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Abstract:  Malicious software, or malware, can take the form of executable code or system library files in the form of viruses, 
worms, or Trojan horses, all of which aim to compromise system security and user privacy. Detecting malware is done by 
analysing malware signatures and behaviour patterns statically and dynamically. It has been proven that these methods are 
ineffective and time-consuming when it comes to detecting unknown malware. The latest malware can be identified using 
machine-learning algorithms. Hence, this study aims to determine the most effective machine-learning algorithm for malware 
detection and classification. XGBoost, LightGBM, and Logistic Regression were used as algorithms for developing machine 
learning models. Pre-processing of the data is followed by training and testing of the models. The dataset containing information 
about various malware and their characteristics was obtained from Kaggle. A variety of metrics are used to evaluate the 
performance of the three models, including accuracy, precision, true negative rate, and false negative rate. Based on the 
analysis, it has been found that the LightGBM algorithm has the highest accuracy and precision. As a result, it follows that the 
LightGBM algorithm is the most effective algorithm for detecting and classifying malware. 
Keywords: Malware Detection and Classification, XGBoost, LightGBM, Logistic Regression, Machine Learning, Confusion 
Matrix, Correlation, Cardinality, Feature Reduction.  
 

I. INTRODUCTION 
Malware is a record or code that is passed over a network to infect, explore, steal, or play sincerely any action preferred by the 
attacker. Because malware is available in such a lot of varieties, there are various methods to contaminate systems. It is either sent to 
the target’s system directly or indirectly. They are also allowed to be spread across the internet so that any user can accidentally 
click or download the malware. When the user clicks or installs it, the malicious code performs actions that the user did not 
anticipate or intend. The performance of the malware includes the replication of the malware in diverse regions of the system, 
preventing document access, browser Ads flooding, and even rendering a device inoperable. There are various types of malware. 
Each type has its functionality and characteristics.  Some of the most common malware are Trojan horse viruses, spyware, computer 
worms, logic bombs, etc. Trojan horses seem like innocent programs, however, while activated, they motivate damage to the host 
computer. In contrast to a virus, a Trojan horse does not mirror itself; instead, this malware usually tries to steal documents or 
passwords. Spyware infects and operates on a user's device to display or extract records from the user. 
Since malware has many classifications and it is widespread, it becomes difficult for computer users to effectively detect the 
malware and identify its type. This problem can be sorted by a machine learning model which is incredibly efficient in the detection 
of malware and classifying its type. This study aims to develop three machine learning models for detecting and classifying 
malicious software and compares the efficiency of all three models. The results of the comparison provide the best algorithm that 
can be used. 

