

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Volume: 13 Issue: VII Month of publication: July 2025

DOI: https://doi.org/10.22214/ijraset.2025.73033

www.ijraset.com

Call: © 08813907089 E-mail ID: ijraset@gmail.com

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 13 Issue VII July 2025- Available at www.ijraset.com

Machine Learning Based System for the Detection of Skin Cancer

Avni Sharma

Department of Computer Scince Engineering, H.P. Technical University, Hamirpur

Abstract: Skin cancer is the increasing common cancer throughout the world nowadays, and occurrence rates are increasing very rapidly. If the cancer is predicted at early stage then the victim life can be saved. If detected at early stage then the patient can be treated successfully. An expert system can be buildup to detect the skin cancer. By such system many lives can be saved. This paper provides the concise review of various medical expert systems and the best methods used by various researchers to detect the skin cancer.

Keywords: otsu method, active contour and k-means clustering.

I. INTRODUCTION

- 1) Most common type of cancer is skin cancer throughout the world nowadays, and its increasing very rapidly. The skin cancer is broadly divided into melanoma and non melanoma.
- 2) The abnormal growth of tissues in the skin is known as skin cancer. Abnormal tissues of skin at present are mainly divided in two types: benign and malignant.
- 3) The skin tissues are harful and can infect their adjacent cells. In benign wound, melanin is present in the epidermis layer which causes skin cancer in the outermost layer. When this melanin goes into the dermis layer, it becomes harmful.
- 4) Benign tissues are not harmful but the malignant
- 5) The skin cancer can be caused by the direct exposure to the sunlight.
- 6) The spread of cancer cells from the place where they first formed to another parts of the body through blood is known as metastasis. Three epidermis layers are: a) an upper b) middle layer made up of squamous cells c) a bottom layer made up of melanocytes and basal cells.

II. RELATED WORKS

Table 1: Comparison of existing techniques for detecting the skin cancer .

Sr. No.	Author	Title	Year	Source	Method	Dataset	Accuracy
1.	Marriam Nawaz, Zahid Mehmood, Tahira Nazir, Rizwan Ali Naqvi, Amjad Rehman,Mun war Iqbal,	Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering	2022	Microscopy research and technique	Faster RCNN along with FKM	ISIC-2016, ISIC- 2017, PH2	95.4%
2	Tanzila Saba Garg, Shelly, and Balkrishan	Skin lesion segmentation using	2021	Multimedia Tools and Applications	K-means algorithm with firefly	ISIC,PH2	99.1% using ISIC,
	Jindal	k-mean and optimized fire fly algorithm			algorithm(FFA) technique		98.9% using PH2
3	Monika, M. Krishna, et al	Skin cancer detection and classification using machine learning	2020	Materials Today: Proceedings	Color-based k- means clustering	ISIC-2019 Challenge dataset	96.25%

4	Nadia Smaoui	Melanoma skin	2020	Current	Multi-Otsu	PH2 dataset	90%
	Zghal et. al	cancer detection based on image processing		Medical Imaging	thresholding algorithm		
5	E. Akar, O. Marques, W. A. Andrews, and B. Furht	Cloud-Based Skin Lesion Diagnosis System Using Convolutional Neural Networks.	2019	In intelligent computing-proceedings of the computing conference	CNN	"ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection"	77.4%
6	Vedanti Chintawar, Jignyasa Sanghavi	Improving Feature Selection Capabilities in Skin Disease Detection System	2019	International Journal of Innovative Technology and Exploring Engineering (IJITEE)	OTSU Method		More than 95%
7	Tammineni Sreelatha et. al	Early Detection of Skin Cancer Using Melanoma Segmentation technique	2019	Journal of medical systems	Gradient and Feature Adaptive Contour (GFAC)	PH2 dataset	98.64 %
8	N Garg, V Sharma, P Kaur	Melanoma Skin Cancer Detection Using Image Processing.	2018	In Sensors and Image Processing	Otsu method	Data set from dermis and medical image gallery	91.6%
9	M Zakareya, MB Alam, MA Ullah	Classification of Cancerous Skin using Artificial Neural Network Classifier	2018	International Journal of Computer Applications (0975 – 8887)	Neural Network for Classification.	ISIC Archive and American Cancer Society	97.84%
10	V Yadav, VD Kaushik	Detection of melanoma skin disease by extracting high level features for skin lesions	2018	Int. J. Advanced Intelligence Paradigms, Vol. 11, Nos. ¾	Region growing method	DermIs, DermQuest	73.46%
11	Ginni Arora, Ashwani	Performance Measure Based	2018	International Conference on	Otsu thresholding, Canny edge		
	Kumar Dubey , and Zainul Abdin Jaffery	Segmentation Techniques for Skin Cancer Detection		Recent Developments in Science, Engineering and Technology. Springer	detection, Watershed, K-Means		
12	Nikita Raut, Aayush Shah, Shail Vira, Harmit Sampat	A Study on Different Techniques for Skin Cancer Detection	2018	International Research Journal of Engineering and Technology (IRJET)	Backpropogation Neural		K-means Result:52.63 %, Back Propagation Neural Network result: 60% to 75%, Support Vector Machine result: 80% to 90%

