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Abstract: Wearable health monitoring devices have emerged as crucial tools for continuous tracking of vital physiological 
parameters such as electrocardiogram (ECG), heart rate, and oxygen saturation. With the integration of artificial intelligence 
(AI), these devices can provide real-time analysis and early detection of health anomalies. However, the constrained 
computational resources and limited battery capacity of wearable devices pose significant challenges for deploying deep learning 
models. This paper proposes a comprehensive framework for low-power AI model optimization tailored for wearable health 
monitoring applications. The framework employs quantization, pruning, and adaptive sampling to minimize computational load 
while maintaining high diagnostic accuracy. Experimental evaluations on public health datasets (PhysioNet, MIMIC-III) 
demonstrate up to 45% reduction in energy consumption with less than 2% accuracy degradation. The results highlight the 
potential of optimized AI models to enable longer battery life and efficient, real-time inference on wearable platforms, thus 
advancing the field of mobile health (mHealth) technologies. 
Keywords: Edge AI, Energy-Efficient Computing, Low-Power Artificial Intelligence, On-Device Inference, TinyML, Wearable 
Health Monitoring 
 

I. INTRODUCTION 
The rapid proliferation of wearable health monitoring devices—including smartwatches, smart bands, fitness trackers, and medical-
grade sensors—has transformed the healthcare landscape. These devices enable continuous, non-invasive monitoring of vital 
physiological signals such as electrocardiogram (ECG), photoplethysmogram (PPG), blood oxygen saturation (SpO₂), respiration 
rate, heart rate variability (HRV), and physical activity [1]. With the integration of artificial intelligence (AI), these devices are no 
longer limited to simple tracking but can provide predictive and diagnostic insights in real time. For example, AI-driven wearable 
systems have been used to detect atrial fibrillation [2], identify stress levels [3], and predict early signs of chronic conditions such as 
diabetes and cardiovascular disease [4]. 
While AI enhances the functionality of wearable devices, its deployment poses significant challenges. Modern deep learning 
architectures, such as convolutional neural networks (CNNs), long short-term memory (LSTM) networks, and transformers, are 
computationally intensive and memory demanding. They are typically trained and run on high-performance hardware such as GPUs 
or TPUs. In contrast, wearable devices have severely constrained resources: limited memory (often less than 1 GB RAM), low-
power processors, and small batteries with finite lifespans. Running an unoptimized AI model on a wearable device results in high 
inference latency, frequent thermal throttling, and rapid battery drain, making such models impractical for long-term, real-time 
health monitoring. 
To overcome these limitations, most commercial wearable systems currently rely on cloud-based AI inference, where sensor data is 
transmitted to remote servers for processing. Although cloud computation offers abundant resources, this approach introduces 
critical drawbacks: 
1) High latency: Round-trip communication to cloud servers makes real-time decision-making (e.g., arrhythmia detection during 

exercise) unreliable. 
2) Dependence on connectivity: In regions with poor or unstable internet access, the performance of cloud-reliant systems is 

severely degraded. 
3) Privacy risks: Transmitting sensitive health data (ECG, sleep patterns, location) to external servers exposes users to potential 

data breaches and compliance concerns with regulations like HIPAA and GDPR. 
A more promising solution lies in on-device AI inference, where the model is deployed directly on the wearable device. On-device 
AI ensures real-time processing, reduced latency, offline functionality, and improved privacy. However, enabling this requires low-
power optimization techniques to make deep learning models computationally feasible within the constraints of wearable hardware. 
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A. Motivation 
Recent advances in TinyML and edge AI have introduced techniques for shrinking AI models while retaining acceptable accuracy. 
Methods such as quantization, pruning, knowledge distillation, and neural architecture search (NAS) have been successfully applied 
in domains like mobile vision and speech recognition [5][6]. Yet, research remains limited in the context of wearable health 
monitoring, where energy efficiency, reliability, and accuracy trade-offs are uniquely critical. Unlike image classification tasks on 
smartphones, health-related applications cannot afford significant accuracy losses, as they directly impact diagnostic reliability. 
For example, a heart rhythm detection model that saves 50% energy but misclassifies atrial fibrillation cases with only 85% 
accuracy may not be clinically acceptable. Thus, designing AI models for wearable health applications requires striking a fine 
balance between computational efficiency and medical-grade accuracy. 
 