II. LITERATURE SURVEY 
Various researchers have accomplished studies and research about malware and its types. Some researchers also develop malware as 
their research or even some annotations regarding the development of malware. A study by a group of researchers from the Deakin 
University of Australia is one of the studies that developed an annotation for Android malware. According to their findings, Android 
malware poses critical protection and privacy dangers to cellular users. Because of the malware landscape's fast evolution, 
conventional malware detection and its circle of relative class technology have become much less effective. The annotation 
designed in this study is named Automatic Capability Annotation for Android Malware (A3CM). Instead of categorizing detected 
malware into families, A3CM predicts its security and privacy capabilities. As a result, A3CM can address unknown or zero-day 
malware. The semantic capabilities of A3CM may be used to seize styles of security and privateness-associated capabilities [1].  
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Deep learning technology is also used by researchers in the prediction of malware. Researchers from the Vellore Institute of 
Technology, India have used intelligent vision in their study to detect malware. They used the random forest algorithm in this study. 
Whilst the classifier is skilled with recognized variations from the identical family, classifying unknown malware variations with 
comparable traits into their respective groups is a widespread challenge. Another problem for generalizing the malware detection 
gadget is the identity and extraction of remarkable capabilities for every malware. The proposed algorithm can provide an average 
accuracy of 98%. Deep ensemble layering and occasional version complexity distinguish the proposed approach, which outperforms 
deep neural networks in malware detection. The proposed version recognizes unknown malware samples from common malware 
families [2].  
Deep learning algorithms have been used in the classification of malware. The traditional artificial intelligence (AI) algorithms, 
especially gadget learning (ML), are not able to detect all new and complicated malware variants. To correctly fight new malware 
variants, novel strategies that might be exceptional from conventional strategies have to be used. The experimental consequences 
display that the proposed approach can correctly classify malware with excessive accuracy, outperforming contemporary strategies 
advanced by different researchers. On a massive scale domain, the proposed approach is efficient and decreases function space [3].  
Machine learning is an effective technology that is used in various fields. A review done by researchers at the Sunyani University of 
Ghana explains the applications of machine learning in various fields along with its challenges. Accordingly, even though most 
Artificial Intelligence (AI) and Machine Learning (ML) algorithms are free, they require a new talent set which is unusual for 
practitioners in this subject and IT departments. Furthermore, the provision of several ML algorithms creates a project in deciding 
on the fine one, akin to "seeking out a needle in a haystack". Analysed 66 types of research that make use of machine learning for 
classification purposes, analysed their pros and cons, and concluded that the selection of the perfect algorithm should be based on 
various parameters. The parameters include the requirement of the algorithm, the storage space required for the algorithm to 
perform efficiently, the domain of the research, etc. However, certain machine learning algorithms can be used in many applications 
irrespective of the domain [4]. 
As stated before, machine learning can be used in any field. There is various research that used machine learning in traffic detection. 
An essential problem in computerized training with huge datasets is modelling an efficient classifier. As a result, the computerized 
category is a sizable assignment that calls for the usage of schooling strategies able to assign training to facts gadgets primarily 
based totally on the enter sports provided to study training. Predefined training permits the popularity of the latest elements. The 
new version is primarily based totally on a proposed system mastering set of rules, which includes 3 layers: an enter layer, a hidden 
layer, and an output layer. To optimize the weights, a dependable education set of rules is proposed, and a popularity set of rules is 
used to validate the version. Before the evaluation step, the amassed site visitors are pre-processed. The purpose of their studies is to 
explain the mathematical validation of a new system mastering classifier for heterogeneous site visitors and anomaly detection [5].   
The XGBoost algorithm is one of the machine learning algorithms that is used in many applications. The algorithm has usage in 
pedestrian detection. Pedestrian detection is extensively utilized in sensible monitoring, assisted use in automobiles, security, and 
smart transportation. It has been studied in lots of systems imaginative and prescient packages for plenty of years. Machine learning 
is trending and famous for pedestrian detection. Infrared screening is also utilized for this detection purpose. As a result, infrared 
and scene mild video fusion strategies may be used to enhance the detection effect, making the consequences of pedestrian actions 
at night-time dependable and effective [6]. The XGboost algorithm is also used in many cybersecurity-related applications such as 
detection of false data injection. Accordingly, the conventional strength device is step by step evolving right into a cyber-physical 
electricity device (CPES) with common interactions among physical and cyber components. It additionally creates new protection 
challenges, with disastrous outcomes for the strength device. The simulation effects display that the released stealthy False Data 
Injection Attacks (FDIA) can effectively skip conventional terrible records detection and for that reason compromise the CPES's 
records security, revealing the CPES's vulnerability and the need for a detecting method. It concluded that the FDIA defence 
mechanism primarily based totally on the XGBoost classifier detects cyber-assaults with excessive accuracy and robustness [7]. 
Light Gradient Boosting Method (LightGBM) algorithm is one of the fastest machine learning algorithms used for classification and 
detection. It is a gradient-boosting framework that uses tree-based learning algorithms. It is designed to be distributed and efficient 
with support for parallel and GPU learning and is capable of handling large-scale data. Due to its quick response, the LightGBM is 
also used in various applications. The algorithm has been utilised in the study that maps the population based on the density of the 
population. Accordingly, Gradient-based One-Side Sampling (GOSS) can acquire a correct statistics advantage with a tremendously 
small pattern dataset since information with large gradients plays a greater function within the calculation of statistics advantage. In 
the meantime, EFB permits the binding of together extraordinary functions to lessen the wide variety of functions. LightGBM, that's 
primarily based totally on GOSS and Exclusive Feature Bundling (EFB), can boost the learning process [8].  
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The LightGBM algorithm is also used in the medical field. It can be used in the prediction of sepsis from clinical images. Sepsis is 
an intense clinical situation because of the body's overreaction to an infection, which could bring about tissue damage, organ failure, 
or even death. The emergence of superior technology which includes synthetic intelligence and smart gadgets facilitates the speedy 
exploration of superior strategies for recognizing sepsis cases. The algorithm designed in this study can predict sepsis with high 
accuracy and precision in a faster way [9]. 
The Logistic Regression (LR) algorithm is one of the simplest machine learning algorithms to implement. Thus, this algorithm is 
also used in various applications. It is used in the estimation of lower limb muscle activations. The estimation of human muscle 
pastime has been studied as an essential approach in lots of fields. Electromyography (EMG), a technique that offers visible 
comments on the electromyogram's potential, is not an unusual application. The Logistic Regression reduces errors due to 
nonlinearities consisting of saturation of the enter sign and the benefit of permitting the regression coefficient to be calculated with a 
small quantity of data. When training the usage of outcomes of the order of numerous seconds, the proposed approach outperformed 
the other compared methods [10]. The LR algorithm is also compatible with other machine learning algorithms and even deep 
learning algorithms.  
Furthermore, the combination of the Logistic Regression algorithm and Convolutional Neural Networks (CNN) is used in facial 
landmarks detection. Consequently, most current course-to-great facial detectors fail to discover landmarks as they should without a 
massive quantity of completely labelled data, that is high-priced to obtain. The LR-CNN version may be trained correctly with a 
small quantity of finely labelled data and a huge quantity of generated weakly labelled data using weakly supervised learning. 
Extensive checks on benchmark datasets display that the proposed technique can complete multi-challenge facial detection and 
outperform other facial element and landmark detection algorithms [11]. 
 

