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Abstract: Low-light image enhancement is a critical task in computer vision, aimed at improving the visibility and perceptual 
quality of images captured under poor lighting conditions. Traditional methods often suffer from over-enhancement, noise 
amplification, and loss of fine details. In this paper, we propose a lightweight Convolutional Neural Network (CNN)-based 
model that leverages a novel loss function combining Mean Absolute Error (MAE) and Contrast Consistency Loss (CCL). Our 
method focuses on preserving contrast and structural details while minimizing computational overhead. Experiments conducted 
on the LOL (Low-Light) dataset from Kaggle demonstrate that our model outperforms traditional methods in terms of both 
qualitative and quantitative metrics, achieving superior Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
(SSIM). 
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I. INTRODUCTION 
Low-light image enhancement is a critical task in computer vision, as images captured under poor lighting conditions often suffer 
from low brightness, high noise, and color distortion. These issues not only degrade the visual quality but also hinder the 
performance of subsequent computer vision tasks such as object detection and image segmentation [1]. Traditional methods for low-
light image enhancement often rely on histogram equalization or Retinex theory, which can improve brightness but may introduce 
artifacts or over-enhance certain regions [2]. Recent advances in deep learning have shown promising results in low-light image 
enhancement, but many of these methods are computationally expensive or require complex network architectures [3]. In this paper, 
we propose a simple yet effective approach for low-light image enhancement using a Plain CNN. Our method leverages the LOL 
dataset from Kaggle, which provides paired low-light and normal-light images, to learn the mapping function between these two 
domains. The key contributions of our work are as follows: 
 Simplified Network Architecture: We use a Plain CNN with fewer layers and parameters, making the model computationally 

efficient and easier to train.  
 Contrast Consistency Loss + MAE: We introduce a novel loss function that combines Contrast Consistency Loss and Mean 

Absolute Error (MAE) to ensure that the enhanced images maintain natural colors and clear details. 
 Improved Performance: Our method achieves superior results compared to existing algorithms in terms of both visual quality 

and quantitative metrics such as PSNR and SSIM. 
The remainder of this paper is organized as follows. Section II provides an overview of related work in low-light image 
enhancement. Section III details our proposed method, including the network architecture,  loss function, and implementation 
details. Section IV presents the experimental evaluation, including dataset information, metrics, and comparison with state-of-the-art 
methods. Finally, Section V concludes the paper and discusses future work. 

 
II. RELATED WORK 

A. Traditional Approaches 
Traditional methods for low-light image enhancement have been extensively studied in the image processing community. One of the 
earliest approaches is histogram equalization, which adjusts the contrast of an image by redistributing the intensity values [2]. 
However, this method often leads to over-enhancement and loss of details in certain regions. Another widely used technique is 
based on Retinex theory, which decomposes an image into illumination and reflectance components [4]. While Retinex-based 
methods can improve brightness and contrast, they often struggle with noise amplification and color distortion [5]. More recent 
traditional methods include multi-scale Retinex (MSR) and adaptive histogram equalization (AHE). MSR improves upon the basic 
Retinex theory by applying the decomposition at multiple scales, which helps to preserve details and reduce noise [6].  
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AHE, on the other hand, adapts the histogram equalization process to local regions of the image, resulting in better contrast 
enhancement [7]. However, these methods still suffer from limitations such as over-enhancement and artifacts, especially in 
complex lighting conditions. 

 
B. Deep Learning Approaches 
With the advent of deep learning, significant progress has been made in low-light image enhancement. One of the earliest deep 
learning-based methods is LLNet, which uses a deep autoencoder to enhance low-light images [8]. LLNet focuses on improving 
local contrast and reducing noise, but it often produces over-enhanced results. Another notable approach is RetinexNet, which 
decomposes the image into illumination and reflectance components using a deep neural network [9]. RetinexNet achieves good 
results in terms of brightness enhancement, but it struggles with noise suppression and color fidelity. 
More recent methods, such as EnlightenGAN and Zero-DCE, have introduced unpaired training and zero-reference learning, 
respectively, to address the limitations of paired data requirements [10, 11]. 
EnlightenGAN uses a generative adversarial network (GAN) to enhance low-light images without requiring paired data, while Zero-
DCE estimates a curve for brightness adjustment without any reference images. These methods have shown promising results, but 
they often require complex network architectures and extensive training. 
In contrast to these approaches, our method simplifies the network architecture and focuses on learning the mapping function 
between low-light and normal-light images using a Plain CNN. By combining Contrast Consistency Loss and MAE, we ensure that 
the enhanced images retain natural colors and clear details, while also improving computational efficiency. 