B. Research Gaps 
A review of current literature indicates the following gaps: 
1) Most wearable AI frameworks focus on accuracy rather than power-efficiency. Few studies provide a quantitative trade-off 

analysis between energy savings and accuracy in wearable health devices. 
2) Existing optimization techniques are often domain-general (e.g., image compression, NLP inference) and are not customized 

for time-series biomedical signals like ECG and PPG. 
3) Few frameworks integrate multiple optimization methods (quantization + pruning + adaptive sampling) to maximize gains 

under wearable constraints. 
4) Limited experimental validation exists on real wearable hardware platforms, as most studies evaluate only on open datasets. 

 
C. Contributions of This Work 
This paper proposes a low-power AI model optimization framework for wearable health monitoring devices. Specifically, we 
contribute the following: 
1) A hybrid optimization framework:  that combines quantization, structured pruning, and adaptive sampling to minimize 

computational overhead. 
2) Mathematical formulations:  for modeling the trade-off between inference accuracy and power consumption in wearable AI 

systems. 
3) Experimental evaluation: using public biomedical datasets (PhysioNet, MIMIC-III) and prototype wearable devices (ARM 

Cortex-M4F based microcontrollers). 
4) Comparative performance analysis: showing up to 45% energy reduction with less than 2% loss in classification accuracy. 
By addressing these challenges, the proposed framework aims to enable reliable, real-time, privacy-preserving, and energy-efficient 
AI on wearable health devices, contributing toward the advancement of mobile health (mHealth) technologies. 

 
Fig. 1 Overview of the Challenges in Deploying AI on Wearable Health Monitoring Devices 
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II. LITERATURE REVIEW 
Wearable health monitoring imposes a unique set of constraints (limited CPU, memory, and battery) while demanding high 
reliability and clinical-grade accuracy. Consequently, the literature on “AI for wearables” is dominated by two intertwined research 
directions: (A) application-focused studies that demonstrate clinical or behavioral use-cases for wearables (ECG/arrhythmia 
detection, stress recognition, chronic disease monitoring), and (B) optimization-focused studies that develop methods to shrink and 
accelerate ML models for resource-constrained hardware. This review synthesizes both streams and highlights gaps relevant to low-
power AI design for wearable health monitoring. 

 
A. Wearables + AI: Clinical and behavioural use-cases 
Several high-impact studies established that wearable sensors (PPG, ECG, accelerometer, etc.) can power clinically relevant AI 
systems. Rajpurkar et al. showed CNNs can reach cardiologist-level performance on arrhythmia detection from single-lead ECGs 
[7]. Stress and affect detection from multimodal wearables was explored in the WESAD dataset work, demonstrating feasibility of 
ML on wrist sensors for stress classification [8]. Longitudinal/large-scale efforts (e.g., Fitbit and Verily studies) demonstrate 
practical deployment and large-population evaluation of wearable-derived algorithms for atrial fibrillation and other conditions 
[9][10]. These application successes motivate device-level research: how to run such models on-device (or with minimal 
communication) without sacrificing accuracy or battery life. 
 
B. Core optimization techniques for low-power inference 
The literature presents four main families of optimizations usually combined in practice: 
1) Quantization: reduces numeric precision (e.g., FP32 → INT8) to shrink model size and speed up integer arithmetic on 

embedded CPUs/DSPs [11].   
 Typical metric: compression ratio 

ܴܥ =  
ܵ௢௥௜௚
ܵ௤௨௔௡௧

 

where Sorig and Squant are model sizes (bytes) before/after quantization. 
 Trade-offs: small accuracy loss for large gains in memory and energy reduction; integer-only inference can utilize specialized 

instructions for additional speedups [11,12]. 
 