III. MATERIALS AND METHODS 
A dataset consisting of data with numerous types of malware along with the characteristics undergoes a lot of methods to identify 
the best algorithm that can be used for malware detection. These methods are represented in the flowchart in figure 1. 

 
Fig. 1. Workflow of the study 

 
From figure 1, the obtained dataset is pre-processed using various methods shown. The processed values are then used to train and 
test the models. The workings of the above procedures are explained clearly in the upcoming chapters. 
 

IV. DATA COLLECTION AND PRE-PROCESSING 
A dataset consisting of data with 83 columns or features about malware and its types is collected from Kaggle [12]. Kaggle is a data 
science and artificial intelligence platform where contests with monetary prizes are published by large companies and organizations. 
In addition to the competitions, users can also share their datasets and examine the datasets shared by others. The dataset consists of 
8921483 samples of data with 82 features each The telemetry data containing these properties and the machine infections were 
generated by combining heartbeat and threat reports collected by Microsoft's endpoint protection solution, Windows Defender. . The 
data is of three types: categorical data, binary data, and numerical data. The distribution of the data according to datatypes is shown 
in Figure 2 as a pie chart. 
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Fig. 2. Data type distribution 

 
Due to the abundant amount of data, it becomes tough for machine learning models to process the data. Thus, the obtained dataset is 
pre-processed to find the necessary features that are required for malware detection. Five pre-processing methods are engaged in the 
reduction of this database.  The methods are missing value removal, cardinality check, correlation check, feature reduction, and data 
balance. The methods are explained below. 

