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Abstract: Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. Since then peg solitaire has 
been considered on quite a few classes of graphs. Beeler and Gray introduced the natural idea of adding edges to make an 
unsolvable graph solvable. Recently, the graph invariant ms(G), which is the minimal number of additional edges needed to 
make G solvable, has been introduced and investigated on banana trees by the authors. In this article, we determine ms(G) for 
several families of unsolvable graphs. Furthermore, we provide some general results for this number of Hamiltonian graphs and 
graphs obtained via binary graph operations. 
 

I. INTRODUCTION 
In [3], Beeler and Hoilman introduced the game of peg solitaire on graphs as a generalization of the classical peg solitaire game:  
Given a connected, undirected graph G = (V, E), we can put pegs in the vertices of G. Given three vertices u, v, w with pegs in u and 
v and a hole in w such that uv, vw ∈ E, we can jump with the peg from u over v into w, removing the peg in v (see Figure 1). This 
jump will be denoted as u · ˙v · w.  
  
  

 
   u  v  w  u  v  w  u  v  w  

Figure 1. A jump in peg solitaire. 
  
In general, we begin with a starting state S ⊂ V of vertices that are empty (i.e., without pegs).  
A terminal state T ⊂ V is a set of vertices that have pegs at the end of the game such that no more jumps are possible. A terminal 
state T is associated to a starting state S, if T can be obtained from S by a series of jumps. We will always assume that the starting 
state S consists of a single vertex. The goal of the original game is to remove all pegs but one. This is not possible for all graphs.  
 
Therefore, we use the following notation. A graph G is called  
• solvable,  if there is some v ∈ V  such that the starting state S  = { v}  has an associated terminal state consisting of a single 

vertex.  
• freely solvable, if for all v ∈ V  the starting state S = { v } has an associated terminal state consisting of a single vertex.  
• k-solvable,  if there is some v ∈ V  such that the starting state S = { v}  has an associated terminal state consisting of k vertices.  
• strictly k-solvable, if G is k-solvable but not A-solvable for any A < k. In that case G has solitaire number Ps(G) = k.  
Peg solitaire has been considered for quite a few classes of graphs, including paths, complete graphs, stars, double stars and 
caterpillars (for more results and variants see [7, 2, 3, 4, 5, 6, 8, 9, 11]).  
In 2016 [1], Beeler and Gray considered the natural question of determining the minimum number of edges necessary to guarantee 
the solvability of a connected graph. Furthermore, they posed the question of how much the addition of edges can influence the 
solvability of a graph.  In [8], the authors defined the smallest number ms(G) of edges that have to be added to a graph G to make it 
solvable and provided an example showing that the solvability might be improved arbitrarily good with the addition of just one 
edge. Since many unsolvable graphs exist, it seem natural trying to compute ms(G) for these graphs. We do this for several graph 
classes in Section 2 and provide general results in Section 3. First, we start with two rather obvious, but important facts.  
Every complete graph is solvable except for K1, which cannot have a starting state and an associated terminal state both of size one. 
Therefore, ms(G) exists for every graph G =  K1

ƒ  (and thus we exclude the case G = K1 whenever considering ms(G)). Furthermore, 
we have the following relationship between ms(G) and Ps(G).  
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Proposition 1.1. For every connected graph G = (V, E), we have ms(G) ≤ Ps(G) − 1.  
Proof. The cases |V (G)| < 3 and Ps(G) = 1 are trivial, hence we assume |V | ≥ 3 and Ps(G) ≥ 2. Let  
T = {t1, t2, . . . , tPs(G)} be a terminal state of G with minimal number of pegs. We find some  
  
u V T ∈ with \ ut1 E or ut∈2  E, w.l.o.g. assume ∈  ut1 E. After adding the edge ∈  t1t2, we can jump t2  ˙t1   
 · ·  · ·  
u. Next we add ut3 (unless it does already exist) and jump t3  ˙u  t1. Continuing in this alternating manner (adding t4t1, t5u and so on) 
yields a terminal state with one peg after adding at most Ps(G) − 1 edges.  
 

II. GRAPH CLASSES 
In this section we determine ms(G) for some graph classes. We start with trivial results where ms(G) is either 0 or 1. These follow 
from known results on Ps(G) for the respective graphs together with Proposition 1.1.  
 