2) Pruning/Sparsification: remove low-importance weights or entire filters/blocks; yields sparse models or smaller dense models 

after structured pruning [13]. 
 Sparsity s defined as: 

= ݏ  
ݏݎ݁ݐ݁݉ܽݎܽ݌ ݋ݎ݁ݖ#
 ݏݎ݁ݐ݁݉ܽݎܽ݌ ݈ܽݐ݋ݐ#

 Post-processing (e.g., sparse kernels or re-training) is often needed to recover accuracy [7]. 
3) Knowledge Distillation (KD): train a compact “student” network to mimic a large “teacher” model, capturing similar predictive 

behavior at much lower cost [14]. KD is especially useful when architectural change alone cannot deliver the desired power 
savings. 

4) Neural Architecture Search (NAS) / Hardware-aware NAS: searches for architectures that explicitly optimize hardware metrics 
(latency / energy) in addition to accuracy (e.g., MobileNet, EfficientNet families) [15]. NAS can be constrained to search 
spaces tailored for microcontrollers or for specific NPUs. 

These methods are complementary and commonly combined (e.g., prune + quantize + distill + hardware-aware NAS) for maximal 
gains [12][13][14][15]. 

 
C. Energy, latency and accuracy: formal trade-off 
Designers must optimize multiple (often conflicting) objectives. Let: 
A(ߠ) = model accuracy for parameters ߠ 
E(ߠ) = energy per inference (mJ) 
L(ߠ) = inference latency (ms) 
S(ߠ) = model size (MB) 
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A typical constrained optimization formulation for wearable deployment is: 
min
ఏ
 (ߠ)ܧ

subject to A(ߠ) ≥ ܣ௠௜௡ 
L(ߠ) ≤  ܮ௠௔௫  
S(ߠ) ≤  ܵ௠௔௫   

Where ܣ௠௜௡ is the minimum clinically acceptable accuracy, ܮ௠௔௫ is the maximum tolerable latency (real-time constraint), and  ܵ௠௔௫  
is memory budget for the wearable. In practice, optimization proceeds by a combination of: 
 quantize/prune to reduce E and S at controlled loss ∆A =  A୭୰୧୥  −  A୫୧୬; 
 NAS to find architecture minimizing a weighted cost (ߠ)ܬ  = ∝ (ߠ)ܧ  + (ߠ)ܮߚ   −  (ߠ)ܣߛ 
Empirical studies report that integer quantization can reduce energy per inference by 30%–70% while typically incurring <2–3% 
absolute accuracy loss on many tasks [12][13]. Pruning results depend on granularity; structured pruning is hardware-friendly but 
can reduce accuracy if over-applied [13]. 

 
D. Device-level acceleration & software stacks 
Toolchains such as TensorFlow Lite for Microcontrollers, ARM CMSIS-NN, and ONNX Runtime Mobile provide primitives 
(fixed-point kernels, operator fusion, hardware delegates) necessary to deploy optimized models on wearables [10]. Hardware 
accelerators (e.g., tiny NPUs, ARM Ethos, Edge TPU) further shift the trade-off by providing orders-of-magnitude energy/latency 
benefits — but are rarely available in ultra-low-power wearables due to cost/area constraints. Thus, software-level optimizations 
remain central for commodity wearables [15][14]. 

 
E. Federated learning and privacy at the edge 
Federated learning (FL) avoids centralizing raw biosignals by aggregating model updates from many devices — a promising route 
for privacy-preserving, personalized wearable AI [17]. However, FL on wearables faces constraints: sporadic connectivity, 
heterogeneous compute, and strict battery budgets. Recent work focuses on communication-efficient updates, compression of 
gradients, and client selection strategies to make FL feasible on low-power devices [18]. Combining FL with quantized/pruned 
models and carefully scheduled training rounds can make in-situ personalization practical while limiting energy consumption. 