 
A. Missing Value Removal 
Out of the 83 columns, almost every column consists of some missing values. However, if only a few values are missing, they can 
be neglected.  However, when a column consists of more than 40% of missing values, it can hinder the efficiency of the model since 
these columns do not contribute much to the model training. So, the columns that have more than 40% of missing values are 
removed from the dataset. Almost 7 columns consist of such missing values. The columns that are eliminated during this process are 
listed as output in Figure 3. 
 
1) Code 
percent = (train_data.isnull().sum()/train_data.shape[0]) * 100 
new_train_data= pd.DataFrame(data=percent,columns=['Percentofnullvalues']) 
new_train_data = new_train_data.sort_values(by='Percentofnullvalues',ascending=False) 
print(new_train_data.head(15)) 
 
2) Output 
 
Code: 
def remove_columns(data): 
     
    ''' Computing percent of null values in a dataset based on the feature and removing those features having 40 or more than 40 
percent of null values ''' 
    columns_to_be_removed = [] 
    percent = (data.isnull().sum()/data.shape[0]) * 100 
 
    for col in data.columns: 
        if percent.loc[col] >= 40: 
            columns_to_be_removed.append(col) 
    new_data = data.drop(columns=columns_to_be_removed) 
   
    return new_data 

Fig. 3. Identifying and removing columns with more than 40% of missing values 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

1731 

B. Cardinality Check 
Almost all datasets have categorical variables. Each categorical variable consists of unique values. A categorical feature is said to 
possess high cardinality when there are too many of these unique values. One-Hot Encoding becomes a big problem in such a case 
since we have a separate column for each unique value (indicating its presence or absence) in the categorical variable. This leads to 
two problems: space consumption and the curse of dimensionality. The cardinality of the data also plays an important role in the 
working of a machine learning model. If a column consists of only a few possible values, it will be easier for the model to be trained 
according to that value and vice versa. Thus, the columns with a cardinality of more than 50 are also eliminated from the dataset as a 
way to avoid the above-mentioned problems. The columns removed by this method are shown in Figure 4. 
 
1) Code 
from collections import Counter 
def cumulatively_categorise(column,threshold=0.5,return_categories_list=True): 
 
#Find the threshold value using the percentage and number of instances in the column 
 threshold_value=int(threshold*len(column)) 
 
#Initialise an empty list for our new minimised categories 

  categories_list=[] 
#Initialise a variable to calculate the sum of frequencies 

  s=0 
#Create a counter dictionary of the form unique_value: frequency 

  counts=Counter(column) 
 

#Loop through the category name and its corresponding frequency after sorting the categories by descending order of frequency 
  for i,j in counts.most_common(): 

#Add the frequency to the global sum 
    s+=dict(counts)[i] 

 
#Append the category name to the list 

    categories_list.append(i) 
#Check if the global sum has reached the threshold value, if so break the loop 

    if s>=threshold_value: 
      break 

#Append the category Other to the list 
  categories_list.append('Other') 
 

#Replace all instances not in our new categories by Other   
  new_column=column.apply(lambda x: x if x in categories_list else 'Other') 
 

#Return transformed column and unique values if return_categories=True 
  if(return_categories_list): 
    return new_column,categories_list 

#Return only the transformed column if return_categories=False 
  else: 
    return new_column 

 
#Call the function with a default threshold of 50% 
transformed_column,new_category_list=cumulatively_categorise(df['column'],return_categories_list=True) 
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2) Output 

 
Fig. 4. Columns with a cardinality of more than 50 

 
C. Correlation Check 
The term correlation is used to represent the relationship between two or more variables i.e., how the values of a specific column are 
affected by the change of values in other columns. The correlation between the columns is also checked to ensure the better 
performance of the machine learning models.  Due to memory limitations, the columns are divided into batches of 15. As part of the 
exploratory data analysis to improve model performance, the correlation of the features with the target variable in this case 
“HasDetections” is very important. The sample of the correlation check done for the dataset is shown in figure 5. 
 