 
III. OUR METHOD 

A. Background 
The goal of low-light image enhancement is to transform a low-light image L into a normal-light image H. This can be formulated 
as learning a mapping function F such that: 

                                                                                   H=F(L) 
 

In our approach, we use a Plain CNN to learn this mapping function. The network takes a low-light image as input and outputs an 
enhanced image. The key innovation in our method is the use of a novel loss function that combines Contrast Consistency Loss and 
MAE to ensure that the enhanced images maintain natural colors and clear details. 

 
B. Network Architecture 
1) Image Preprocessing Part 
The input to the network is a low-light image, which is first downsampled to reduce computational complexity while retaining 
important features. Instead of using traditional pooling layers, which can result in information loss, the model applies convolutional 
layers with a 3×3 kernel size and a stride of 2. This method covers the entire image, preserving pixel-level details during 
downsampling. The preprocessed image is then normalized by scaling pixel values between 0 and 1, ensuring stability during the 
training process. 
 
2) Feature Extraction Part 
The network employs a dual-path feature extraction strategy, consisting of a local path and a global path. The local path focuses on 
learning local color transformations by using multi-scale convolutions to extract features at different scales. These features are then 
fused using a channel attention module, enhancing the model’s ability to capture fine details. Meanwhile, the global path captures 
semantic information and broader context using dilated convolutions, which expand the receptive field without increasing the number 
of parameters. This enables the model to retain a consistent feature size while capturing a wider range of information. 
 
3) Image Rendering 
Following feature extraction, the network generates a bilateral grid, which stores the learned image transformations. The grid is 
upsampled to the original image size using trilinear interpolation, ensuring the enhanced image retains sharp details and accurate colors. 
Since most of the processing occurs at a lower resolution, the network remains computationally efficient and trains faster while 
producing high-quality enhanced images.  
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C.  Loss Function 
Our loss function is a combination of Contrast Consistency Loss and Mean Absolute Error (MAE). The Contrast Consistency Loss 
ensures that the enhanced image maintains the same contrast as the reference image, while the MAE ensures that the pixel values of the 
enhanced image are close to those of the reference image. 
1) Reconstruction Loss 
The Mean Absolute Error (MAE) measures the average pixel-wise difference between the enhanced and reference images. It ensures 
that the pixel values of the enhanced image closely match those of the reference image.  
The reconstruction loss is defined as the Mean Absolute Error (MAE) between the enhanced image H^ and the reference image H: 

 
 
 
 
 

2) Contrast Consistency Loss 
The Contrast Consistency Loss ensures that the contrast of the enhanced image matches the reference image, preventing over-
smoothing or loss of fine details. It preserves local contrast differences between bright and dark regions, making the enhanced image 
look natural and realistic. This loss is essential in low-light image enhancement, where preserving contrast prevents the image from 
looking flat or washed out. 
The Contrast Consistency Loss is designed to maintain the contrast between different regions of the image. It is defined as 

 
 

 
 
 

 
3) SSIM Loss 
To ensure structural similarity between the enhanced image and the reference image, we also use the Structural Similarity.  
Index Measure (SSIM) as part of our loss function: 

 
 

D. Implementation Details 
Our network is implemented using PyTorch and trained for 100 epochs with a mini-batch size of 16. We use the Adam optimizer 
with a learning rate of 1e-4 and a learning rate decay strategy. The network is trained on the LOL dataset from Kaggle, which 
consists of 500 paired low-light and normal-light images. 

 
IV. EXPERIMENTAL EVALUATION 

A. Dataset and Metrics 
We evaluate our method on the LOL dataset, which contains 500 paired low-light and normal-light images. The dataset is divided 
into 400 images for training and 100 images for testing. We use Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index 
Measure (SSIM) as our evaluation metrics. PSNR measures the ratio of the maximum possible power of a signal to the power of 
corrupting noise, while SSIM measures the similarity between two images in terms of luminance, contrast, and structure. 
 Peak Signal-to-Noise Ratio (PSNR): Measures the ratio between the maximum possible power of a signal and the power of 

corrupting noise.  
 Structural Similarity Index (SSIM): Evaluates the structural similarity between the enhanced and ground truth images, 

considering luminance, contrast, and structure. 
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B. Comparison with State-of-the-Art Methods 
We compare our method with several state-of-the-art low-light image enhancement algorithms, including Dehaze, LIME, BIMEF, 
RetinexNet, MBLLEN, DUPE, and MIRNet. Both subjective and objective evaluations are conducted to assess the performance of 
our method. 
1) Subjective Qualitative Analysis 
The subjective evaluation is based on visual inspection of the enhanced images. Our method produces images with more natural 
colors, clearer details, and better contrast compared to other methods. The enhanced images also show fewer artifacts and less noise, 
especially in dark regions. 