13	E Craythorne,	Skin cancer	2017	Medicine	Biopsy, Surgical		
	F Al-Niami	Skill culice	2017	medicine	treatment, Radiotherapy, Cryotherapy, Topical treatment, Photodynamic therapy, Vismodigib		
14	JC Kavitha, A Suruliandi, D Nagaraja	Melanoma detection in dermoscopic images using global and local feature extraction	2017	International Journal of Multimedia and Ubiquitous Engineering, 12(5), 19-28	Otsu's adaptive thresholding method, GLCM ,SURF, SVM- RBF,KNN	data set from the local repository	SVM:87.3%.
15	Muhammad Aleem Taufiq , Adeel Anjum, Nazia Hameed(&), and Fozia Hameed	m-Skin Doctor: A Mobile Enabled System for Early Melanoma Skin Cancer Detection Using Support Vector Machine	2017	Machine,In eHealth ,Springer,Chann	Grab Cut algorithm	Klinik und Poliklinik für Dermatologie und Allergologie, University , Germany	80%
16	Dr.R. Pon Periyasamy, V.Gayathiri	Melanoma Detection through KMeans	2017	International Research Journal of	K-Means Clustering Segmentation	Knowledge-base of skin cancer images from University of	Highest Classification rate is 83.33
		Segmentation and Feature Extraction		Engineering and Technology (IRJET)		Wateloo	using SVC.
17	Jana, Enakshi, Ravi Subban, and S. Saraswathi	Research on Skin Cancer Cell Detection using Image Processing	2017	In 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC)	Techniques for working and detection of cancer		
18	Sundar, RS Shiyam, and M. Vadivel	Performance Analysis of Melanoma Early Detection using Skin Lession Classification System	2016	International Conference on Circuit, Power and Computing Technologies (ICCPCT)	K-means clustering algorithm, Multiclass Support Vector Machine		
19	Nilkamal S. Ramteke et. al	ABCD rule based automatic computer aided skin cancer detection using MATLAB	2013	International Journal of Computer Technology and Applications	Watershed Segmentation	Images from digital camera.	90%
20	Dr. J. Abdul Jaleel et. al	Artificial Neural Network Based Detection of Skin Cancer	2012	International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering	Threshold Segmentation	Dermoscopic images were collected from Internet	Good accuracy
21	Chen Yi-Ling Chen, Tse- Wei,and Shao-Yi Chien	Fast Image Segmentation Based on K-Means Clustering with Histograms in HSV Color Space	2008	In 2008 IEEE 10th Workshop on multimedia signal processing	K-Means Clustering with HSV.		
22	Ng, H. P., et al.	Medical image segmentation using k- means clustering and improved	2006	2006 IEEE southwest symposium on image analysis	K-means clustering, Improved watershed segmentation algorithm	C	

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 Volume 13 Issue VII July 2025- Available at www.ijraset.com

		watershed algorithm.		and interpretation			
23	Likas, Aristidis,	The global k- means	2003	Pattern recognition	K-means algorithm	Iris data set , the	
	Nikos Vlassis,	clustering algorithm				synthetic data set ,	
	and Jakob J.					artificially created data	
	Verbeek.					sets	
24	J.M. Pena,	An empirical	1999	Pattern recognition	RANDOM, Forgy	Iris database, Ruspini	Kaufman
	J.A. Lozano,	comparison of four		letters	Approach (FA),	database, Glass	Approach (KA)
	P. Larranaga	initialization methods			Macqueen Approach	database	is more accurate
		for the K- Means			(MA),		than other
		algorithm			Kaufman Approach		methods.
					(KA)		
25	Anas, Mohd,	Skin Cancer		International	K-means clustering	Images from University	Highest accuracy
	Kailash Gupta,	Classification Using K-	2017	Journal of	algorithm	of Wateloo	with SVC
	and Shafeeq	Means Clustering		Technical Research			classifier:83.33
	Ahmad			and Applications			

III. CONCLUSION

This review paper gives the comparison the methods used for detection of skin cancer. The comparison in the table is based on the methods, dataset used and performance measures like accuracy. The comparison in the table is done using the literature survey. There are number of techniques for segmentation of skin cancer detection but the methods having highest performance measure are k-means clustering, Otsu method and active contour. In future studies, these three segmentation techniques may be used with different parameters.