1) Code 
train_data[train_data.columns[1:]].corr()['HasDetections'][:].sort_values(ascending=False) 
 
2) Output 

 
 
3) Code 
corr_rel = data[features] 
correlation_matrix = corr_rel.phik_matrix() 
plot_correlation_matrix(correlation_matrix.values, x_labels=correlation_matrix.columns, y_labels=correlation_matrix.index,  
                        vmin=0, vmax=1, color_map='blue', title=r'correlation $\1-15$', fontsize_factor=1.5, 
                        figsize=(25,25)) 
plt.tight_layout() 

 
Fig. 5. Correlation check 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

1733 

D. Feature Reduction 
Even after the removal of several columns using the above-mentioned pre-processing techniques, some features of the dataset are 
still unnecessary in the process of malware detection. Thus, the columns that are irrelevant to this classification are also removed.  
The number of columns after every step of pre-processing is shown in figure 6. 

 
Fig. 6. Feature reduction 

 
The train.csv file contains entries, where each entry corresponds to a machine that is uniquely identified by a MachineIdentifier and 
Has Detections, which is the ground truth and indicates that Malware was detected on the machine. After data pre-processing, the 
training dataset contains 1500000 rows and 45 columns which are split into a training set and a validation set. The validation set is 
for parameter hyper-tuning and optimising the best model. They are equally split into two, the training set and the validation set with 
750000 rows and 45 columns for the training set and validation set each. The data is then fitted into the model training. The training 
sample is shown in Figure 7. 
 

 
Fig. 7. Train and validation samples 

 
The test.csv file contains 1500000 rows with the selected features the same as those the models are trained on less the label. Since 
this is a real-time competition dataset, using the information and labels in train.csv, the models must predict the value 
for ‘HasDetections’ for each machine in test.csv. 

 
4) Data Balance 
The data must be balanced so that the training of the models will not be biased. If one class of data exceeds the number in another 
class of data, it results in the model being trained more for the former class. So, the values from the dataset are checked for class 
balance. If a value is more than another, one of the values is altered to maintain balance in data. The bar graph representing the 
classes of data after data balance is shown in figure 8. 

 
Fig. 8. Data after data balance 

The pre-processed data can be used for both training and testing the machine learning models. The data is then again split into two 
parts in the ratio of 4:1. The larger part will be used to train the models and the smaller part will be used for testing. 



International Journal for Research in Applied Science & Engineering Technology (IJRASET) 
                                                                                           ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538 

                                                                                                                Volume 11 Issue VIII Aug 2023- Available at www.ijraset.com 
     

 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 | 
 

1734 

V. PAGE FORMATTING 
A Machine Learning model can be thought of as a program that has been trained to discover patterns in data and make predictions in 
new data. These models are represented by a mathematical function that accepts requests in the form of input data, makes 
predictions based on that data, and then responds with an output. These models are first trained on a collection of data before being 
given an algorithm to reason over that data, extract patterns from fed data, and learn from it. These models can be used to predict the 
unknown dataset once they have been trained. The Models under evaluation are based on XGBoost, LightGBM, and Logistic 
Regression algorithms. 

 
A. XGBoost 
Extreme Gradient Boosting (XGBoost) is a scalable, allotted Gradient-Boosted Decision Tree (GBDT) system for acquiring 
knowledge of the library. It is the main system for gaining knowledge of the library for regression, classification, and rating 
problems, and it helps parallel tree boosting. XGBoost is optimized to be especially efficient, flexible, and portable. The XGBoost 
algorithm is also capable of producing the smallest Root Mean Square Error (RSME) value in various scenarios. Gradient Boosting 
Tree carries out unsupervised studying through studying from information without a predefined model. It is called an "All in One" 
algorithm. It is likewise called an end-to-end algorithm. It is a perfect mixture of software programs and hardware optimization 
strategies that produce perfect consequences whilst the usage of the fewest computing assets within the shortest quantity of time. It 
is extra fast than Gradient Boosting. With its integrated features, it is intended to address lacking information [13]. 