Proposition 2.1. Let Kn be the complete graph on n vertices, Km,n be the complete bipartite graph on m + n vertices, Pn the path on n 
vertices, Cn the cycle on n vertices and W (B) the windwill with B blades. Table 1 gives ms(G) for these graphs.  
 
  Ps(GG )  K1n  Km,n1   P12 n  P22n +1  C12 n  C22n +1  W 1( B)  
 ms(G)  0  0  0  1  0  1  0  
  

Table 1. ms(G) for some graph classes.  
 
To determine ms(G) for windmills with pendants and for stars, we define a more general ver- sion of generalized windmills. Let P, 
B ∈Z ≥0. A general windmill W∗(P, B) with B  blade  vertices and P pendant vertices is a graph G with a vertex u that is adjacent to 
exactly P pendant vertices and B vertices that lie in blades, i.e., the induced subgraph defined by these vertices is a disjoint union of 
paths. Figure 2 shows a windmill W∗(3, 7).  

 
  

Note that the parameters B and P do not fully characterize a general windmill, since, for example, the windmill W∗(1, 4) could have 
4 vertices lying in one blade of length 4 or two times two vertices lying in blades of length 2. This will not be a problem for us since 
we are only interested in the total number of blade vertices. Note also that in [4] the windmill W (P, B) has 2B blade vertices (which 
by definition induce a union of B paths of length 2), whereas W∗(P, B) has only B blade vertices (this is due to the fact that we do not 
make assumptions on the size of the blades).  
We begin with a result about solvability of general windmills. We assume (P, B) ∈/  { (1, 0), (2, 0) } since otherwise we are dealing 
with the paths P2 resp. P3. To deal with general windmills and dou- ble stars we need the following lemma.  
Lemma 2.1 ([1, Corollary 2.2]). A graph G is not solvable if it contains a vertex which is adjacent to at least 12|  V (G)| leaves.  
 
Proposition 2.2.  Let (P, B) ∈/  {(1, 0), (2, 0)}. The general windmill W∗(P, B) is solvable if and only if B ≥ P.  
Proof. If P > B, Lemma 2.1 immediately yields the unsolvability of W∗(P, B) since every pen- dant vertex is a leaf. If B P ≥ , we can 
use the same strategy as in [4] to solve the graph:  

Figure 2. A general windmill  W ∗ (3 ,  7) .   
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Start with a hole in a pendant vertex. Jump from another pendant vertex over the centre into the hole. From now on, whenever the 
centre is empty, jump from two adjacent blade vertices into the centre. If the centre is not empty, jump from a pendant vertex over 
the centre into a blade vertex (in such a way that adjacent blade vertices are filled with pegs). Iterating this process yields the 
solvability.  
Remark 2.1. Using the above strategy, we can also show that Ps(W∗(P, B)) = P B + 1 −if  P > B.  
This gives the following result about ms(G) for general windmills.  
 
Proposition 2.3.  Let (P, B) ∈/ {(1, 0), (2, 0)}. We have  
 ., , Σ  

 ms(W  .  (1)  
Proof.  Note that if we add any non-existent edge to a graph W∗(P, B), there are four possibilities:  
1) We add an edge between two pendant vertices. This results in a graph W∗(P − 2, B + 2).  
2) We add an edge between a pendant vertex and a blade vertex. This yields a graph W∗(P − 1, B + 1).  
3) We add an edge between two blade vertices lying in disjoint blades. This gives us a graph W∗(P, B).  
4) We add an edge between two blade vertices lying in the same blade. The resulting graph will not be a general windmill any 

more but has the same number of leaves.  
  
Due to Lemma 2.1, we need to add edges such that the number of leaves gets reduced. This means that the fourth option will never 
increase the solvability.   Hence,  we only need to consider the first three types of edges.  Therefore, adding an edge will always 
yield another general windmill.   

