

9 XII December 2021

https://doi.org/10.22214/ijraset.2021.39328

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

508 ©IJRASET: All Rights are Reserved

Analysis of Low Code-No Code Development
Platforms in comparison with Traditional

Development Methodologies
Shreyas Shridhar1, Siddharth Bose2

1Student, Department of Computer Engineering, SIES GST, University of Mumbai,
2Student, Department of Electronics & telecommunication, PCCOE, Pune, Savitribai Phule Pune University(SPPU)

Abstract: This paper examines the overview of low-code/no-code development platforms in comparison with traditional
development methodologies and examines the benefits and limitations of the same. For several decades, businesses have had
multiple options when they demanded new information systems. They could develop a new system using in-house developers, or
they could order a system from an external merchant. This offers a close fit to business obligations. However, nowadays, there is
a new alternative that is becoming increasingly prevalent. Low code/no code (LC/NC) applications can cater to business
requirements efficiently, can be implemented instantly, and the cost is much less than systems developed in-house. Few, if any,
programming skills are required.
Keywords: Traditional development, No code development, low code development, Low code No code development, Software
development life cycle (SDLC)

I. INTRODUCTION
Low code/no-code development platforms provide a familiar and apt solution to business specifications at a fraction of a cost in
contrast to traditional development equivalents and also is twice if not faster as well. With the help of pre-built modules and an
intuitive interface that usually incorporates drag and drop functionality for setting up the process models and framework of the app,
it makes app development straightforward, faster and extensible. It also subdues the difficulty of learning various programming
languages, technology stacks and helps people with less experience in the technology domain to develop and create
applications/products for their businesses without much hassle. However they are not meant to be a replacement for traditional
development practices or methodologies in any way, rather they serve as an alternative for specific use cases and business
requirements by organizations.

II. METHODOLOGY
In this paper, we intend to analyze various aspects of low code/no-code development platforms and compare them with traditional
development methodologies in terms of agility, cost of development, functionality, customization and many other aspects.
The different stages of traditional development methodology are shown in the given figure below

Figure 1. Traditional Development Life Cycle

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

509 ©IJRASET: All Rights are Reserved

No-Code/Low Code Development Platforms work in a different way. They tend to have pre-built modules for different functions
and these modules are integrated and configured together to develop applications and software.

Figure 2. No-Code/Low Code Development Platform Overview

III. OVERVIEW
A. Ease of Development
1) Low-Code/ No-Code Development Platforms: These platforms typically possess a small set of tools, which helps one to develop

various varieties of applications without considerable trouble. Application development using (LC/NC) approach becomes way
more manageable for non-technical personnel without the knowledge of skills in this domain. The prominent advantage of low-
code no-code development, particularly for proficient developers, is that it's quick. Prebuilt modules reduce the time taken to
implement application functionality, so developers can spend time on tasks that need more originality or that have greater
precedence for the business. Low-code development can also help developers integrate a function with an external platform
without learning about the ins and outs of that external platform.

2) Traditional Development Platforms: Traditional app development utilises a well-defined, established development process.
With programming, you normally expect the implementation of Agile methodology and DevOps best practices. The DevOps
procedures ensure your application may be easily managed, seamlessly updated, and delivered to the general public. However,
to develop a standard app, developers must be at home with the ecosystem, frameworks, technologies and technology stack
utilized by an organisation. there's a good range of tools and technologies to choose from. Developers encounter software errors
and bugs which may be a nuisance to repair.

B. Cost
1) Low-code/ No-code Development Platforms: Low-code/no-code development platforms support businesses to develop

applications for immediate use speedily and at a reduced expense. Traditional development demands an in-house team or
outsourced software development. With low-code development, one doesn’t need a team: the organization can hire part-time
developers to work on an appropriate project. It also depends on the subscription costs of the platforms used. Usually way
cheaper than hiring professional developers who demand higher pay in accordance with their skills and knowledge.

2) Traditional Development Platforms: For traditional app development, businesses must hire developers who are well versed with
the technology stack and pay them. Supplemental expenses of developing an app with the traditional approach include costs for
App development tools and libraries, Third-party service integration and Infrastructure services like servers, data storage and
content development networks (CDN). These services should be established by companies on their own or outsourced to cloud
services like AWS, GCP or Azure. Although costs will vary depending on the extent of the project and particular requirements
of the organization, it still is significantly costlier than low-code no-code platforms.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

510 ©IJRASET: All Rights are Reserved

C. Maintenance
1) Low-code/ No-code Development Platforms: With no-code platforms and their pre-built and pre-tested modules, implementing

changes is more straightforward and efficient. Plus, the risks of incompatibility are low. Low-code platforms being aPaaS
(application platform as a service), are typically governed and managed by the organisation that maintains the platform. This
simplifies the procedure for maintenance as all the updates and enhancements to the software are controlled by the hosting
company rather than the business advocating the service. This assists businesses with inadequate or non-existent IT departments
because it enables them to take advantage of well-maintained software without the requirement to spend on extra resources.

