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Abstract: A literature review, that has compiled information from various sources on the topic of lex. We intend to explore 
different facets of the topic such as process , specification , variables and sample code.  
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I. INTRODUCTION 
While in the Lexical Analysis Phase it is required that tokens be recognized. Lex accomplishes this task using regular expressions. 
Prior to the year 1975 designing a compiler was a tedious ordeal which is when Lesk and Johnson[1975] published their work on lex 
and yacc. These utilities greatly simplified compiler writing [1]. 

II. PROCESS 
A Compilation process is a long and complicated procedure. When a source code is entered ,it goes through three layers of logical 
treatment. The first layer is the lexical analysis phase, where a tool called lex is used to convert the given string into tokens . The 
second layer is the syntax analysis phase, here the tokens are converted into a syntax tree, using the yacc tool. The third layer is the 
code generator phase , here the syntax tree is converted to the generated code [2] . 
In this article, The lexical analysis phase is of primary interest to us. The Lexical analysis phase attempts to convert strings to 
tokens.In technical terms lex converts regular expression specifications into C implementation of a corresponding finite state 
machine, the C program is later compiled and executed to produce a lexical analyzer [3] . 
Here an “.l” file (eg. file.l) is added as input to a lexical analyzer, which is converted into a stream of tokens as output, A C 
program(.c file) [4]   .Tokens are uniquely identified using a token name, which is essentially an abstract representations of certain 
kinds of lexical units. The parser processes these input symbols [5].  
A lex program comprises of a “pattern” part (which is basically the regular expressions used ) and an action part ( C code) [6] . An 
action endeavors to return a token so that it made used by the parser [7]. Regular expression can be expressed as a finite state 
automate or FSA which can be represented by states and the transition between them [8] . Lex translates regular expressions into 
computer programs that mimic FSA [9] . Using next input  character and current state, next state is recognized and put in computer 
generated state table[8]. Having this information we can now understand some of lex’s limitations, lex cannot handle nested 
structures like parentheses [11]  . 

III. SPECIFICATION 
A lex program contains three parts: Declarations, Rules and Auxiliary functions[12]  

 
Example 1: 
DECLARATIONS  
%%  
RULES  
%%  
Auxiliary functions 

 
Lex is divided into parts and is separated with the ' %(‘ and ‘%) ’ symbol . The shortest lex file [13]  is :  
     Example 2: 

 %% [14]     
Characters are copied from input to output one at a time, The first “%%” is needed as there should be a rules section [15] . 
Declaration: Declaration section is divided into auxiliary declaration and regular definition [16] Auxiliary declaration is used to 
declare functions, header files, define global variables etc. It is copied on the C code by lex. C is used to write the declaration and it 
is bracketed with’ %{‘and ‘%}’ . Short hand representations are allowed in lex, a regular expression maybe expressed in the [17] 
form D R , Where a regular expression R is represented by D [18]. 
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Rules: There are two parts of rules observed in a lex program: pattern matching and action execution [19] The yylex() function 
checks the input for a match of the pattern and executes code in the action part . [20]. Auxiliary Functions: Lex generates a c code 
for the rules and adds it to the yylex() functions. Using Auxiliary functions programmers may add their own code to the c file . [21] 

IV. VARIABLES IN LEX 
The following variable are used in LEX, they are accessible in the lex program and declared in lex.yy.c.  

 
A. Variables 
1) Yyin:  It is of the type FILE* and is defined by lex. It points to file .yyin, which is an input file[22]. A programmer can chose a 

file to associate yyin to a file, then yyin points to that file [23] by default lex assigns it to stdin.  
Example 3 [24] :  
/* Declarations */  
%% 
 /* Rules */  
%% 
 main(int argc, char* argv[])  
{ if(argc > 1)  
{ FILE *fp = fopen(argv[1], "r");  
if(fp)  
yyin = fp; } 
 yylex(); return 1; } 

2) yytext:  Is of the type char*, matches the lexeme found.Each evocation yytext carries a pointer to the lexeme found within the 
input stream by yylex()  [25] . 

3) yyleng: An int type variable that stores lexeme’s length. 

V. SAMPLE CODE FEATURE  
Below we have supplied a demonstration we came across on how a lex code maybe to conjured to perform a simple function; in this 
case: counting number of words in a sentence.  
The words here maybe be uppercase or lowercase or it may be in the form of digits. The program is written in the C programming 
language. 
The Code. [26] : 

%{ 
#include<stdio.h> 
#include<string.h> 
int i = 0; 
%} 
   
/* Rules Section*/ 
%% 
([a-zA-Z0-9])*    {i++;} /* Rule for counting  
                          number of words*/ 
  "\n" {printf("%d\n", i); i = 0;} 
%% 
  int yywrap(void){} 
  int main() 
{    
    // The function that starts the analysis 
    yylex(); 
      return 0; 
} 
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VI. CONCLUSIONS 
We have looked at several sources to articulate an introduction into the topic of LEX and its role in compiler design, Operating 
Systems etc.  We have provided a programmatic basis for how lex maybe used, how it maybe specifies, how its variables maybe 
used and finally how it all comes together in code. Further scope for research includes a more thorough computer science or 
computing based approach to lex and not just a programmatic one. 
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