axis shows the corresponding data
transfer security rate. Among all the three methods, LIRMO-DenseNet model consistently achieves superior performance. For
example, when considering 100 data packets to be transmitted, the LIRMO-DenseNet model records a data transfer security rate of
96%, whereas [1], [2] achieved data transfer security rate rates of 93%, and 91%, respectively. This assessment was conducted
across ten various data volumes, and the results demonstrate a clear improvement. The LiRMO-DenseNet model maintains higher
data transfer security rate in all cases. The average of ten results indicates that the LIRMO-DenseNet model outperforms the existing
techniques by approximately 4% compared to [1], 6% compared to [2]. The improved performance of LIRMO-DenseNet model is
achieved due to the integration of a dense neural network model. This deep learning architecture determined the legitimate and
intruder nodes by the means of energy and cooperativeness and trust. Finally, the secure data transmission is carried out via
legitimate sensor nodes, thereby enhancing the data transfer security.

F. Performance Comparison of Throughput
It measured as the rate of successful data transmission over a communication network within a specified time period. It is measured

in bits per second (bps). The formula for calculating he throughput is measured as follows,
THP = [Succ _Trans_data packet (bits)] (32)

Where, THP indicates a throughput, Succ _Trans_data packet (bits) denotes a successful transmission of data packets in bits in
one seconds (Bps).

time (s)

Table 3 comparison analysis of Data Security rate

Data packet size Throughput(bps)
(KB) Proposed LIRMO- Existing QS-BAT [1] | Existing MLSRP
DenseNet [2]
100 226 196 163
200 326 288 216
300 485 405 323
400 596 489 411
500 688 612 532
600 865 711 622
700 1123 936 823
800 1325 1163 986
900 1532 1325 1163
1000 1863 1532 1263

Data packet size(KB) Vs Throughput(bps)
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Figure 12 graphical illustrations of throughput
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Figure 12 illustrates the graphical examination of throughput across three various methods LIRMO-DenseNet model is evaluated by
comparing it against existing methods, namely QS-BAT [1], and MLSRP [2]. The horizontal axis represents size of data packets
ranging from 100KB to 1000KB, while the perpendicular axis demonstrates the performance of throughput. Among the different
approaches, LiRMO-DenseNet model consistently reveals higher throughput of successful data transmission. In initial iteration,
100KB of data being transmitted in sender node, the LiRMO-DenseNet model achieves a 226bps of throughput. In comparison,
methods [1] and [2] recorded throughput of 196bps and 163bps, respectively. This assessment was reiterated across numerous runs,
and the averages of ten results were considered for the final classification performance. The overall result indicates that LIRMO-
DenseNet model outperforms the existing methods [1] [2], showing improvement of throughput approximately 18% and 40%. The
performance enhancement is achieved by integrating the dense feed forward neural network. This network strategy facilitates the
identification of the most suitable legitimate sensor nodes by evaluating parameters such as high residual energy, cooperativeness
and trust value. As a result, data transmission becomes more efficient, leading to improved overall throughput in WSNSs.

G. Performance Comparison of End to end delay
It is a key performance metrics that measures the amount of time it takes for data packets travelled from sender to sink node across a
network. The formula for calculating the end to end delay is expressed as follows,
E2ED = T;(R) — T;(T) (33)
Where, E2ED denotes an End to end delay, T;(R) denotes a time of jt"data packet received at the sink node, T;(T) denotes a time
of jt"data packet transmitted from sender. It is measured in milliseconds (ms).
Table 3 comparison analysis of End to end delay

Number of End to end delay (ms)
data packets Proposed LiRMO- Existing QS-BAT[1] | Existing MLSRP [2]
DenseNet

100 11.8 13.5 15.6
200 12.5 15.2 18.3
300 13.4 16.4 19.4
400 15.6 18.2 20.5
500 18.7 20.5 22.6
600 20.9 22.3 25.4
700 23.6 26.1 28.4
800 26.5 28.4 30.2
900 30.2 32.3 34.7
1000 326 35.8 37.2

<0 Number of sensor nodes Vs End to end delay (ms)
—@®— Proposed LIRMO-DenseNet

35 | & Existing QS-BAT [1)

—@— Existing MLSRP [2]

End to end delay (ms)

100 200 300 400 500 600 700 800 900 1000
Number of data packets

Figure 13 graphical illustrations of End to end delay
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Figure 13 presents a performance assessment of end to end delay in relation to the number of data packets transmitted from the
source node to sink. The findings reveal that, across all three methods analyzed, end to end delay increases as the data packet
volume rises. However, the LiIRMO-DenseNet model consistently demonstrates a significant reduction in transmission delay
compared to the traditional approaches in [1] and [2]. For example, when 100 data are transmitted, the LIRMO-DenseNet model
records a delay of 11.8 ms while the methods in [1] and [2] demonstrate delay of 13.5ms and 15.6ms, respectively. Throughout the
range of increased data volumes, the LIRMO-DenseNet model achieves an average delay reduction of approximately 11% and 20%
in comparison to the existing techniques. This improvement is largely achieved due to selecting the energy efficient sensor nodes to
improve the overall efficiency of data transmission within the network. This approach increases the data transmissions speed,
reduces communication overhead, and significantly lowers transmission delay.

H. Case Studies

In this section, the practical application of LIRMO-DenseNet model is analyzed to demonstrate its effectiveness and adaptability.
These case studies highlight the proposed LiRMO-DenseNet model optimizes routing decisions under diverse network conditions
by intelligently considering factors such as energy efficiency and security.

In order to conduct the case scenario, Healthcare IOT_Data is collected from the
https://www.kaggle.com/datasets/ziyaO7/healthcare-iot-data. This dataset represents sensor readings collected from wearable
devices in an loT-enabled healthcare environment and is used to evaluate secure data transmission in patient monitoring scenarios. It
captures real-time physiological parameters such as body temperature, blood pressure, and heart rate, along with device-related
attributes including sensor identity, timestamps, and battery levels. Each record is associated with a unique patient and sensor,
enabling continuous health assessment and comparison against predefined target values for vital signs and health status. The
inclusion of battery-related information supports energy-aware communication, which is critical for maintaining reliable and
uninterrupted data transmission. In the context of secure healthcare applications, this dataset facilitates the analysis of sensitive
patient data are transmitted efficiently and securely to healthcare providers while ensuring data security, reliability, and privacy in
loT-based remote monitoring systems.

VI.  CONCLUSION

The paper introduces a novel approach called the LIRMO-DenseNet model, designed to achieve energy-efficient and secure data
transmission in WSN. The proposed approach starts with the deployment of multiple sensor nodes across the large scale sensor
network, followed by the application of a dense neural network that categorizes the nodes into legitimate or intruder according to
their residual energy, trust and node cooperativeness. To further improve the classification accuracy performance, walrus
optimization algorithm is employed. This optimization mechanism effectively minimizes error rate during sensor node
classification. The effectiveness of the proposed LiRMO-DenseNet model is validated through extensive simulations using key
performance metrics such as accuracy, precision, recall, F1 score, data transfer security, throughput, and end to end delay. The
simulation results clearly designate that the LIRMO-DenseNet model outperforms existing approaches by achieving superior data
transfer security, throughput and transmission success while considerably lowering delay when compared to conventional methods.
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