 
B. LightGBM 
Light Gradient Boosting Machine (LightGBM) makes use of selection tree algorithms to carry out the ranking, and classification 
The advantages are that LightGBM is a histogram-primarily based set of rules that play fee bucketing, which ends up in quicker 
training speed and accuracy. It additionally requires less memory. This proves to be a large gain whilst operating on massive 
datasets and constrained hardware environments. The LightGBM algorithm provides the smallest RMSE value than many other 
algorithms making it more effective [14]. 

 
C. Logistic Regression 
Logistic Regression is a Machine Learning algorithm used mainly for binary category problems. It is used to predict specific 
structured and unbiased variables. A logistic regression instance could be the usage of a system to decide whether someone is likely 
to be inflamed with a particular disease [15]. Linear regression is straightforward to apprehend and explain, and it could be 
regularised to avoid overfitting. Furthermore, linear fashions may be effortlessly up to date with new statistics and the use of 
stochastic gradient descent. It additionally has an extreme prediction rate. 
 

VI. PERFORMANCE METRICS 
The performance of Machine Learning algorithms; classification algorithms, and regression algorithms can be evaluated using a 
variety of metrics. Because how the performance of ML algorithms is assessed and compared is reliant on the metric used, it must 
be carefully selected to measure ML performance. The Confusion Matrix is the simplest technique to assess the performance of a 
classification task with two or more types of output. A confusion matrix is a table containing two dimensions, “Actual” and 
“Predicted”, which in turn intersect as “True Positives (TP)”, “True Negatives (TN)”, “False Positives (FP)” and “False Negatives 
(FN)” on both dimensions, as illustrated in Figure 9 below. 

 
Fig. 9. Confusion Matrix 
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 True Positive (TP): the ground truth is that it is positive, and the test predicts that it will be positive. It is Malware, and the exam 
correctly identifies it. 

 True Negative (TN): the ground truth is that it is negative, and the test predicts that it will be negative. It is not Malware, and 
the test correctly reflects this. 

 False Negative (FN): the ground truth is positive, but the test predicts a negative. The file is malicious, yet the test incorrectly 
indicates that it is legitimate. In statistics, this is known as a Type II error. 

 False Positive (FP): Although the ground truth is negative, the test indicates a positive outcome. It is not Malware, but the test 
incorrectly indicates that it is. In statistics, this is known as a Type I error. 
We can quantify the accuracy of our tests quantitatively by calculating ratios between these numbers. Therefore, the 
calculations used for the comparison of the models’ performances are based on the equations mentioned below. 

 
A. Accuracy 
It is the most often used indicator for assessing the performance of classification algorithms. It's the number of correct predictions 
divided by the total number of predictions. To calculate the accuracy of our classification model, we may utilise the accuracy score 
function in sklearn.metrics. 
 

 
ݕܿܽݎݑܿܿܣ = ஼௢௥௥௘௖௧ ௉௥௘ௗ௜௖௧௜௢௡௦ (்௉ା்ே)

்௢௧௔௟ ௉௥௘ௗ௜௖௧௜௢௡௦ (்௉ାிேା்ேାி௉)
 (1) 

 
 

B. True Negative Rate (TNR) 
The true negative rate, also known as specificity, is the likelihood that a true negative will test negative. 
 
ܴܶܰ = ்ே

்ேାி௉
    (2) 

 
C. True Positive Rate (TPR) 

The probability that an actual positive will test positive is also known as sensitivity or recall. 
 
ܴܶܲ = ்௉

்௉ାிே
    (3) 

 
D. False Negative Rate (FNR) 

The probability that a true positive will be missed by the test, is also known as the miss rate. 
 
ܴܰܨ = ிே

ிேା்௉
    (4) 

 
E. False Positive Rate (FPR) 

It is the chance that a false alarm will be triggered, resulting in a positive result while the genuine value is negative. 
 
ܴܲܨ = ி௉

ி௉ା்ே
    (5) 

 
F. Precision 

The number of correct malware classifications returned by the model. 
 