2) Traditional Development Platforms: With traditional development, there's a requirement for in house or third party
development teams for application support. Updating applications developed in a traditional approach needs IT teams, to
feature new functionalities and fix bugs. With conventional programming, maintenance may be a big headache as the updates or
revision would require a dedicated in-house or third-party development team to implement changes. Furthermore, software
revision could be a cumbersome process that the teams should plan, design, and test, followed by training users on new
changes.

D. Agility
1) Low-code/ No-code Development Platforms: These platforms are much simpler to use thanks to their intuitive interface and also

because of their drag and drop features. Unlike custom development, there's no requirement for coding to develop the
applications/software since one can simply utilise the drawing techniques for the same.

2) Traditional Development Platforms: Traditional development platforms usually have an advanced configuration system,
making them less agile. Further, complex coding requires a lot of time to learn and implement accurately.

E. Reusability/Robust
1) Low-code/ No-code Development Platforms: Distinguished low-code systems provide OOTB (out-of-the-box) functionality

which precludes the responsibility to develop kernel modules for apps from scratch. Gist modules like customer service
management, data management, etc. are pre-built in some platforms. Multi-device adaptability is one of the most sought-out
characteristics of low-code/no-code platforms. Cross-platform compatibility also enables users to make apps that could run on
all platforms and devices. An added distinguished feature of low-code development is the use of pre-configured modules and
functionality for applications.

2) Traditional Development Platforms: Traditional development allows code reusability. This not only increases productivity but
also includes a definite impact on the condition and maintainability of software products. Reusable components are often
developed using frameworks like React Native, AngularJS etc. Still, it takes time to develop these components to be used later
in contrast to low-code systems which have built-in reusable components thus saving time. Although traditional development
allows code reusability, it doesn't contain pre-configured modules and functions for apps like low-code/no-code systems. These
modules and functionality must be created beforehand for reusability.

F. Advantages
1) Low-code/ No-code Development Platforms
a) Economical: With low-code/no-code, the event time and expenses get decreased considerably, and enterprises needn't hire as

many developers. Additionally, once you choose no-code development for your commodity, one enjoys the flexibility that the
Agile method renders as these platforms support versioning for any edits that were addressed within the application.

b) Agility: It empowers organizations to advance and deliver revisions quicker. the talents required for making low-code/no-code
products are lesser compared to custom application development because they supply configuration-based design expertise.

c) Improved Risk Management: Enterprises can make modifications quickly just in case of a no-code/low-code approach to remain
compliant with invariably evolving regulations Further, all of the configuration processes during this case, including code
review, compiling, and debugging, are much accelerated compared to traditional development methods.

d) Augmented customer Experience: Low-code/no-code platforms automate multiple transactions that are essential for user
experience. The promptness in app improvement and robust business process features help in developing far better apps

e) Improved Productivity: Low-code/no-code platforms help bridge the gap between IT and business teams, allowing them to
unravel real issues that impact the corporate. Using this approach, business organisations can create their own applications
without having to attend to developers. It eliminates the requirement for complex code that increases access to more team
members, resulting in enhanced productivity.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

511 ©IJRASET: All Rights are Reserved

f) Enhanced Security: If there's a patch or security upgrade, it'll be automatically installed within the low-code/no-code platforms
rather than the developer going into the code to install the patch.

2) Traditional Development Platforms
a) Endless Functionality and Customization: Companies can alter custom code any way they require. Nearly any feature is often

built and practically any integration is feasible. While making a custom app, you’re absolved to choose any technology, tooling,
hosting, and APIs of your choice, whatever gets the duty done and whatever works best to attain the required functionality.

b) Complete Ownership and Control: Absolute control over every aspect of the software that’s developed is another perk of
traditional development. there's complete control of the app’s architecture, security, and integrability, among other things since
Businesses choosing custom apps own the ASCII text file. Developers haven't any limitations or restrictions over how their
code is written and the way applications are structured.

c) Flexibility: Traditional application development can be accomplished using any language and development platform.
d) Deploy Anywhere: Apps developed with a standard approach is deployed to whichever destinations developers value more

highly to support.
e) Complex Functionality and Business Logic: Developers don't seem to be limited to pre-existing features and modules. this can

be the most important advantage of Traditional application development compared with low-code/no-code development. Low-
code/no-code systems are good for little scale applications except for bigger projects that need scaling and complicated custom
logic, Traditional application development is the best.