 
F. Gaps & open questions 
Despite progress, key gaps persist: 
 Real-platform evaluations: many papers report results in simulation or on smartphone-class hardware; fewer validate on actual 

microcontroller-based wearables with realistic duty cycles. 
 Multi-modal fusion under power constraints: fusion of ECG+PPG+accelerometer can greatly improve clinical accuracy but 

increases cost; optimized fusion strategies are lacking. 
 Joint optimization frameworks: automated pipelines that jointly perform NAS + pruning + quantization + KD under device 

constraints are still immature for biosignals. 
 Federated learning at ultra-low power: energy-aware FL protocols tailored for wearables remain an open research frontier. 
Addressing these gaps motivates the hybrid framework proposed in this paper: integrate hardware-aware NAS, structured pruning, 
INT8 quantization, and adaptive sensor sampling with energy-aware scheduling and optional privacy-preserving federated 
personalization. 

 
G. Comparison table — optimization techniques 

TABLE I 
OPTIMIZATION TECHNIQUES 

Technique Typical effect on 
model size 

Effect on 
latency 

Typical accuracy impact Implementation 
complexity 

Quantization 
(FP32→INT8) 

2–4× smaller 1.5–3× faster small (≤2–3% abs) if 
quantization-aware 
training used 
 

Low–Moderate 
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Pruning (structured) up to 2–10× 
(dense) 

up to 2–5× 
faster (if 
supported) 

moderate if aggressive Moderate–High 

Knowledge Distillation student much 
smaller (×2–10) 

faster small to moderate 
depending on student 

Moderate 

NAS (hardware-aware) variable 
(architectures 
optimized) 

optimized per 
device 

can match baseline High (compute) 

Adaptive sampling 
(sensor duty-cycling) 

N/A (sensors) reduces total 
energy 

none (if intelligent) Low–Moderate 

 
III. PROPOSED FRAMEWORK 

The proposed framework addresses the challenges of deploying deep learning models on wearable health monitoring devices by 
integrating model optimization, adaptive sensing, hardware-aware design, and privacy-preserving learning mechanisms. It aims to 
achieve the balance between accuracy, energy efficiency, latency, and data privacy, enabling practical and clinically reliable on-
device intelligence. 
 
A. System Architecture 
The framework is composed of five layers (see Figure 2): 
1) Data Acquisition and Preprocessing layer:   
 Responsible for acquiring raw biosignals (ECG, PPG, accelerometer, SpO₂, HRV) and performing lightweight preprocessing 

such as filtering, normalization, and segmentation. 
 Adaptive sampling strategies are employed to dynamically adjust sensor sampling rates, reducing unnecessary energy usage 

without compromising clinical accuracy [19]. 
 

2) Model Optimization Layer:   
 Deep learning models are optimized through quantization, structured pruning, and knowledge distillation, reducing 

computational requirements and memory footprint. 
 Optimization ensures that energy consumption per inference is minimized: 

௧௢௧௔௟ܧ  =  ෍ ௜ܲ

௡

௜ୀଵ

.  ௜ݐ

 
where ௜ܲ is the average power consumption of stage i (sensor, preprocessing, inference), and ݐ௜ is its execution time [20]. 

3) On-Device Inference Layer 
 Optimized models run locally on the wearable’s microcontroller (e.g., ARM Cortex-M4F, RISC-V cores). 
 TensorFlow Lite for Microcontrollers or CMSIS-NN kernels are used for low-power inference [21]. 

 
4) Decision and Feedback Layer 
 Provides clinically meaningful outcomes (arrhythmia alerts, stress notifications, fall detection) directly to the user or caregiver 

through the wearable/mobile app interface. 
 Supports context-aware inference scheduling, where inference frequency is increased during detected anomalies and decreased 

during baseline conditions. 
 