݊݋݅ݏ݅ܿ݁ݎܲ = ்௉

்௉ାி௉
    (6) 
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G. F1 Score 
From the above performance measures, the F1 Score can also be calculated. The F1 score is made up of two components: precision 
and recall. The F1 score's purpose is to combine the precision and recall metrics into a single metric. At the same time, the F1 score 
was created to operate well with data that is imbalanced. F1 Score is the harmonic mean of precision and recall.  Because they are 
both rates, the harmonic mean is a logical choice. 

 
݁ݎ݋ܿܵ 1ܨ = 2 ∗ ௉௥௘௖௜௦௜௢௡∗ோ௘௖௔௟௟

௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟
  (7) 

 
Because the F1 score is the average of Precision and Recall, it gives Precision and Recall equal weight:  
 A model will have a high F1 score if both Precision and Recall are high. 
 If both Precision and Recall are low, a model will have a low F1 score. 
 If one of Precision or Recall is low and the other is high, a model will get a medium F1 score. 

 
VII. EXPERIMENTAL SETUP 

This section describes the parameter selection of the machine learning algorithms used for experimentation. Some classifiers we 
intend to use are sensitive to parameters. We perform hyperparameter tuning to find the best parameters. 

 
A. Xtreme Gradient Boosting 
The Extreme Gradient Boosting algorithm is a decision tree-based machine learning algorithm that uses a process called boosting to 
help improve performance. The most powerful ML algorithms like XGBoost are famous for picking up patterns and regularities in 
the data by automatically tuning thousands of learnable parameters. The hyperparameters include the maximum depth of the tree, 
the number of trees to grow, the number of variables to consider when building each tree, the minimum number of samples on a leaf, 
and the fraction of observations used to build a tree. Since there are many parameters for the optimisation of XGBoost, Grid search 
CV was used to automatically find the optimum combination of hyperparameters for the best result. The selected parameters used 
for the final solution are shown in Figure 10. 

 
Fig. 10. XGBoost Grid search Hyperparameters 

 
B. Light Gradient Boosting Method 
Gradient boosting utilizes tree-based learning, and its base classifier is based on decision trees.  Unlike most traditional boosting 
methods whereby decision trees are grown breadthwise, LGBM grows leaf-wise. Growing leaf-wise usually results in a lower loss, 
but it may cause overfitting when the data size is small. That is not the case for our project since our dataset has 1.5 million 
observations. To ensure that the classifier can obtain the complete pattern of the training dataset, the K-Fold cross-validation method 
is used to train the classifier. It is also to ensure that there is ample data for training and validation. In K-Fold cross-validation, the 
dataset is divided into n subsets. This method will run for n iterations. For every iteration, one of the n subsets will be used as a 
validation set, while the other n-1 subsets will form a training set. Every n subset is a validation set exactly once and a training set n-
1 times. This reduces the bias and variance since we are using the entire dataset for training. Train the classifier with a learning rate 
of 0.1, and it stops when the validation score stops improving after 100 rounds. To prevent overfitting, introduce bagging and 
feature subsampling, with a fraction of 0.8, and a frequency of 1. This means that for every iteration, 0.8 of the training data will be 
used for bagging and feature subsampling. 
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C. Logistic Regression 
Logistic regression uses a sigmoid function to help map the probabilities into any values between 0 and 1. The advantage of Logistic 
regression is that it is good for binary classification and suitable for this problem as the probabilities of whether malware is detected 
are any values between 0 and 1. Five different solvers were tried: liblinear, Stochastic Gradient Descent (SGD), Stochastic Average 
Gradient Descent (SAG), SAGA (a variant of SAG) and limited-memory Broyden-Fletcher-Goldfarb-Shanno Algorithm(LBFGS). 
For each solver, an L2 regularization (penalty=L2) is used to reduce overfitting. The rest of the parameters are kept as default 
(C=1.0, class weight=None). In terms of training time, SAGA and SAG are the most appropriate for this problem as they are 
optimized for very large datasets and take around 20 minutes to train the classifier compared to other classifiers such as liblinear 
which takes 3 hours to train. LBFGS is not optimized for large datasets, but in this case, the data used has been standardized, which 
results in a faster training time of around 20 minutes. C represents the inverse of regularization strength. The smaller the value of C, 
the stronger the regularization. The best classifier for logistic regression was the LBFGS solver with C=0.2. 
 