 
2) Objective Quantitative Analysis 
The objective evaluation is based on PSNR and SSIM metrics. Our method achieves the highest PSNR and SSIM values compared 
to other methods, indicating superior image quality 

 
V. SYSTEM ARCHITECTURE 

The proposed architecture for low-light image enhancement is designed to address the challenges of poor brightness, low contrast, 
and noise in images captured under low-light conditions. The architecture consists of several key components, each contributing to 
the overall enhancement process. The architecture is a fully convolutional neural network (CNN) that combines an encoder-decoder 
structure with a feedback loop to iteratively refine the enhancement process. The model is trained using a hybrid loss function that 
ensures both pixel-level accuracy and contrast preservation. By leveraging preprocessing, feature extraction, and iterative 
refinement, the architecture effectively addresses the challenges of low-light image enhancement, producing high-quality results 
with improved brightness, contrast, and detail visibility. 
 

 
Fig. 5.1 System Architecture 
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VI. EXPERIMENTATION & RESULTS 
 

 
 

 
 
 
 
 

FIGURE 6.1 ENHANCED IMAGE 1 AT EPOCHS 1 
                    

FIGURE 6.2 ENHANCED IMAGE 2 AT EPOCHS 10 
 

FIGURE 6.3 ENHANCED IMAGE 3 AT EPOCHS 10 
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The output demonstrates the effectiveness of the proposed low-light image enhancement model in addressing the challenges of poor 
visibility, low contrast, and high noise in images captured under low-light conditions. The original low-light image (Figure Left) 
exhibits typical issues such as underexposure, lack of detail, and dull colors, making it difficult to discern important features. These 
challenges are common in low-light scenarios, where insufficient lighting leads to a loss of structural information and visual quality. 
The enhanced image (Figure Right), generated by the proposed model, shows significant improvements in brightness, contrast, and 
overall visual quality. The enhanced image exhibits restored details, reduced noise, and more vibrant colors, highlighting the 
model's ability to effectively address the limitations of low-light conditions. 
The proposed model achieves these improvements by leveraging a lightweight CNN architecture and a novel loss function that 
combines Mean Absolute Error (MAE) and Contrast Consistency Loss (CCL). The MAE ensures that the pixel values of the 
enhanced image closely match those of the reference image, while the CCL preserves the natural contrast and structural details of 
the original image.  
This combination of losses ensures that the enhanced image not only appears brighter but also retains fine details and natural colors, 
avoiding common issues such as over-enhancement, noise amplification, and color distortion. The model's ability to process images 
at lower resolutions while maintaining high-quality output further enhances its computational efficiency, making it suitable for real-
time applications. 
The results validate the model's capability to enhance low-light images while preserving structural details and natural color 
appearance. The enhanced image shows improved visibility of fine textures, edges, and objects that were previously obscured in the 
low-light image. This improvement is particularly valuable for applications such as surveillance, autonomous driving, and 
photography, where high-quality images are essential for accurate interpretation and decision-making. The proposed model's ability 
to produce visually appealing and detail-rich images under low-light conditions demonstrates its potential as a robust solution for 
low-light image enhancement tasks. 

 
Performance Comparison (PSNR)  

 
Method PSNR ↑ 
Dehaze [9] 13.93 
LIME [8] 18.71 
BIMEF [10] 16.39 
RetinexNet [12] 17.68 
MBLLEN [14] 22.05 
DUPE [20] 23.62 
MIRNet [21] 23.87 

Base Paper (Proposed Method) 24.33 

Our Model 24.82 
 

VII. CONCLUSION 
In this paper, we proposed a low-light image enhancement algorithm based on a Plain CNN using the LOL dataset. Our method 
simplifies the network architecture while maintaining high performance by combining Contrast Consistency Loss and MAE. 
Extensive experiments demonstrate that our method outperforms existing algorithms in terms of both visual quality and quantitative 
metrics. Future work will focus on further improving the network architecture and exploring the use of unsupervised learning 
techniques. 
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