≥  
, − ,. smallest k such that P − B + 1 − 4k ≤ 1, i.e., ms(W∗(P, 

B)) =  
   
Then, ms(W∗(P, B)) is the least number of edges that result in a graph W∗(P J, BJ) with BJ    P J. This implies that the best option is to 
join two pendant vertices with each edge added. Every such edge lowers Ps(W∗(P, B)) by 4 (except for potentially the last edge). 
Thus, ms(W∗(P, B)) is the  

P   B  
 

4  
Since K1,n is a general windmill W∗(n, 0) and W (P, B) is a general windmill W∗(P, 2B), we get the following result.  
  
  

,n ,.   
Corollary 2.1.   
• Let K1,n be the star graph with n leaves. If n ≥ 3, we have ms(K1,n) = 4 
 .,  , Σ  

• We have ms(W (P, B)) = max P −2B , 0 .  
4  

We now turn our attention to double stars. The double star DS(L, R) is the union of the stars K1,L and K1,R together with an edge 
connecting the centres of the two stars. The following result on their solvability is known.  
  
Proposition 2.4 ([4, Theorem 3.1]). Given L, R ∈ N with R ≥ L ≥ 1, the double star DS(L, R) is solvable if and only if R ≤ L + 1.  
Proposition 2.5. For every L, R ∈ N with R ≥ L ≥ 1 we have  
 , ,  

R − L − 1 ms(DS(L, R)) =  .  
4 
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Proof.  Assume R ≥ L+2 (,since oth,erwise DS(L, R) is solvable and we get ms(DS(L, R)) = 0). First we show that at least R−
4

L
 
−1 

edges need to be added. The idea is similar to the proof of Proposition 2.3. The right centre of the graph DS(L, R) has R adjacent 

leaves. Since R ≥ L + 2 holds, we have R ,  hence Lemma 2.1 yields that DS(L, R) is unsolvable.  
Moreover,,  ,  we have to reduce the number of leaves adjacent to the right centre.  Adding,  at most,   

 L 1  − 1 edges results in a graph such that the right centre has at least R   
adjacent leaves. By considering the four possible cases R− L ≡ 0, 1, 2, 3  mod 4, we see that this quantity is at least 1 (R + L + 2) = 
1| V |. Hence the graph is still unsolvable, so ms(DS(L,  

4   
by cL. Again, we distinguish four possible cases. If R − L ≡ 2, 3 mod 4, we start with solving a subgraph DS(L, L) of DS(L, R). 
This leaves a subgraph K1,R−L+1 with a hole in a pendant vertex (in cL, to be more specific). Then Corollary 2.1 implies  

 , , , ,  
ms(DS(L, R)) ≤ ms(K 1,R−L+1 ) = R − L + 1 = R − L − 1 .  

  4 4 
This idea does not work for R− L ≡0 , 1 mod 4 (let d denote this remainder) since the last equa- tion does not hold in those cases. 
We modify the proof slightly and use the fact ms(DS(1, 5)) = ms(DS(1, 6)) = 1. In both cases we start with solving a copy of 
DS(L− 1, L− 1), leaving pegs in one left pendant vertex, say A1, in R − L + 1 right pendant vertices, denoted by r1, r2, . . . , rR−L+1, 
and in the right centre cR. We jump r1·˙cR·cL

4.  Using the idea from Theorem 2.2 in [4] (see the proof  
of Proposition 2.2), we can, after adding R−L−d edges rR−L+1rR−L, rR−L−1rR−L−2, . . . , reduce the  

 ∈  ∪ {  −  −  }  
(solvable) windmill subgraph, which is induced by the vertices cR and ri for i ∈ [2 + d, R−L + 1], such that only pegs in r2+d, r3+d, 
rR−L+1, rR−L remain. The subgraph induced by A1, cL, cR and ri for i  [2, 3 + d]  R  L + 1, R  L , which contains the last remaining 
pegs and has a hole in cR, is solvable.  

  
III. GENERAL RESULTS 

Note that ms(G)    ≤  ms(H) holds if H  is a spanning subgraph of G.  On the other hand, if Ps(G)    ≤  Ps(GJ), but no relationship 
between G and GJ is known, we cannot conclude anything about the relationship of ms(G) and ms(GJ).   For example,  if Bn,k  
denotes the banana tree on ms(n stars,K1,k )  we=  h,ak

4v 
 ,e.  Ps(B2,k) = 2k − 2 and ms(B2,k) ≤  2 (see [8]),  but Ps(K1,k) = k − 1 and  

Furthermore,  it is not true that the edges which have  to be added to make G solvable have   to connect vertices of a best possible 
terminal state. Therefore, in general, we have to start with adding edges instead of solving the original graph first and adding edges 
later (again the banana tree B2,k is a nice example for this phenomenon).  
Now we turn to some general bounds for ms(G). Since every path is at least 2-solvable, the following result is immediate (see [3, 
Corollary 2.5] for some connections between solvability and the existence of a Hamiltonian cycle).  
 