VIII. RESULTS AND DISCUSSION 
Three machine learning models were developed using machine learning algorithms which are the XGBoost algorithm, the 
LightGBM algorithm, and the Logistic Regression algorithm. The models were then trained and validated using the processed 
dataset before testing for efficiency. The performance of the three models is plotted on a graph for comparison. The graph is shown 
in Figure 11.  

 
Fig. 11. Performance of all algorithms 

 
Accuracy is the proportion of correct predictions out of all predictions. From figure 11, the results show that LightGBM algorithm 
achieves 93.3%, followed by the XGBoost algorithm at 89.3% and finally, Logistic Regression at 84%. It can therefore be 
concluded that LightGBM has managed to detect and classify 93.3% of the test data correctly and has outperformed XGBoost and 
Logistic Regression by 4% and 9.3% respectively in terms of accuracy. 
Furthermore, precision is the proportion of correct positive predictions of all cases classified as positive. This is particularly an 
important metric in malware classification since misclassification leads to legit files being deleted or regarded as malicious. 
LightGBM achieved 93.2% followed by XGBoost with 87.7% and Logistic Regression with 80.9%. It can further be concluded that 
LightGBM classification is more desirable due to the high precision compared to XGBoost and Logistic Regression by 5.5% and 
12.3% respectively. In addition, the True Negative Rate (TNR) also termed specificity or selectivity is a performance metric that 
measures the probability that your model will predict negative when the true value is negative. It is closely related to the True 
Positive Rate (TPR), which is completely analogous. This is also crucial in this use case since misclassification leads to malware 
being treated as legitimate, which results in system compromise. The LightGBM algorithm also has a True Negative Rate of 90.4% 
followed by XGBoost with 85% and Logistic Regression at 76% thus 5.4% and 14.4% progressed than the other two algorithms 
under comparison respectively. LightGBM True Positive Rate is 95.4%, XGBoost 94% and Logistic Regression 89% which is 1.4% 
and 6.4% progressed than XGBoost and Logistic Regression respectively.   
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Furthermore, LightGBM has the lowest False Negative Rate of 4.5% compared to XGBoost and Logistic Regression with 6% and 
10% accordingly. The False Positive Rate of LightGBM is 9.5%, XGBoost 16% and Logistic Regression 21%. It is therefore 
evident that LightGBM achieves the desired performance metrics in relation to Malware detection and Classification on the given 
dataset. However, further hyperparameter tuning can improve the results. The main concerns are memory usage and the time it takes 
to run a given model. 
These results on the dynamic prediction of malware are particularly positive to the threat model described in the paper. The 
advantage is that zero-day attacks can also be detected and classified even though they are not present in the anti-virus signature 
database. Additionally, device security is guaranteed due to the malware prediction capability compared to relying on anti-virus 
software that required virus definitions for comparison before classifying files as malicious. 

 
IX. CONCLUSION 

The XGBoost, LightGBM, and Logistic Regression algorithms were used to construct three different machine learning models that 
were trained and validated on Kaggle's Malware dataset. A graph was used to compare the performance of all three algorithms using 
the test.csv dataset provided on the same platform. Based on our findings, the LightGBM algorithm is best suited for this use case of 
malware detection and classification. LightGBM exhibited superior performance in terms of precision, true positive rate, false 
positive rate, true negative rate, and false negative rate over the other two algorithms. Therefore, this model can be deployed on a 
website or software application to detect malware and classify it in real-time. To improve results, hybrid approaches can also be 
considered. 
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