REFERENCES

- [1] E Craythorne, F Al-Niami Medicine, (2017) Skin cancer, Elsevier.
- [2] JC Kavitha, A Suruliandi, D Nagaraja,(2017). Melanoma detection in dermoscopic images using global and local feature extraction, International Journal of Multimedia and Ubiquitous Engineering, 12(5), 19-28
- [3] E. Akar, O. Marques, W. A. Andrews, and B. Furht(2019,july). Cloud-Based Skin Lesion Diagnosis System Using Convolutional Neural Networks.In intelligent computing-proceedings of the computing conference
- [4] Muhammad Aleem Taufiq, Nazia Hameed(&), Adeel Anjum, and Fozia Hameed,(2017). m-Skin Doctor: A Mobile Enabled System for Early Melanoma Skin Cancer Detection Using Support Vector Machine, In eHealth, Springer, Chann
- [5] N Garg, V Sharma, P Kaur, (2018). Melanoma Skin Cancer Detection Using Image Processing. In Sensors and Image Processing, Springer, Singapore
- [6] M Zakareya, MB Alam, MA Ullah ,(2018). Classification of Cancerous Skin using Artificial Neural Network Classifier, International Journal of Computer Applications (0975 – 8887)
- [7] V Yadav, VD Kaushik ,(2018), Detection of melanoma skin disease by extracting high level features for skin lesions, Int. J. Advanced Intelligence Paradigms, Vol. 11, Nos. ¾
- [8] Arora, Ginni, Ashwani Kumar Dubey, and Zainul Abdin Jaffery. "Performance measure based segmentation techniques for skin cancer detection." International Conference on Recent Developments in Science, Engineering and Technology, Springer, Singapore, 2017.
- [9] Garg, Shelly, and Balkrishan Jindal. "Skin lesion segmentation using k-mean and optimized fire fly algorithm." Multimedia Tools and Applications 80.5 (2021): 7397-7410.
- [10] Pena, José M., Jose Antonio Lozano, and Pedro Larranaga. "An empirical comparison of four initialization methods for the k-means algorithm." Pattern recognition letters 20.10 (1999): 1027-1040.
- [11] Chen, Tse-Wei, Yi-Ling Chen, and Shao-Yi Chien. "Fast image segmentation based on K-Means clustering with histograms in HSV color space." 2008 IEEE 10th Workshop on multimedia signal processing. IEEE, 2008.
- [12] Chintawar, Vedanti, and Jignyasa Sanghavi. "Improving Feature Selection Capabilities in Skin Disease Detection System.", International Journal of Innovative Technology and Exploring Engineering (IJITEE),2019
- [13] Sundar, RS Shiyam, and M. Vadivel. "Performance analysis of melanoma early detection using skin lession classification system." 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2016.
- [14] Anas, Mohd, Kailash Gupta, and Shafeeq Ahmad. "Skin cancer classification using K-means clustering." International Journal of Technical Research and Applications 5.1 (2017): 62-65.
- [15] Raut, Nikita, Aayush Shah, and HarmitSampat ShailVira. "A Study on Different Techniques for Skin Cancer Detection." International Research Journal of Engineering and Technology (IRJET) 5.09 (2018): 614- 617.
- [16] Periyasamy, R. Pon, and V. Gayathiri. "Melanoma detection through k-means segmentation and feature extraction." International Research Journal of Engineering and Technology (IRJET) 4.5 (2017): 1301-1305.
- [17] Monika, M. Krishna, et al. "Skin cancer detection and classification using machine learning." Materials Today: Proceedings 33 (2020): 4266-4270.
- [18] `FNawaz, Marriam, et al. "Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering." Microscopy research and technique 85.1 (2022): 339-351.
- [19] Ng, H. P., et al. "Medical image segmentation using k-means clustering and improved watershed algorithm." 2006 IEEE southwest symposium on image analysis and interpretation. IEEE, 2006.
- [20] Jana, Enakshi, Ravi Subban, and S. Saraswathi. "Research on skin cancer cell detection using image processing." 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2017.

- [21] Likas, Aristidis, Nikos Vlassis, and Jakob J. Verbeek. "The global k-means clustering algorithm." Pattern recognition 36.2 (2003): 451-461.
- [22] Dr. J. Abdul Jaleel, Sibi Salim, Aswin.R.," Artificial Neural Network Based Detection of Skin Cancer", International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 1,2012.
- [23] Tammineni Sreelatha, M. V. Subramanyam, M. N. Giri Prasad," Early Detection of Skin Cancer Using Melanoma Segmentation technique", Journal of medical systems, 43(7), pp.1-7,2019.
- [24] Nadia Smaoui Zghal, Nabil Derbel," Melanoma skin cancer detection based on image processing", Current Medical Imaging, 16(1), pp.50-58,2020.
- [25] Nilkamal S. Ramtekel and Shweta V. Jain," ABCD rule based automatic computeraided skin cancer detection using MATLAB", International Journal of Computer Technology and Applications, 4(4), p.691,2013. 16

45.98

IMPACT FACTOR: 7.129

IMPACT FACTOR: 7.429

INTERNATIONAL JOURNAL FOR RESEARCH

IN APPLIED SCIENCE & ENGINEERING TECHNOLOGY

Call: 08813907089 🕓 (24*7 Support on Whatsapp)