Figure 3. Advantages

G. Disadvantages
1) Low-code/ No-code Development Platforms
a) Third-Party Reliance: With a low-code or no-code platform, one would mostly depend upon the merchant to mitigate risks and

secure vulnerabilities, together with changing their schedule for updates to align the vendor.
b) Limited Customisation: Low-code/no-code development platforms usually offer surprisingly limited options for companies to

develop customized or bespoke software applications/products.
c) Limited Integration Options: Options for creating applications on a low-code/no-code development platform limits integration

options for developers. This might be a notable challenge for businesses with legacy systems that are vital to their business
procedures.

d) Scarcity of Developers: Since low-code/no-code development is not an easily seen area of expertise, it's challenging for
companies to get developers who are skilled in low-code/no-code development.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

512 ©IJRASET: All Rights are Reserved

Figure 4. Disadvantages

2) Traditional Development Platforms
a) Higher Costs: There’s no way around it: you'll build in-house, outsource, or near-source, but traditional custom programming

requires serious budgeting.
b) Time Constraints: Manual programming requires longer than auto-generated code from low-code/no-code tools. Also, manually

making changes within the code to support varied platforms and develop sockets and other interfaces between services and
applications are prolonged in traditional application development.

c) Requirement of Skilled Resources: An entire team of developers, QA engineers, designers, and other specialists are required to
make a custom application. Additionally, hiring an app developer that treats your product as their own could be a task in itself.
Coding may be a hard skill to master, and it’s unlikely that an entrepreneur would have enough time to check the craft to the
purpose where he/she is comfortable making functioning apps as and when required.

d) Programming Skills Required: Traditional application development demands more expertise with a programing language or
development platform. People have to be trained with appropriate skill sets before starting a conventional application
development project.

e) Comparatively Slow Time to Market: Compared to no-code programming, custom app development takes longer — somewhere
between a pair of months and a year. Even when programmers use pre-existing components to hurry up development, the
majority of an app is created manually and takes time.

IV. CONCLUSIONS
From the above analysis, we are able to conclude that both No code/Low Code Development platforms and traditional development
methodologies have their own advantages and disadvantages. depending upon the business requirement, an appropriate technology
stack could be chosen. That being said, it's crucial to keep in mind that (LC/NC) platforms aren’t meant to totally eliminate the
necessity for traditional/custom development methodologies. They’re largely meant to equip each member of a collaborative team,
with the required tools and resources they could use. It goes without saying that developers can’t be replaced.

V. ACKNOWLEDGEMENT
Working on “Analysis of Low Code/No-Code Development Platforms in comparison with Traditional Development
Methodologies” helped me understand the nuances of both technologies. It was a pleasure to research in this field as it would impact
the world of development in the imminent future and enable more non-technical people to enter the development world.

International Journal for Research in Applied Science & Engineering Technology (IJRASET)
 ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.429

 Volume 9 Issue XII Dec 2021- Available at www.ijraset.com

513 ©IJRASET: All Rights are Reserved

REFERENCES
[1] Den Haan J. Introducing AI-assisted development to elevate low-code platforms to the next level [Internet]. Boston: Mendix; 2018 Jun 19 [cited 2020 Jun 19].

Available from: https://www.mendix.com/blog/introducing-ai-assisteddevelopment-to-elevate-low-code-platforms-to-the-next-level/.
[2] Marcus Woo, The Rise of No/Low Code Software Development—No Experience Needed?

https://www.researchgate.net/publication/342951159_The_Rise_of_NoLow_Code_Software_Development-No_Experience_Needed
[3] Appian - Crunchbase Company Profile & Funding. (n.d.). Crunchbase. Retrieved July 10, 2021, from https://www.crunchbase.com/organization/appian
[4] Manifesto for Agile Software Development. (2021). Agile Manifesto. http://agilemanifesto.org/
[5] The Forrester Wave™: Low-Code Development Platforms For Professional Developers, Q2 2021. (n.d.). Forrester. Retrieved July 7, 2021, from

https://www.forrester.com/report/The+Forrester+Wave+LowCode+Develo pment+Platforms+For+Professional+Developers+Q2+2021/-/ERES161668
[6] No-code/Low-code vs. Programming: How to choose? from https://topflightapps.com/ideas/no-code-low-code-vs-traditional-development/
[7] A practical take on low-code vs. Traditional development

from https://searchsoftwarequality.techtarget.com/tip/A-practical-take-on-low-code-vs-traditional-development