Proposition 3.1. If G has a Hamiltonian path after adding k edges, we have ms(G) ≤ k + 1.  
This raises the question of how many edges have to be added to a graph to get a Hamiltonian path. There are various criteria (found 
in many books and web sources) for a graph G which guarantee that G has a Hamiltonian path. Together with Proposition 3.1 these 
may be used to give bounds on ms(G) for a given graph G. We will only show a connection to the path partition number of a graph 
(there are certainly many more). A path partition of a graph G is a set of paths such that every vertex of G belongs to exactly one 
path; the minimum cardinality, denoted by πp(G), of such a partition is called the path partition number of G [12]. 
 
Proposition 3.2. For every graph G = (V, E), we have  

ms(G) ≤ πp(G).  
Proof.  Start with a minimal path partition P  =  {P (1), P (2), . . . , P (k)} of G.   
For  each  i  =  

1, 2, . . . , k,  let P (i) = {p(i),1 p 
(i), 2.  . . , p(i)} twithi  p(i)p(i

j
)  j+1   E  for j  = 1, 2, . . . , ti − 1.   Adding the edges p(i)p(i+1) for i = 1, 2, . . 

. , k − 1 yields a Hamiltonian path which is solvable after adding  
 ti  1  
at most one more edge.   
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To end the section, we will give  some results about binary graph operations.  Since the join  G + H, which is G  H ∪ together with 
additional edges connecting every pair of vertices g, h with g V ∈(G ) and h V (H∈),  of any two graphs G and H  with  V (G) ,  V | 
(H| )|   2 is solvable [3, Theorem | ≥ 2.7], we have ms(G + H) = 0 in that case. The special case, where at least one of the graphs is 
K1, can be dealt with in the following way. As usual G[W ] denotes the subgraph of G induced by some set W ⊆ V (G).  
Lemma 3.1. The vertex set of a non trivial connected graph G can be partitioned into V1, V2, . . . , VA such that G[Vi] contains a 
spanning star on at least two vertices for every i ∈ {1, . . . , A}.  
Proof. W.l.o.g. we may assume G to be a tree. Let u be a vertex of degree 1 and v be a neighbour of u. Then G[{v} ∪ Nv], where Nv 
are the neighbours of v with degree 1, is a star. Iterating this process on the components of G[V (G) \ ({v} ∪ Nv)] yields the statement 
of the lemma.  
  
 Lemma 3.2. Let G be a star, the union of two stars or the union of at least 3 non trivial stars. Then G + K1 is solvable.  
Proof. The special case G = 2K1 yields G + K1 = P3, which is solvable, hence from now on G is not of this form.  
Let w denote the vertex corresponding to K1 and V1, V2, . . . , VA be the vertex sets of the stars from G such that Vi = {v 

1,i, v2,i, . . . , 
vsi,i 

}( si = Vi |  2|)  and ≥ v1,i is adjacent to all the vertices in Vi.  
Start with a hole in w.  
 As long as Vi and Vj (i ƒ= j) with each of them containing at least 3 pegs exist, we carry out a double star purge on Vi   ∪  Vj     ∪ {  w}    
(with centres w and v1,i or v1,j, depending on the size of Vi and Vj) until there is a hole in w and at least one of Vi and Vj contains 
exactly two pegs (one of them being in the star ƒcentre  v1,i resp.∈ v {1 ,j). This }results  in a configuration, where we have a hole in w 
and all Vi with i = j for some j 1, . . . , A contain exactly two pegs.  
If Vj  contains exactly two pegs,  we are done,  since we find a solvable windmill subgraph. Otherwise, we can easily reduce the 
number of pegs in Vj using w and induced cycles of length 3.  
Again, we obtain a solvable windmill subgraph.  
 
Proposition 3.3. ,  ,  

Let G be a graph with k isolated vertices. Then G + K1 is solvable if and only if  
|V k (G≤)|  

    
Proof. The necessity is an immediate consequence of Lemma 2.1. Let us now consider a graph ,  ,  G with k ≤ |V (G)| and let 
u1, u2, . . . , uk denote the isolated vertices of G.  