5) Model Update and Personalization Layer 
 Integrates federated learning (FL) for updating models across multiple users without transmitting raw data. 
 Ensures personalization to user-specific physiological baselines, improving long-term accuracy. 
 Gradient compression and sparse updates are applied to reduce communication cost [22]. 
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B. Workflow Explanation 
The end-to-end workflow is shown in Figure 2: 
 Step 1: Physiological data (ECG, PPG, accelerometer) are captured and preprocessed locally. 
 Step 2: Optimized lightweight AI models (quantized/pruned CNN, RNN, or hybrid architectures) process the signals on-device. 
 Step 3: Predictions (e.g., atrial fibrillation detection, stress estimation) are generated in real-time and presented to the user. 
 Step 4: Periodic model updates occur through federated learning, ensuring privacy and personalization. 
This design ensures real-time inference, reduced energy consumption, and privacy preservation, while being extensible across 
multiple wearable use cases. 
 
C. Trade-Off Analysis 
The framework explicitly balances accuracy, latency, and energy efficiency. For instance, quantization reduces memory by up to 75% 
and energy consumption by 40–60%, while incurring an accuracy drop of only ~1–2% [19][20]. Structured pruning combined with 
adaptive sampling further improves energy efficiency during continuous monitoring. The multi-objective optimization can be 
formalized as: 

min
ఏ

(ߠ)ܧ. ∝)  + . ߚ  (ߠ)ܮ  −  ((ߠ)ܣ. ߛ 

 
where (ߠ)ܧ is energy, (ߠ)ܮ  is latency, (ߠ)ܣ  is accuracy, and α, β, γ are weighting coefficients chosen based on application 
priorities (e.g., in arrhythmia detection, γ is emphasized to preserve clinical accuracy). 
 
D. Comparison with Existing Approaches 
Table 2 summarizes how the proposed framework improves upon existing works by combining multiple optimization strategies and 
federated personalization in a unified, end-to-end design. 

TABLE III 
COMPARISON OF FRAMEWORK FEATURES WITH EXISTING APPROACHES 

Feature Cloud-Based AI Existing On-Device AI Proposed Framework 
Data Privacy Low (raw data shared) Medium (inference local, 

updates via cloud) 
High (all data local + FL updates) 

Latency High (network 
dependent) 

Low (on-device inference) High (optimized inference + 
adaptive scheduling) 

Energy Efficiency Low (wireless + cloud) Medium (partial 
optimization) 

High (quantization + pruning + 
adaptive sampling) 

Personalization Low Limited High (FL + user-specific models) 
Hardware 
Awareness 

Limited Partial (Limited models) Strong (hardware-aware NAS, 
optimized kernels) 

 
IV. EXPERIMENTAL SETUP 

To validate the proposed framework, we conducted experiments on publicly available biomedical datasets and tested deployment on 
representative wearable hardware platforms. This section describes the datasets, hardware, model architectures, and evaluation 
metrics used in our study. 
 
A. Datasets 
Two widely recognized datasets were selected for evaluation: 
 PhysioNet MIT-BIH Arrhythmia Database: Contains over 48 half-hour excerpts of two-channel ambulatory ECG recordings, 

annotated for arrhythmias [23]. This dataset was used to evaluate the framework for cardiac anomaly detection. 
 MIMIC-III Waveform Database: Includes multi-parameter physiological waveforms (ECG, SpO₂, respiration, blood pressure) 

collected from ICU patients [24]. It was employed for multi-modal health monitoring tasks such as oxygen desaturation and 
stress level estimation. 

 WESAD Dataset: A multimodal dataset for wearable stress and affect detection, containing ECG, PPG, EDA, and respiration 
signals recorded from 15 subjects [25]. This dataset was used to test stress recognition performance. 
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B. Hardware Platforms 
The framework was deployed on low-power wearable-grade platforms to ensure real-world relevance: 
 Arduino Nano 33 BLE Sense (ARM Cortex-M4F @ 64 MHz, 256 KB RAM, 1 MB Flash). 
 Raspberry Pi Zero 2 W (Quad-core ARM Cortex-A53, 512 MB RAM) as an intermediate-power wearable proxy. 
 Simulated smartwatch environment on Android with TensorFlow Lite Micro runtime. 
These platforms represent the spectrum from ultra-constrained microcontrollers to lightweight embedded Linux devices used in 
consumer wearables [26]. 
 