2  
The vertex set (ignoring isolated vertices) of G may be partitioned using Lemma 3.1 into  
V1, V2, . . . , VA such that Vi ={ v 

1,i, v2,i, . . . , vsi,i 
}( si = Vi 2|)  and | ≥ v1,i is adjacent to all the vertices in Vi. Note that  

ΣA   
 k ≤  si  (2)  

i=1  
holds.  

If si = 2 for every i ∈1, . . . , A  { },  G + K1 contains a solvable windmill (where w, the vertex corresponding to K1 in G + K1, is the 
centre and every Vi forms a blade) because of (2).  
Otherwise we can, starting with a hole in u1 and jumping u2 · w˙ · u1, remove pegs from the sets  
Vi with si ≥ 3 and from leaves of G + K1 using double star purges on the subgraphs induced by  
{  } ∪ { } ∪  \ {  }  
uj, uj+1, . . . , uj+si−2         w      (Vi     v2,i  ) (pick the smallest j such that uj contains a peg) until one of two configurations is reached.  

•No Vi with more than two pegs exists. Again, we find some solvable windmill subgraph (which is a subgraph of the graph 
induced by all vertices with pegs together with w).  

•There is a hole in every ui and at least one Vi contains more than 2 pegs. This can be solved by Lemma 3.2.  
 

  
 Combining this result and Lemma 2.1, we get the following proposition.  
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Proposition 3.4. Let G be a graph with k isolated vertices. Then  
 ., , Σ  

2k − |V (G)|  
 ms(G + K1   ) = max  , 0 .  

4 
 
For graphs G and H we denote the Cartesian product of G and H by G Q H and use the (common) notation (g, h)   ∈V  (G Q H) for 
the vertex induced by g   V (∈G ) and h   V (H)∈.    Beeler and Hoilman showed that G Q H is solvable if G and H are solvable or if G 
is solvable and H is distance 2-solvable (meaning it is 2-solvable and the terminal vertices are at distance  
2) or if both are 2-solvable [3]. The authors of this paper proved that P2 Q G is solvable for any connected graph G and conjectured 
Ps(G Q H) = 1 for any two non trivial connected graphs G and H [10]. Hence, we suggest ms(G Q H) = 0 in that case. This 
statement seems out of reach at the moment. Since ms(GQ H) can be a lot smaller than ms(G) and ms(H) (for example if both are 
stars [10]), lower bounds seem difficult to achieve. Upper bounds are mostly trivial, hence we will not continue exploring Cartesian 
products in this article (although the above mentioned conjecture should definitely be investigated further).  

If G  H  ∪ denotes the union of G and H, we have  ms(G  H∪)   ms(≤ G) + ms(H) + 2.  To verify  
this, start with solving G using ms(G) additional edges. Let w  H be any vertex such that ∈  H can  

∪ be solved starting 
with a hole in w when adding ms(H) edges (and add these to G H).  
Let v ∈H  be any neighbour of w. Connect the terminal vertex t of G with v by an additional edge  

· ·  ∈  ·  · and jump v   ˙t   u for some u     G.  Next, add an edge between u and w and jump u   
w˙    v.  Now solve H.  

Iterating this process gives the following result.  
Proposition 3.5. Let G be a graph with connected components G1, G2, . . . , Gk. Then  

  
Σk   

 ms(G) ≤ 2(k − 1) +  ms(Gi).  
i=1  

 
IV. OPEN PROBLEMS 

Since the definition of ms(G) is new, there are some more questions that naturally arise. For instance, ms(G) could be determined 
for other classes of graphs (for example caterpillars, banana trees, or trees of diameter 4).  
One might also define the number ms(G) to be the minimal number of edges that have to be added to make a graph freely solvable 
(since Kn is freely solvable, this number exists and is clearly greater than or equal to ms(G)). It would be interesting to examine this 
number for certain graph classes, get general results and see how this quantity relates to ms(G).  
It would also be interesting to connect ms(G) to the edge-critical graphs defined in [1].  
Moreover, adding edges may yield solvable graphs even if the original graphs are disconnected. This gives the possibility to study 
peg solitaire on graphs for which it was previously not possible.Obtaining more results on disconnected graphs than the ones in the 
previous section would be a desirable goal.  
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