C. Model Architectures 
The following baseline models were implemented: 
 CNN (1D convolutional) for ECG classification (arrhythmia detection). 
 BiLSTM (Bidirectional LSTM) for stress detection from multimodal inputs (PPG, respiration, EDA). 
 Lightweight CNN-RNN hybrid for multi-modal activity recognition. 
 
Optimized versions of these models were produced using: 
 Post-training quantization (FP32 → INT8). 
 Structured pruning (removing up to 50% of filters). 
 Knowledge distillation to train smaller “student” models from larger baseline models. 

 
D. Model Architectures 
The experimental evaluation focused on three critical dimensions: 
1) Accuracy and F1-Score: Standard classification metrics to assess diagnostic performance. 
2) Latency (ms per inference): Measured as the average execution time per sample on device. 
3) Energy Consumption (mJ per inference): Computed as: 

௧௢௧௔௟ܧ  =  න ≈ ݐ݀ (ݐ) ܲ  ෍ ௜ܲ

௡

௜ୀଵ
௜ݐ  . 

்

଴
 

 
where ௜ܲ is the average power of component i (CPU, sensors), and ݐ௜ is execution duration. Measurements were taken using a 
Monsoon Power Monitor [27]. 
 
4) Memory Footprint (KB): Model size in flash and peak RAM usage during inference. 

 
E. Baseline for Comparison 
To establish a benchmark, results from: 
1) Unoptimized models (FP32 CNN, BiLSTM), 
2) Quantized models (INT8), 
3) Pruned models (30–50% sparsity), and 
4) Proposed hybrid framework (quantization + pruning + KD + adaptive sampling) 
were compared systematically. 
 

V. RESULTS AND ANALYSIS 
This section reports the results of our experiments across three benchmark datasets (PhysioNet, MIMIC-III, WESAD) and three 
hardware platforms (Arduino Nano BLE Sense, Raspberry Pi Zero, simulated smartwatch). The focus is on evaluating accuracy, 
latency, memory footprint, and energy efficiency of the optimized models compared to unoptimized baselines. 
 
A. Accuracy vs. Model Optimization 
Table 3 summarizes the classification accuracy and F1-score of baseline and optimized models. As expected, aggressive pruning 
reduces accuracy slightly, but combining quantization with knowledge distillation mitigates this effect. 
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TABLE IIIII 
ACCURACY AND F1-SCORE ACROSS MODELS 

Model Type Accuracy (%) F1-Score Dataset Used 
Baseline CNN (FP32) 92.8 0.91 PhysioNet (ECG) 
Quantized CNN (INT8) 91.4 0.90 PhysioNet 
Pruned CNN (50% sparsity) 90.7 0.89 PhysioNet 
Hybrid Optimized (Quant. + Prune + KD) 91.9 0.90 PhysioNet 
Baseline BiLSTM (FP32) 88.2 0.85 WESAD (Stress) 
Optimized BiLSTM (INT8 + KD) 87.5 0.84 WESAD 

 
B. Latency and Energy Efficiency 
Optimizations resulted in significant reductions in inference latency and energy consumption. Figure 4 illustrates the trade-off 
between inference latency (ms) and accuracy for different model configurations on the Arduino Nano BLE Sense. 

TABLE IVV 
LATENCY AND ENERGY CONSUMPTION ON ARDUINO NANO BLE SENSE 

Model  Latency (ms) Energy (mJ 
per inference) 

Memory Footprint (KB) 

Baseline CNN (FP32) 125 14.8 850 
Quantized CNN (INT8) 72  8.3 220 
Pruned CNN (50%) 64 7.5 310 
Hybrid Optimized  58 6.9 190 

Key observations: 
 Quantization reduced inference latency by ~42% and energy consumption by ~44%. 
 Pruning alone reduced energy by ~49%, but at a slightly larger accuracy drop. 
 The proposed hybrid framework achieved ~54% energy savings with only 0.9% accuracy drop compared to the FP32 baseline. 

 
C. Trade-Off Curves 
The trade-off between accuracy and energy efficiency can be expressed as: 

= ܣ∆ ௕௔௦௘௟௜௡௘ܣ   − ௢௣௧௜௠௜௭௘ௗܣ  = ܧ∆, ௕௔௦௘௟௜௡௘ܧ   − ௢௣௧௜௠௜௭௘ௗܧ  ,  
For the PhysioNet ECG task: 

 ∆ܣ ≈  0.9% 
 ∆E ≈  7.9 mJ (≈  53% savings).  

This demonstrates the Pareto efficiency of the hybrid approach, where small accuracy loss yields disproportionately high energy 
savings. 
 
D. Graphical Results 

 
Fig. 2 Comparative Trade-offs Across Models (Accuracy, Latency, Energy) 
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E. Comparative Discussion 
Compared with prior studies on TinyML and mobile AI [28][29], our framework demonstrates: 
1) Better energy reduction (≥50%) while keeping accuracy above 90%. 
2) Smaller model footprint (<200 KB), making it deployable on microcontrollers. 
3) Feasible real-time latency (<60 ms per inference), suitable for continuous ECG/PPG monitoring. 
Thus, the proposed framework advances the state-of-the-art in wearable AI by achieving a clinically acceptable trade-off between 
accuracy and efficiency. 

 
VI. CONCLUSION AND FUTURE WORK 

A. Conclusion 
This paper presented a low-power AI optimization framework for wearable health monitoring devices, addressing the critical 
challenges of energy consumption, computational limitations, and privacy concerns. By integrating quantization, pruning, 
knowledge distillation, adaptive sampling, and federated learning, the framework achieved significant reductions in latency and 
energy consumption while maintaining clinically acceptable accuracy across benchmark datasets such as PhysioNet, MIMIC-III, 
and WESAD. 
Experimental results demonstrated that: 
1) Energy per inference was reduced by more than 50% on microcontroller-class devices. 
2) Inference latency decreased by >40%, enabling real-time ECG and stress detection. 
3) Accuracy degradation was limited to less than 2% absolute loss, ensuring clinical reliability. 
The findings validate the feasibility of on-device AI for continuous health monitoring in wearables, advancing the mHealth 
ecosystem by reducing reliance on cloud infrastructure and safeguarding user privacy. 
 
B. Future Work 
Despite promising results, several opportunities remain for extending this research: 
1) Multi-modal Fusion under Constraints: Future work will explore fusion of heterogeneous signals (ECG, PPG, accelerometer, 

SpO₂) while maintaining low power consumption. Lightweight attention-based mechanisms or hardware-aware fusion strategies 
could enhance diagnostic accuracy. 

2) Hardware Acceleration Integration: Investigating the use of emerging ultra-low-power NPUs and edge TPUs within wearables 
could further reduce energy costs. Co-design of algorithms and hardware remains a crucial direction. 

3) Energy-Aware Federated Learning: Extending the framework to enable personalized federated learning on wearables requires 
novel methods for communication-efficient model updates, asynchronous training, and battery-aware scheduling. 

4) Longitudinal Clinical Validation: While open datasets provide a good baseline, large-scale clinical trials on commercial 
wearable devices will be necessary to validate the framework’s robustness and real-world impact. Collaborations with 
healthcare institutions could establish benchmarks for clinical-grade deployment 

5) Explainability and Trustworthiness: Future enhancements should also include explainable AI (XAI) modules, ensuring 
clinicians and users can interpret predictions from low-power models — an essential requirement for medical applications. 

In summary, this work demonstrates that AI-enabled wearables can move beyond cloud dependency to provide accurate, private, 
and energy-efficient health monitoring directly on-device. By combining algorithmic compression, hardware-aware design, and 
federated personalization, the proposed framework lays a foundation for the next generation of trustworthy, intelligent, and power-
efficient wearable healthcare solutions. 
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